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SOME OPIAL-TYPE INEQUALITIES APPLICABLE TO
DIFFERENTIAL EQUATIONS INVOLVING IMPULSES

Young JIiN KiMm

ABSTRACT. The purpose of this paper is to obtain Opial-type inequalities that
are useful to study various qualitative properties of certain differential equations
involving impulses. After we obtain some Opial-type inequalities, we apply our
results to certain differential equations involving impulses.

1. INTRODUCTION

Opial-type inequalities are very useful to study various qualitative properties of
differential equations. For a good reference of the work on such inequalities together
with various applications, we recommend the monograph [1]. In this paper we obtain
some Opial-type inequalities that involve Stieltjes derivatives which are applicable to
differential equations with impulses. Differential equations involving impulses arise
in various real world phenomena, we refer to the monograph [8].

2. PRELIMINARIES

To obtain our results in this paper we need some preliminaries.
Let R be the set of all real numbers. Assume that [a,b] C R is a bounded
interval. A function f : [a,b] — R is called regulated on [a, b] if both

fls+) = lim f(sn), and f(t=) = lm f(t— )

exist for every point s € [a,b),t € (a,b], respectively. Let G([a,b]) be the set of all
regulated functions on [a, b]. For f € G([a, b]) we define f(a—) = f(a), f(b+) = f(b).
For convenience we define

ATf(s) = f(s+) = f(s), ATf(s)=f(s) = f(s—) and Af(s) = f(s+) — f(5-).
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Remark 2.1. Let f € G([a,b]). Since both f(s+) and f(s—) exist for every s € [a, b]
it is obvious that f is bounded on [a,b], and since f is the uniform limit of step
functions, f is Borel measurable (see [3, Theorem 3.1.]).

For a closed interval I = [c,d], we define f(I) = f(d) — f(c).

A tagged interval (7, [c,d]) in [a, b] consists of an interval [c, d] C [a, b] and a point
T € [e,d].

Let I; = [¢;,d;] C [a,b],i =1,...,m. We say that the intervals I; are pairwise non-
overlapping if

int(L;) Nint(1;) =0

for i # j where int(I) denotes the interior of an interval I.

A finite collection {(7;, ;) : ¢ = 1,2,...,m} of pairwise non-overlapping tagged
intervals is called a tagged partition of [a,b] if U"I; = [a,b]. A positive function §
on [a,b] is called a gauge on [a, b].

From now on we use notation 1,m =1,...,m.

Definition 2.2 ([6, 9]). Let § be a gauge on [a,b]. A tagged partition P =
{(7, [ti=1,ti]) : tic1 < tiyi = 1,m} of [a,b] is said to be d—fine if for every i = 1,m

we have

7 € [ti1,ti] C (7 — 0(m), 7 + (7).
Moreover if a d—fine partition P satisfies the implications

Ti=tii=>i=1, 7, =1;=1=m,
then it is called a 0*—fine partition of [a, b].

The following lemma implies that for a gauge 0 on [a,b] there exists a §*—fine
partition of [a,b]. This also implies the existence of a d—fine partition of [a, b].

Lemma 2.3 ([6]). Let 0 be a gauge on [a,b] and a dense subset Q C (a,b) be given.
Then there exists a 6*—fine partition P = {(7;, [ti—1,t:]) : i = 1,m} of [a,b] such
that t; € Q0 fori=1,m — 1.

We now give a formal definition of two types of the Kurzweil integrals.

Definition 2.4 ([6, 9]). Assume that f,g : [a,b] — R are given. We say that fdg
is Kurzweil integrable (or shortly, K-integrable) on [a,b] and v € R is its integral if
for every £ > 0 there exists a gauge ¢ on [a, b] such that

<e

Y

Z f(ri)g(Li) —v
=1
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provided P = {(7;,I;) : i = 1,m} is a d—fine tagged partition of [a,b]. In this case
we define v = fabf(s) dg(s) (or, shortly,v = fabfdg).

