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ADDITIVE p-FUNCTIONAL EQUATIONS IN BANACH SPACES

IN WHAN JUN?, JEONG PIL SEO" AND SUNGJIN LEE®*

ABSTRACT. In this paper, we solve the additive p-functional equations
flety+2)— f@) = fly) - f(2)
(0.1) = (2f () - 1) - fw) - 1))
where p is a fixed number with p # 1,2, and
flet+y+z)—flz) = fly) - f(2)
(0:2) = (2 (F3 L +2) - f@) - Flw) - 20(2)

where p is a fixed number with p # 1.
Using the direct method, we prove the Hyers-Ulam stability of the additive p-
functional equations (0.1) and (0.2) in Banach spaces.

1. INTRODUCTION

The stability problem of functional equations originated from a question of Ulam
[5] concerning the stability of group homomorphisms.

The functional equation f(z+y) = f(z)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [3] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [2] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

In Section 2, we solve the additive functional equation (0.1) and prove the Hyers-

Ulam stability of the additive functional equation (0.1) in Banach spaces.
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In Section 3, we solve the additive functional equation (0.2) and prove the Hyers-
Ulam stability of the additive functional equation (0.2) in Banach spaces.
Throughout this paper, assume that X is a normed space and that Y is a Banach

space.

2. ADDITIVE p-FUNCTIONAL EQUATION (0.1)

Let p be a number with p # 1, 2.
We solve and investigate the additive p-functional equation (0.1) in normed

spaces.

Lemma 2.1. If a mapping f: X — Y satisfies

fle+y+z) = flz) = fly) = f(2)
(2.1) = (27 (P - s - ) - 59
forall z,y,2 € X, then f: X — Y is additive.

Proof. Assume that f: X — Y satisfies (2.1).

Letting z =y =2z =01n (2.1), we get —2f(0) = —pf(0). So f(0) = 0.

Letting y = z and z = 0 in (2.1), we get f(2x) —2f(z) = 0 and so f(2z) = 2f(z)
for all x € X. Thus

(2.2) f (5) =5 /(@)
for all x € X.
It follows from (2.1) and (2.2) that

fatyt2) = @)= ) - 56 = o (2 (T - f@ - 1) - 1)
= p(fx+y+2)—f@) - fly) - ()
and so f(x +y+2) = f(z)+ f(y) + f(2) for all z,y,z € X. Since f(0) =0,
fla+y)=f=)+ fy)
for all z,y € X. O

We prove the Hyers-Ulam stability of the additive p-functional equation (2.1) in

Banach spaces.
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Theorem 2.2. Let ¢ : X2 — [0,00) be a function and let f : X — Y be a mapping
satisfying f(0) =0 and

(23) V(e }j ¢ (55 2) < oo

=1

Hﬂx+y+a—f@»—ﬂw—f@>
(2.4 (%(x+y+z)—ﬂ@—f@%<ﬂ@)”§ﬂ%%d

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that

(25) I1£@) ~ A@)]| < S ¥(,,0)
forallz e X.

Proof. Letting y = x and z = 0 in (2.4), we get

(2.6) 1f(22) = 2f(2)]| < ¢(z,2,0)
for all z € X. So

21 ()] <0 3.4

for all x € X. Hence

e () -2 () < Sles(5) -2 ()

]:

S

m—1 z z
VIT Y

(2.7) < %9 (2j+1, 2j+1,0)

j=l
for all nonnegative integers m and | with m > [ and all z € X. It follows from (2.7)
that the sequence {2¥f(Z%)} is Cauchy for all # € X. Since Y is a Banach space,
the sequence {2* f (5%)} converges. So one can define the mapping A : X — Y by

x
A(z) = hm ok f (2—k>

k—o00

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.7), we get
(2.5).
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Now, let T': X — Y be another additive mapping satisfying (2.5). Then we have

ot = [ra(£) - (2)]
< [ma(Z) (@)l (2) -2 (B

which tends to zero as ¢ — oo for all x € X. So we can conclude that A(zx) = T'(x)
for all z € X. This proves the uniqueness of A.
It follows from (2.3) and (2.4) that

HA(x Fy+2)— Alx) — Aly) — Az) — p(2A (
~A@) - 4G) - 4G) |
2 (1(7) 1 (G -1 () -1 (50)
(2 () o (5) -1 (50) -1 (39)|

< lim Q"Lp(x i 0)20

n—oo on’ on’

= lim
n—oo

for all x,y,z € X. So
Az +y) — Alx) — Aly) — A(z) = p <2A (
for all z,y,z € X. By Lemma 2.1, the mapping A : X — Y is additive. O

Corollary 2.3. Let r > 1 and 0 be nonnegative real numbers, and let f : X — Y
be a mapping satisfying f(0) =0 and

byt 2) - f) - £0) - 1)
28 (2 () s - ) - 1)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that

< O(lz[I" + [lylI" + 111"

20

I1£(2) - A@ £ 5

[l ]]"
forallz e X.

