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SIMPLY CONNECTED MANIFOLDS OF DIMENSION 4k WITH
TWO SYMPLECTIC DEFORMATION EQUIVALENCE CLASSES

Jongsu Kim

Abstract. We present smooth simply connected closed 4k-dimensional manifolds
N := Nk, for each k ∈ {2, 3, · · · }, with distinct symplectic deformation equivalence
classes [[ωi]], i = 1, 2. To distinguish [[ωi]]’s, we used the symplectic Z invariant in
[4] which depends only on the symplectic deformation equivalence class. We have
computed that Z(N, [[ω1]]) = ∞ and Z(N, [[ω2]]) < 0.

1. Introduction

An almost-Kähler metric on a smooth manifold M2n of real dimension 2n is a
Riemannian metric g compatible with a symplectic structure ω, i.e. ω(X, Y ) =
g(X, JY ) for an almost complex structure J , where X, Y are tangent vectors at a
point of the manifold. Two symplectic forms ω0 and ω1 on M are called deformation
equivalent, if there exists a diffeomorphism ψ of M such that ψ∗ω1 and ω0 can be
joined by a smooth homotopy of sympelctic forms, [5]. For a symplectic form ω, its
deformation equivalence class shall be denoted by [[ω]]. We denote by Ω[[ω]] the set
of all almost Kähler metrics compatible with a symplectic form in [[ω]]. Examples
of smooth manifolds with more than one symplectic deformation class have been an
interesting subject to study; refer to [6], [7] or [8].

For a smooth closed manifold M of dimension 2n ≥ 4 which admits a symplectic
structure ω, we have defined a symplectic invariant Z in [4];

Z(M, [[ω]]) = sup
g∈Ω[[ω]]

∫
M sgdvolg

(Volg)
n−1

n

,
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where dvolg, sg, Volg are the volume form, the scalar curvature and the volume of
g respectively.

In [4], we presented a six dimensional non-simply connected closed manifold which
admits two symplectic deformation classes [[ωi]], i = 1, 2, such that their Z values
have distinct signs. Then in [3], we showed an eight dimensional simply connected
closed manifold with the same property.

The main result in this article is to present a simply connected manifold of di-
mension 4k, for each k ∈ {2, 3, · · · }, with the above property.

2. Examples in Dimension 4k

Here we shall prove the following;

Theorem 2.1. For each integer k ≥ 2, there exists a smooth closed simply connected
4k-dimensional manifold N with symplectic deformation equivalence classes [[ωi]],
i = 1, 2 such that Z(N, [[ω1]]) = ∞ and Z(N, [[ω2]]) < 0.

The manifold N is (diffeomorphic to) the product of k copies of a complex surface
of general type with ample canonical line bundle which is homeomorphic to R8, the
blow up of the complex projective plane CP2 at 8 points in general position. This
general type complex surface may be obtained as a small deformation of Barlow’s
explicit complex surfaces [1]. When k = 2, the manifold N in the theorem can be
the one studied by Catanese and LeBrun [2].

To prove this theorem, we need the following;

Proposition 1. Let W be a complex surface of general type with ample canonical
line bundle, homeomorphic to R8. Consider a Kähler Einstein metric of negative
scalar curvature on W with Kähler form ωW on W . Set N := W × · · · × W , the
k-fold product of W .

Then Z(N, [[ωW + · · ·+ωW ]]) = −4
√

2πk, and it is attained by a Kähler Einstein
metric.

Proof. The argument here follows the scheme in [4, Section 3] and is similar to that in
[3]. We recall one known fact about W from [7, Section 4]; there is a homeomorphism
of W onto R8 which preserves the Chern class c1. And there is a diffeomorphism of
N onto R

(k)
8 := R8 × · · · ×R8, the k-fold product of R8 [2, Section 4].