If, in the above definition, d—fine is replaced by 0*—fine, then we say that
fdg is Kurzweil* integrable(or, shortly, K*-integrable) on [a,b] and we define v =

(K*) [, f dg.

Remark 2.5. By the above definition it is obvious that K-integrability implies
K*-integrability.

The following results are needed in this paper. For other properties of the K-
integrals, see, e.g., [2, 7, 9, 10].
In this paper BV ([a,b]) denotes the set of all functions that are of bounded

variation on [a, b].

Theorem 2.6 ([11, 2.15. Theorem]). Assume that f € G([a,b]) and g € BV ([a,b]).
Then both fdg and gdf are K-integrable on [a,b] and

b b
/ fdg+ / gdf = F(b)g(b) — F(a)g(a)
+ Y [ATF()ATg(t) — AT F()AT (L))

te(a,b]
Remark 2.7. In the above theorem, the sum 3=, (,  [A7f(£) A7 g(t)=AT f(t) AT g(t)]
is actually a countable sum because every regulated function has only countable dis-
continuities.

Theorem 2.8 ([10, p.40, 4.25. Theorem]). Let h € BV ([a,b]), g : [a,0] — R
and f : [a,b] — R. If the integral ffgdh exists and f is bounded on [a,b], then the
integral fab f(s)d [[7 g(v)dh(v)] exists if and only if the integral f; f(s)g(s)dh(s)
exists and in this case we have

/ab f(s)d [/: g9(v) dh(v)} = /ab F(5)g(s) dh(s).

Theorem 2.9 ([10, p.34, 4.13. Corollary]). Assume that f € G([a,b]) and g €
BV ([a,b]). Then we have for every t € |a,b]
t£n t

lim / £(s) dg(s) = / £(s)dg(s) £ F(H)A*g(2).

n—0+

The following result is the Hoélder’s inequality for K-integral. In this paper we
frequently use this inequality.
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Theorem 2.10. (Holder’s inequality) Assume that f,g € G([a,b]) and h is a
nondecreasing function defined on |a,b]. Let p > 1, % + % = 1. Then we have

(21) /ab\fg\dh < (/abmpdh); (/b \g|qdh);

Proof. The proof of this theorem is very similar to the proof of the classical Holder’s
inequality. So we omit the proof. O

3. STIELTJES DERIVATIVES

In this section we state the results in [4, 5] that are essential to obtain our main
results.

Throughout this section, we assume that f € G([a,b]) and g is a nondecreasing
function on [a, b].

We say that the function g is not locally constant at t € (a,b) if there exists
n > 0 such that g is not constant on (t — &,t + ¢) for every 0 < € < 7. We also
say that the function g is not locally constant at a and b, respectively if there exist
n,n* > 0 such that g is not constant on [a,a + €), (b — €*, b] respectively, for every
e €(0,n),e* € (0,n%).

Definition 3.1 ([4]). If g is not locally constant at ¢ € (a,b), we define
AFw) _ . f ) = f(t =)

dg(t)  mo—ot g(t+n) — g(t — o)

provided that the limit exists.

)

If g is not locally constant at t = a and ¢t = b respectively, we define

df() _ . flatn) = fl@)  df®) . f0) = fb-0)

dg(a) =0+ gla+n)—g(a)” dg(b)  s-0+ g(b) —g(b—6)’

respectively, provided that the limits exist. Frequently we use f;(t) instead of %.

If both f and g are constant on some neighborhood of ¢, then we define f;(t) = 0.
Remark 3.2. It is obvious that if g is not continuous at ¢ then fé(t) exists. Thus
if f,(t) does not exist then g is continuous at ¢. fy(t) is called a Stieltjes derivative

of f with respect to g.

Theorem 3.3 ([4]). Assume that if g is not locally constant at t € [a,b]. If f is

continuous at t or g is not continuous at t, then we have
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d

dg(t)g/’f<s>dg<s>:= ().

