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JACOBI-TRUDI TYPE FORMULA FOR PARABOLICALLY
SEMISTANDARD TABLEAUX

Jee-Hye Kim

Abstract. The notion of a parabolically semistandard tableau is a generalisation
of Young tableau, which explains combinatorial aspect of various Howe dualities of
type A. We prove a Jacobi-Trudi type formula for the character of parabolically semi-
standard tableaux of a given generalised partition shape by using non-intersecting
lattice paths.

1. Introduction

A Schur polynomial is a symmetric polynomial, which plays an important role in
algebraic combinatorics and representation theory (we refer the reader to [6, 15, 16]
for general exposition on Schur polynomials). Let x1, . . . , xn be mutually commuting
n variables. Let sλ(x1, . . . , xn) be the Schur polynomial corresponding to a parti-
tion λ = (λ1, . . . , λn). It is well-known that sλ(x1, . . . , xn) is the character of a
complex irreducible polynomial representation of the general linear group GLn(C)
whose highest weight corresponds to λ. There are several equivalent definitions
of sλ(x1, . . . , xn). One is the celebrated Weyl character formula, which has been
extended to the case of a symmetrizable Kac-Moody algebra [9]. There is a combi-
natorial formula, where sλ(x1, . . . , xn) is given as the weight generating function of
the set of Young tableaux of shape λ. Another well-known one is the Jacobi-Trudi
formula

sλ(x1, . . . , xn) = det(hλi−i+j(x1, . . . , xn))1≤i,j≤n,

where hk(x1, . . . , xn) is the kth complete symmetric polynomial. While the above
formula is originally due to Jacobi, Gessel and Viennot introduced a new interesting
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proof in terms of non-intersecting lattice paths [7], which has resulted in various
generalizations and applications in combinatorics.

In [12], Kwon introduced a new combinatorial object, which we call parabol-
ically semistandard tableaux, in order to understand the combinatorial aspect of
Howe duality of type A [8]. For a generalized partition λ of length n, the weight
generating function Sλ of parabolically semistandard tableaux of shape λ gives the
character of an irreducible representation of a general linear Lie (super)algebra g,
which arises from (g, GLn(C))-duality on various Fock spaces. The character Sλ

includes a usual Schur polynomial as a special case, and it also has a Weyl-Kac type
character formula, and a Jacobi-Trudi type formula (see also [13]).

The goal of this paper is to show a Jacobi-Trudi type formula for Sλ by using
non-intersecting lattice paths. Since a parabolically semistandard tableau is roughly
speaking a pair (S, T ) of skew-shaped Young tableaux with a common inner shape
and each component corresponds to an n-tuple of non-intersecting lattice paths, the
pair (S, T ) corresponds to an n-tuple of non-intersecting zigzag-shaped lattice paths
which is obtained by gluing non-intersecting paths associated to S and T . This
is our key observation. Then we apply the arguments similar to [7] to obtain a
Jacobi-Trudi type formula for Sλ.

Acknowledgement. The author would like to thank J.H. Kwon for many helpful
advices.

2. Parabolically Semistandard Tableaux

2.1. Young tableaux Let us briefly recall necessary background on Young tableaux
(see [6] for more details). We denote by Z and Z>0 the set of integers and positive
integers, respectively. A partition is a weakly decreasing sequence of non-negative
integers λ = (λ1, λ2, . . .) such that

∑
i≥1 λi is finite. We say that λ is a partition of

n if
∑

i≥1 λi = n and denote by `(λ) the number of positive entries of λ. Let P be
the set of all partitions, and put Pn = {λ ∈ P | `(λ) ≤ n } for n ≥ 1.

A Young diagram is a collection of boxes arranged in left-justified row, with
weakly decreasing number of boxes in each row from top to bottom. A Young
diagram determines a unique partition λ = (λ1, λ2, · · · ), where λi is the number of
boxes in the ith row of the diagram. From now on, we identify a Young diagram
with its partition.

Example 2.1. The Young diagram corresponding to the partition λ = (5, 3, 3, 1) is
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5
3
3
1

Let λ ∈ P be given. A Young tableau T is a filling of λ or the boxes in its Young
diagram with positive integers such that the entries are weakly increasing from left
to right in each row, and strictly increasing from top to bottom in each column. We
say that λ is the shape of T , and write sh(T ) = λ.