Note that R8 is well known to admit a Kähler Einstein metric of positive scalar
curvature obtained by Calabi-Yau solution.
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Then, the first Chern class of W can be written as c1(W ) = 3E0 −
∑8

i=1 Ei ∈
H2(W,R) ∼= R9, where Ei, i = 0, · · · 8, is the Poincare dual of a homology class
Ẽi, i = 0, · · · 8 so that Ẽi, i = 0, · · · 8, form a basis of H2(W,Z) ∼= Z9 and their
intersections satisfy Ẽi · Ẽj = εiδij , where ε0 = 1 and εi = −1 for i ≥ 1. So, in this
basis the intersection form becomes

I =




1 0 · · 0
0 −1 · · 0
. . · · 0
. . · · 0
0 0 0 −1




.

We have the orientation of W induced by the complex structure and the funda-
mental class [W ] ∈ H4(W,Z) ∼= Z. As ωW is the Kähler form of a Kähler Einstein
metric gW of negative scalar curvature, we may get [ωW ] = −3E0 +

∑8
i=1 Ei by

scaling if necessary.
By Künneth theorem H2(N,R) ∼= ∑k

j=1 π∗j H
2(W ) ∼= R9 ⊕ · · · ⊕ R9, where πj is

the projection of N onto the j-th factor. Then,

c1(N) =
k∑

j=1

π∗j c1(W ) =
k∑

j=1

π∗j (3E0 −
8∑

i=1

Ei).

Consider any smooth path of symplectic forms ωt, 0 ≤ t ≤ δ, on N such that
ω0 = ωW + · · ·+ ωW . We may write

[ωt] =
k∑

j=1

8∑

i=0

nj
i (t)π

∗
j Ei ∈ H2(N,R)

for some continuous functions nj
i (t) in t, i = 0, · · · , 8. As {ωt} is connected, their

first Chern class c1(ωt) = c1(N) does not depend on t. Using the intersection form
we do a combinatorial computation;

[ωt]2k([N ]) = [
k∑

j=1

8∑

i=0

nj
i (t)π

∗
j Ei]2k([W × · · · ×W ])(2.1)

= C2k
2 C2k−2

2 · · ·C2
2

k∏

j=1

{nj
0(t)

2 −
8∑

i=1

nj
i (t)

2} > 0,

where Cn
k = n!

(n−k)!k! .

Set [ωj(t)] =
∑8

i=0 nj
i (t)Ei ∈ H2(W,R), so that [ωt] =

∑k
j=1 π∗j [ω

j(t)]. We put
Aj := Aj(t) = [ωj(t)]2[W ] = nj

0(t)
2 −∑8

i=1 nj
i (t)

2. As Aj(0) = [ωW ]2[W ] > 0 and
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∏k
j=1 Aj(t) > 0 from (2.1), we have Aj(t) > 0. Then nj

0(t)
2 >

∑l
i=1 nj

i (t)
2 and as

nj
0(0) = −3 < 0, so nj

0(t) < 0.
We also put Bj := Bj(t) = (c1(W ) · [ωj(t)])[W ] = 3nj

0(t) +
∑8

i=1 nj
i (t).

Since nj
0(t)

2 >
∑8

i=1 nj
i (t)

2 and |∑8
i=1 nj

i (t)| ≤
√

8
√∑8

i=1 nj
i (t)2, we get

3nj
0(t) +

8∑

i=1

nj
i (t) ≤ 3nj

0(t) + 2
√

2

√√√√
8∑

i=1

nj
i (t)2(2.2)

< 3nj
0(t) + 2

√
2
√

nj
0(t)2 = (3− 2

√
2)nj

0(t) < 0.

As c1(ωt) = π∗1c1(W ) + · · ·+ π∗kc1(W ), by combinatorial computation we obtain;

(2.3) c1(ωt) · [ωt]2k−1([N ]) =
k∑

j=1

(2k − 1)C2k−2
2 C2k−4

2 · · ·C2
2 (A1A2 · · ·Ak) · Bj

Aj
.