Proof. Letting ¢(z,y, 2) := 0(||z]|"+ |ly||" +|2]|") in Theorem 2.2, we get the desired
result. O
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Theorem 2.4. Let ¢ : X2 — [0,00) be a function and let f : X — Y be a mapping
satisfying f(0) =0, (2.4) and

o

1 . ) .
U(z,y,2) = Z 590(2356,231% 27z) < o0
=0

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that

1
(29 I£(2) — A@)] < J¥(e.2,0
forallx € X.
Proof. Tt follows from (2.6) that
1 1
@)~ §720)| < geto0
for all z € X. Hence
m—1
1. 1, 1 1 .
gf@x)—ﬁf(? z)|| < - gf( 'x) 2j+1f(2j+ z)
J:
m—1 1 '
(2.10) < ﬁ¢(2]x,23x,0)
j=l

for all nonnegative integers m and [ with m > [ and all x € X. It follows from
(2.10) that the sequence {5 f(2"z)} is a Cauchy sequence for all 2 € X. Since Y
is complete, the sequence {2% f(2"z)} converges. So one can define the mapping
A: X =Y by
A(z) := lim i]"(2’“‘310)
n—oo 2N

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.10), we
get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2. ]

Corollary 2.5. Let r < 1 and 0 be nonnegative real numbers, and let f : X — Y
be a mapping satisfying f(0) = 0 and (2.8). Then there exists a unique additive
mapping A : X — 'Y such that

(@) - A@)] < 2

227

[l ]l"
forallx € X.

Proof. Letting ¢(z,y, 2) := 0(||z]|"+ |ly||" +|2]|") in Theorem 2.4, we get the desired
result. O
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3. ADDITIVE p-FUNCTIONAL EQUATION (0.2)

Let p be a number with p # 1.
We solve and investigate the additive p-functional equation (0.2) in normed

spaces.

Lemma 3.1. If a mapping f : X — Y satisfies
flx+y+2) = flx) = fly) - f(2)
(3.) o2 (5 2) - 1) - 1) 212
forall z,y,2 € X, then f: X — Y is additive.
Proof. Assume that f : X — Y satisfies (3.1).
Letting z =y = z = 0 in (2.1), we get —2(0) = —2pf(0). So £(0) = 0.

Letting y = z and z = 0 in (2.1), we get f(2z) —2f(z) = 0 and so f(2z) = 2f(z)
for all x € X. Thus

(3.2) f <§> = if(x)

for all z € X.
It follows from (3.1) and (3.2) that

fatn) =@ =10 = o(2 (T5) - 10 - 1)

= p(f(z+y) - flx) = fy))
and so f(x +y) = f(x) + f(y) for all z,y € X. O

We prove the Hyers-Ulam stability of the additive p-functional equation (3.1) in

Banach spaces.

Theorem 3.2. Let ¢ : X2 — [0,00) be a function and let f : X — Y be a mapping
satisfying f(0) =0 and

00
; xr Yy =z
\IJ(IL‘,y, Z) = 22]80 (27a 57 27) < o0,
J=1

Hf(x Fyta) - f@) — fy) - 1)

(3.3 o (2 (B30 +2) - 1) - £0) - 270 ) | < o)
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for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that
1
17 () = A2l < 5¥(z,2,0)
forallz e X.

Proof. Letting y = x and z = 0 in (3.3), we get

(34) 1£(22) = 2f (2)|| < ¢(z,,0)
for all z € X.
The rest of the proof is similar to the proof of Theorem 2.2. O

Corollary 3.3. Let r > 1 and 0 be nonnegative real numbers, and let f : X — Y
be a mapping satisfying f(0) =0 and

50 o (2 (S5 2) - 10 - 1)~ 27) | <0l + Iyl + 111

flx+y+2)—flx) = fly) — f(?)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that

20

I17(2) — A@) € 5

]|
forallx € X.

Proof. Letting p(x,y, ) := 0(||z|" + ||y||" +/z||") in Theorem 3.2, we get the desired
result. O

Theorem 3.4. Let ¢ : X2 — [0,00) be a function and let f : X — Y be a mapping
satisfying f(0) =0, (3.3) and

J

o0
1 ) . .
V(z,y,2) = E ?QD(QJ.I,2Jy, 2/2) < o0
Jj=0

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such
that
1
IF(z) = A2l < 5¥(z,2,0)

forallz e X.
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Proof. Tt follows from (3.4) that

@) - §#20)| < geto0

for all x € X.
The rest of the proof is similar to the proofs of Theorems 2.2 and 2.4. O

Corollary 3.5. Let r < 1 and 0 be nonnegative real numbers, and let f : X — Y
be a mapping satisfying f(0) = 0 and (3.5). Then there exists a unique additive
mapping A : X — Y such that
20
—A <
17(2) - AWl < 5

[l]]"
forallz e X.

Proof. Letting o(z,y, z) := 0(||z||"+||ly||"+]/2]|") in Theorem 3.4, we get the desired
result. O
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