K*-integrals recover Stieltjes derivatives.

Theorem 3.4 ([4]). Assume that if g is constant on some neighborhood of t then
there is a meighborhood of t where both f and g are constant. Suppose that f;(t)
exists at every t € [a,b] — {c1,ca, ...}, where f is continuous at every t € {c1,ca,...}.
Then we have

b
(Kﬂ/ﬂwﬁm@%=ﬂ®—f®)

Lemma 3.5 ([4]). Assume that if g is constant on some neighborhood of t then

there is a neighborhood of t such that both fi and fo are constant there. If both dci;(%)
and (iif;(%) exist and f1, fo € G([a,b]), then we have
dlfi(t) f2(t)]  dfi(?) dfa(t)
= fa(t+) + fu(t— :
aglt)  ~ dgty PP A0

Similarly to the Riemann integral we have the following integration by parts

formula.

Theorem 3.6. (Integration by Parts) Assume that functions f,g,h € G([a,b]) are
all left-continuous and h is nondecreasing. Suppose that both f/(t) and g/ (t) exist
for every t € [a,b] and f,, g/ € G([a,b]). Then we have

(3.1)

b b
/f;{g dh = f(b)g(b) — f(a)g(a) —/ fandh+ Y [ATF(OAg(t) = AT (AT g(1)].

a<t<b

Proof. By Theorem 2.8 and Theorem 3.4 we have

/abfdg=/abf(s)d Uasg,;dh] :/abfg;idh.

So by Theorem 2.6 we get
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/fhgdh / g(s)d Usfédh]—/abgdf

— f(b)g(d) - / Fdg+ 3 (AT F()Ag() — A F(t)ATg(1)
a<t<b
— F(0)g(b) — f(a) / Fondh+ 3 [ATF(OAg(t) — A*F(HA ().
a<t<b
This completes the proof. O

Let
a<t; <ty <-- <tm<b.
The Heaviside function H; : R — {0,1} is defined by

Ho(1) = 0, ift<r
T ift>T

Using the Heaviside function H,, we define function ¢ : [a,b] — R by
(3.2) —t+ Z Hy, (1) [a, b)].

Remark 3.7. It is obvious that the function ¢ is strictly increasing and of bounded

variation on [a, b], and left-continuous on [a, b].

Lemma 3.8 ([5]). Assume that f € G([a,b]) and f'(t) exists for t # ti, k = 1,m

Then we have

(a) fé( )=f'(t),  foltr) = fltet) — f(te—),

(b) /fd¢ /f Jds+ Y f(t):

a<ltp<t

4. OPIAL-TYPE INTEGRAL INEQUALITIES INVOLVING STIELTJES
DERIVATIVES

In this section we obtain some Opial-type integral inequalities involving Stieltjes
derivatives. The Opial-type inequalities have many interesting applications in the
theory of differential equations(see, e.g., [1]).

Throughout this paper we always assume that

a§t1<t2<---<tm<b,
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and that a function « : [a,b] — R is strictly increasing on [a, b], and continuous at
t # tg, and A «a(ty) # 0, for every k =1, m.

Remark 4.1. Note that strictly increasing implies nondecreasing, and a nonde-
creasing function is regulated.
Let PC([a,b]) = {u € G([a,b]) : u is continuous at every t # tj, k =1, m}.
From now on we always assume that u,u’, € PC([a,b]), and we define
uy(t) = u(t+),u_(t) = u(t—),vt € [a, b].
The following result is an Opial-type inequality with Stieltjes derivatives.
Theorem 4.2. Assume that u(a) = u(b) = 0. If both v and « are left-continuous

on [a,b], then we have
b

b
(4.1) / (Il + s Dty da < K / ()2 doy,

a

where K o = infy¢|, ) max{ a(h) — a(a), a(b) — a(h)}.