Putting A = A1 · · ·Ak and C = C2k
2 C2k−2

2 · · ·C2
2 , from (2.1) and (2.3) we have;

c1(ωt) · [ωt]2k−1

[ω2k
t ]

2k−1
2k

=

∑k
j=1(CA) · Bj

Aj

k(CA)
2k−1
2k

=
(CA)

1
2k

k

k∑

j=1

Bj

Aj
.

From the AM-GM (Arithmetic Mean - Geometric Mean) inequality; x1+x2+···+xn
n ≥

n
√

x1 · x2 · · ·xn , setting xj = −Bj

Aj
> 0, we get

k∑

j=1

Bj

Aj
≤ −k

((−1)kB1 · · ·Bk)
1
k

A
1
k

.(2.4)

So,

c1(ωt) · [ωt]2k−1

[ω2k
t ]

2k−1
2k

≤ −C
1
2k

((−1)kB1 · · ·Bk)
1
k

(A1 · · ·Ak)
1
2k

.

From (2.2),

B2
j

Aj
≥
{3nj

0(t) + 2
√

2
√∑8

i=1 nj
i (t)2}2

nj
0(t)2 −

∑8
i=1 nj

i (t)2
=

(3− 2
√

2
√

y)2

1− y
,(2.5)

where y =
∑8

i=1
nj

i (t)
2

nj
0(t)2

. By calculus, (3−2
√

2
√

y)2

1−y ≥ 1 for y ∈ [0, 1) with equality at

y = 8
9 . So, we get

B2
j

Aj
≥ 1 and −Bj√

Aj
≥ 1.

From this we have
c1(ωt) · [ωt]2k−1

[ω2k
t ]

2k−1
2k

≤ −C
1
2k .(2.6)
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There is a basic inequality for any symplectic structure ω on a closed manifold
M of dimension 2n [4];

(2.7) Z(M, [[ω]]) ≤ sup
ω∈[[ω]]

4πc1(ω) · [ω]n−1

(n−1)!

( [ω]n

n! )
n−1

n

.

As the expression
4πc1(ω)· [ω]n−1

(n−1)!

(
[ω]n

n!
)

n−1
n

is invariant under a change ω 7→ φ∗(ω) by any

diffeomorphism φ, so from (2.6) and the definition of Z, we get

Z(N, [[ωW + · · ·+ ωW ]]) ≤ −4π ((2k)!)
2k−1
2k

(2k−1)! C
1
2k = −4

√
2πk.

We consider the Kähler form ωW +· · ·+ωW of the product Kähler Einstein metric
gW + · · ·+ gW of negative scalar curvature on N = W × · · · ×W . One can readily
check that this symplectic form satisfies the equality of both (2.6) and (2.7). So, we
conclude Z(N, [[ωW + · · ·+ ωW ]]) = −4

√
2πk. ¤

Proof of Theorem 2.1. Consider the positive Kähler Einstein metric on R8 and
let ω1 be the Kähler form of the product positive Kähler Einstein metric on R8 ×
· · · × R8, which is diffeomorphic to N . We have Z(N, [[ω1]]) = ∞ (scaling by
different constants on each factor gives ∞). And let ω2 be ωW + · · · + ωW . Then
Z(N, [[ω2]]) < 0 from Proposition 1. From the fact that these values are different,
we conclude that [[ω1]] and [[ω2]] are distinct symplectic deformation equivalence
classes. This proves Theorem 2.1. ¤

In this article I demonstrated examples in 4k dimension. But by refining the
argument of [4], one may try to get, for each k ≥ 1, examples of closed symplectic
(4k + 2)-dimensional manifolds admitting two symplectic deformation equivalence
classes with distinct signs of Z( , [[ · ]]) invariants.

So far we only used the Catanese-LeBrun manifold as building blocks. But one
may use other 4-dimensional closed simply connected symplectic manifolds of smaller
Euler characteristic.
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