Proof. Let for t € [a, b,

t b
y(t) = / |, =(t) = / | e
a t

By Theorem 2.9, the functions, y and z are left-continuous on [a, b]. Also by Theorem
3.3, we have

Yal(t) = [uo(t)] = —24,(t)
and we have by Theorem 3.4 and u(a) = u(b) =0

lu@®)] < y(t), |u(t)] < 2(0),
for t € [a,b]. So by Theorem 3.4, Lemma 3.5, and using Holder’s inequality, we get

and similarly we obtain

b
(4.2) /h(|u|+|u+|)\u’ayda<_/h

b b

(2 + 24)2, da = _/h (22),da = 2%(h)
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So we have
b

b h
/<ru|+\u+>|u’a|da=/ <|ur+|u+|>|u;da+A<|u|+|u+|>\u/arda

b

h
< [a(h) - a(a)] / ()2 da + [a(b) — a(h) / (u,)? da

- a h
b
< Ka/ (u',)? dov.
a
The proof is complete. O]

A slightly more general result is as follows.

Theorem 4.3. Assume that u(b) = 0. If both u and « are left-continuous on [a,b],
then we have

b b
(4.3) / (Il + Jug D] da < [a(b) — a(a) / ()% da.

Proof. From (4.2) we have
b

/h *ul + g D da < [a®) — a(h)] / ()2 da < [a(b) — ala) / ()2 da

h a
So we get

b b
[l + ] da < [a(b) - ata) [ () da.
This gives (4.3). The proof is complete. O

More generally we have the following result.

Theorem 4.4. Letp > 0,q > 1,7 > 0,m > 1 be real numbers and let f € PC([a,b])
be a positive function on [a,b] with infyepq f(5) > 0. Assume that both functions u
and « are left-continuous on [a,b]. If u(b) = 0, then we have

b b

(4 / J "D 7 da < [(p+ g + 7)™ (m, )P / f July [t dg,

where I(m,f) = [ fyda, 4(t) = [J}f’(f)ﬁdoz]m1 for m # 1, and y(t) =
[infse[ab] f(s)]f1 for m = 1.
Proof. Let for t € [a,b],

b
z(t)—/ lu’ | da.
t
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Then by Theorem 3.4, |u(t)| < z(t) and by Theorem 2.9, z is left-continuous, and
non-increasing on [a, b].

If t # tg, k = 1, m, then by Theorem 3.3, z/,(¢) exists, and by Theorem 2.9, z is
continuous at t. Using the Mean Value Theorem and by the definition of the Stieltjes
derivatives, if z is not locally constant at ¢, then we have,

Tt 4 n) — 2PTU(t—8) 2(t+1n) — 2(t — 5)
im
sn—0+  z(t+n)—z(t—90) alt+n)— a(t—>9)

=, liné (p+ q)wPT9712! (1), where 2(t + 1) < w < z(t — )
n—0+

= (p+ @) ()24 (1).

If 2 is constant on some neighborhood of ¢, then since (2777)/ (t) = 0 = z/,(t), the

(F*4lt) =

[0}

above equality is also true. If ¢t = ¢x,k = 1,m, since z is non-increasing on |a, b],
and z/, = —|ul,| <0, and by the Mean Value Theorem, and by the definition of the
Stieltjes derivatives, we have,

(27T G (tk) = [T (tet) — 2779 (1 )] /[ a(tet) — ate—)]
= (p+ QW z(tet) — 2(tx )]/ [altit) — alte—)]
= (p+ Qw20 (tk) = (0 + @)1 (tk) 24 (),
where z(tx+) < w < z(tg) = 2(tp—). Thus we have
(45) (L) < —(p -+ )P ()2 (8), VE € [a, ],

Let 5(t) = f(f f da.. Then by hypotheses, [ is strictly increasing on [a, b].
Since
p+q _ Lpta(p _ _
(Zerq)é(t) — lim Pt +n) — 2Pt —0) alt+n) — a(t = 9)
sn—0+ at+n)— alt—0) Bt+n) — Bt—20)
(P a@) _ (P4 ()
= = ,by Theorem 3.3,
Ba(t) o

we have by Theorem 3.4 and (4.5), since z(b) = 0 and z/, <0,

b b
i) = = [[errngas = - [

b b
< (p+q)/t PN (—2])dB = (p+q)/t itz dg.

m

m_1’ we have

Using Holder’s inequality with indices m,

b
(4.6) zM”st@+www/z””*Waww,Wemw

a
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Integrating (4.6) on [a,b] and using Holder’s inequality with indices g, Ll and
considering [ bydB = f fvda by Theorem 2.8, we get

(4 7) / p+q
<(p+q™I(m,f) /b (z%‘z(’l]m) L mpra—1)—=F dg

a
—1

b % b ‘IT
<(p+q)"I(m,f) </ zmpyz;|ch1ﬁ> (/ Zm(p+q>dﬁ>

If fab 2(P+4) 48 = 0, then

b b
(48) / ) 45 < [(p + @)™ I(m, )] / BCPALLEY

g-1

is obviously true, otherwise, dividing both sides of (4.7) by ( f; Zm(P+a) dﬂ) ‘ and

then taking the gth power on both sides of the resulting inequality we get also (4.8).
Using the Holder’s inequality with indices q+r q;“r we have, by (4.8),

(4.9)
b
/ Zm(p—l—q) |z/a|mr dﬁ

b
_ / [z /()| 1 mr) | () —m(er/ ()] 43

a

b r/(g+r) b q/(q+r)
[ marmn] " [ e

b P b
< [ et ag) ™ [+ g on, e [ amlad e as)

q
“+r

b
=[(p+q+r)"I(m, f)]q/ 2P| z! et g8,

Using Holder’s inequality with indices 2 ;q, 2 j;q, we get by (4.9)

(4.10)

b b
/ MO AB < [(p+ g + 7)™ I(m, f)]q/ 2P|z ™ dg,

b
<[(p+q+r)"I(m, f)]q/ {Zmp’z&|m(rp/(p+q))} : [‘z&‘m(qﬂ)—m(w/(pﬂ)) ds
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q

b ﬁ b p+q
<ltasrrton e[ [ ozgpras) ™ [ [ areeas) ™
If f: 2mPta) |21 T 3 = 0, then the inequality
b b
@y [ RS < [ g+ ) m, P [ ag

_b
is obviously true, otherwise, dividing both sides of (4.10) by {ff 2m(pta) |22 ™" dg pta
and then taking the p%;qth power on both sides of the resulting inequality we get
also (4.11). Since |u| < z and |ul,| = |z],| we have

b b b
[ 5 dmeidda = [ e rag < el rrag
a a a

b
< [(p+ g+ 7)™ I(m, f)P*e / |2 B 4B, by (4.11)

a
b
<o+ a0 Lom AP [ f Jug 1) da
a
This gives (4.4). The proof is complete. O
5. SOME APPLICATIONS TO CERTAIN DIFFERENTIAL EQUATIONS

INVOLVING IMPULSES

In this section we always assume that both functions u and u’ are left- continuous
on [a,b], and that a = ¢ (see (3.2)). Consider the following impulsive differential

equation: for k =1, m,
(5.1) u +q(u=0, t #t,
Au'(ty) = apu'(tk),
Au(ty) = bru'(ty) , by # 0,
where ¢; € PC([a,b]). Now we define
ua(t) = (u')a().
Since by Lemma 3.8 for k =1, m

1N u''(t), t# b
all) = {Au’(tk), t=t,

the equation (5.1) implies the following equation:

(5.2) u!l + pt)u’ + q(t)u =0,
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where

(5.3) p(t)z{o’ L7 Q(t)Z{ql(t)’ t# b

—ag, =1, 0, t=t, k=1,m.
We need the following result.

Lemma 5.1. If the function u satisfies the equation (5.1) and c € [a,b], then we

have
(5.4) / jun| doe = / juulydat S (1= [beluttn)u’(t)),
a<tip<c
(5.5) ST Jblfulte)e’ (h)] < / ] day
a<ltp<c a
(5.6) /u’u'ada:/ uhPda+ 3 (b — B (B,
a a<ltip<c

(5.7) DA / lu’ |2 dov.

a<ltp<c

Proof. In the proof, we frequently use Lemma 3.8, u'(t) = ( ).t # tg, Au'(ty) =
ull(ty) = agu’(tg), and Au(ty) = ul,(tg) = bpu'(ty), k =

/]uu]da—/ lu(s) |ds+z
a<ltip<c
/|u s+ 3 Ju

a<ltip<c
C
— / (sl ds + 3 Julteult)] - 3 ulte)ult)] +
a a<ltp<c a<ltp<c a<ltp<c
C
— / uulfdo— S ultul )l + S ulte)u’ (1))
a a<ltp<c a<ltp<c

Z/c!uu;lda— Y wlfulti)u’ )+ D lulte)u'(t)]

a<ltp<c a<ltp<c

/yuu ldat S (1= bl utte)u’ () -

a<ltp<c



SOME OPIAL-TYPE INEQUALITIES
This gives (5.4). And

7 Julte)u tk|</|u ()ds+ > |u

a<ltp<c a<ltp<c
C

— / (i) ds + 3 Juttul )] - 3 Julteull + 3
a a<tip<c a<ltip<c a<ltp<c
C

— / [ da— 3 helluttu’ )]+ S Julte)u’ ().
a altp<c a<ltp<c

This gives (5.5). And

/acu’uixda:/acul(s)u;(s)ds‘i’ Z u(te)u ()

:/C‘u’a|2d8+ Z ' (te)ug (t)

/ uhPds+ S bl - Y b+ Y (el

a<ltp<c a<ltp<c a<tp<c
/\uana— Z b2 |u'(ty)]? Z br|u’ (tg)|?

a<ltp<c a<ltp<c
/\ua]2da—|— S (b — )l (1)

a<ltp<c

This gives (5.6). Also

S )P < /Iu (P ds+ > [u' (1)

a<tip<c a<ltip<c
/u (5)[*ds + Z lu'(t
a<ltp<c
/ uh(s)Pds+ 3 it — S AP+ 3 ()P
a<ltp<c a<tp<c a<ltp<c
C
- / whFda— 3l + 3wl
a a<ltp<c a<ltp<c
= [iPaa= 3 B P+ X )l
a<ltip<c a<ltip<c

This gives (5.7). The proof is complete.

327
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Theorem 5.2. Assume that u satisfies the equation (5.1) and u'(a) = 0,u(a) # 0.
If we have

|1 — |bg]|
55 1>[a() - o] | max Q)]+ ol (14 max

|1 — by + ag|
+ max ———,
a<tp<b |bk‘

where Q(t) = f(f qda, then u(t) # 0 for every t € [a,b].

Proof. Assume that there is a number ¢ € (a,b] with u(c¢) = 0. Then multiplying
both sides of (5.2) by u and integrating we have

(5.9) / uu’a'doz—k/ puu’da—i—/ qu? da = 0.
Using Theorem 3.3, Lemma 3.5 and Theorem 3.6, and u(c) = Q(a) = 0, we get,

since, by Theorem 2.9 and Remark 3.7, @ is left-continuous on [a, b], and A a(ty) =
At a(ty) = 1,q(tg) =0, k=1, m,

(5.10)
/unda:/ Q;u2da

= [QUQ]Z - /C Q(u?)!, da — Z ATQ(tp) AT u?(ty,), since A~Q(ty) = 0,

a<ltp<c
Cc
= / Q(u?)!, da — Z q(ty)(w?) ! (tx), by Theorem2.9
a a<ltp<c
:—/ Q(u+ ui)ul, da.

Since both u and u’ are left-continuous

A+u'(tk) = Au’(tk) = aku'(tk),
Atu(ty) = Aulty) = b’ (tg).

By Lemma 3.8 and Lemma 5.1, we get, since u(c) = u'(a) = 0,

(5.11) /uugda:/ u(u)!, do
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= [uu/]z —/ ulu' da — Z ATu(ty)ATu(tg), since A" u(ty) =0

a<tp<c
C
:_/ uhu'da— 3 agblu’ (b)]?
a a<ltp<c
C
- [ WiPda YD oG — Y bt
a a<ltp<c a<ltp<c
/\ua]2da— S (1= b+ a)lu (1)
a<ltp<c

By (5.9), (5.10) and (5.11), we have
/(u'a)Qda—i-/ Qu+ui)ul, da
/ puu’ da + Z br(1 — by, + ag)|u’(tg)|* = 0.

a<ltp<c

Hence by Theorem 4.3 and Lemma 5.1, we get

(5.12) / (ul)? dor < / Q1] + [us '] da + / iplluu’| da

> bkllT = by + agllu (t)?

a<ltp<c
< s Q) [ale) - a(an/ (ul)?da+ max |p(ty |/ juw/| da
bk+ak\
+ 3 b ST AU
a<ltp<c
< max [Q(s)][a(c) - a(@) / (uf ) da+ max o / /| dos
’ bk—i—ak\
+ max b
astese ‘bk’ a<§t;€:<c
< max [Q(s)[a(©) - a(@)] [ (u;)?da
s Joul | [t ldat 3 0= (e’
a<ltip<c
1-9% ¢
+ max I1 — bk + ax (u!)? da

a<ltip<c ‘bk’ a

329
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< max QW) - a@] [ () da

a<s<c
+ e | (o 3 R e
a<ltp<c
a<ltp<c
1_
+ max 1= be o+ ag (u!)? da
a<ltp<c |bk| a
< max [Q(s)[a(©) - a(a)] [ <u;>2da
a<s<c a
¢ 11— [by]|
+ max |ag] luu!,| dor + max |uu | da
a<ltp<c a a<tk<c ‘b |
1-9b ¢
+ max 11— bk + a (u')?da
a<tip<c ‘bk| a
<
< max [Q(s)[[a /
|1 — [by] ’\2
* g Jeled (1+£2<c A ) [ e
ll—bk—i—ak\
+a1§nt%1§<6‘67k| ) (Ua) da.
If
C C
o:/ (u;)2da:/ (up)’(s)ds+ Y (uh)?

a<ty<c
then, since 0 = [(ul,)?(s)ds = [(u’)*(s)ds, u'(t) = 0,V € [a,b] — {tx : ty < c}
and u! (tg) = u(tg+) — u(ty) = 0. This implies that u is a constant on [a,c|. So
u(c) = u(a) # 0. But this is a contradiction to u(c) = 0. Hence we conclude that
J(uly)?da > 0.

In (5.12), canceling [*(u/,)? da, we get a contradiction to (5.8). This completes
the proof. O

In the following result we apply Theorem 4.4.

Theorem 5.3. Let g € PC([a,b]) and let o = ¢ (see (3.2)). If u € PC([a,b]) is

left-continuous and a nontrivial solution of the following equation:

/I \m q(t)um+1
then we have
(5.13) 1 <1I(m,1) max |q(s)].

a<s<b
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Proof. Substituting f =1,p=0,¢g =1, = 0 into Theorem 4.4, then we have

b b
/|u|mda§1(m,1)/ ([ da

So we have
b b m—+1 b
[ipraas [P g0 < Mg aa
a a a
b
! m
< I, 1) ma la(9)] [ fut ™ do
Canceling f; lul |™ dar, we get (5.13). O
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