Example 2.2. For λ = (5, 3, 3, 1)

1 2 2 3 3
3 3 4
4 4 5
5

is a Young tableau of shape λ.

For µ ∈ P with λ ⊃ µ (that is, λi ≥ µi for all i), λ/µ denotes the skew Young
diagram. A skew Young tableau is a filling of a skew Young diagram λ/µ with positive
integers in the same way as in the case of Young tableaux.

Example 2.3. For λ/µ = (5, 3, 3, 1)/(2, 1),

1 2 4
3 3

1 4 5
2

is a skew Young tableau of shape λ/µ.

Let x = {x1, x2, . . .} be a set of formal commuting variables. For a Young tableau
T , we put xT =

∏
i≥1 xmi

i , where mi is the number of times i occurs in T . For T in
Example 2.2, we have xT = x1x

2
2x

4
3x

3
4x

2
5. Let sλ(x) =

∑
T xT be the Schur function

corresponding to λ ∈ P, where the sum is over all Young tableaux T of sh(T ) = λ.
For k ≥ 0, let hk(x) = s(k)(x), which is called the kth complete symmetric function.
For µ ∈ P, we put hµ(x) = hµ1(x)hµ2(x) . . ..

There is another well-known equivalent definition of a Schur function called the
Jacobi-Trudi formula, which expresses a Schur function as a determinant, and hence
as a linear combination of hµ(x)’s for µ ∈ P (cf. [6]).
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Theorem 2.4. For λ ∈ P with `(λ) ≤ n,

sλ(x) = det(hλi−i+j(x))1≤i,j≤n,

where we assume that h−k(x) = 0 for k ≥ 1.

2.2. Parabolically semistandard tableaux Let A be a linearly ordered count-
able set with a Z2-grading A = A0 t A1. For a ∈ A, a is called even (resp. odd)
if a ∈ A0 (resp. a ∈ A1). Let λ/µ be a skew Young diagram. A tableau T ob-
tained by filling λ/µ with entries in A is called A-semistandard if the entries in
each row (resp. column) are weakly increasing from left to right (resp. from top
to bottom), and the entries in A0 (resp. A1) are strictly increasing in each column
(resp. row). We say that λ/µ is the shape of T , and write sh(T ) = λ/µ. We de-
note by SSTA(λ/µ) the set of all A-semistandard tableaux of shape λ/µ. We set
PA = {λ ∈ P |SSTA(λ) 6= ∅ }. Let xA = {xa | a ∈ A} be a set of formal commut-
ing variables indexed by A. For T ∈ SSTA(λ/µ), put xT

A =
∏

a∈A xma
a , where ma is

the number of occurrences of a in T . We define the character of SSTA(λ/µ) to be
sλ/µ(xA) =

∑
T∈SSTA(λ/µ) x

T
A.

We assume that Z>0 is given with a usual linear ordering and all entries even.
When A = Z>0, an A-semistandard tableau is a (skew) Young tableau, and sλ(xA)
is the Schur function associated to λ ∈ P.

Let Zn
+ = {λ = (λ1, · · · , λn) ∈ Zn |λ1 ≥ · · · ≥ λn } be the set of all generalized

partitions of length n. We may identify λ with a generalized Young diagram as in
the following example.

Example 2.5. The generalized partition λ = (3, 2, 0,−2) ∈ Z4
+ corresponds to

a a a

a a

Suppose that A and B are two disjoint linearly ordered Z2-graded countable sets.
Now, let us introduce our main combinatorial object.

Definition 2.6 ([12]). For λ ∈ Zn
+, a parabolically semistandard tableau of shape λ

(with respect to (A,B)) is a pair of tableaux (T+, T−) such that

T+ ∈ SSTA((λ + (dn))/µ), T− ∈ SSTB((dn)/µ),



JACOBI-TRUDI TYPE FORMULA 249

for some integer d ≥ 0 and µ ∈ Pn satisfying (1) λ + (dn) ∈ Pn, and (2) µ ⊂
(dn), µ ⊂ λ+(dn). We denote by SSTA/B(λ) the set of all parabolically semistandard
tableaux of shape λ with respect to (A,B).

Roughly speaking, a parabolically semistandard tableau of shape λ is a pair of A-
semistandard tableau and B-semistandard tableau whose shapes are not necessarily
fixed ones but satisfy certain conditions determined by λ.

Example 2.7. Suppose that A = Z>0 = { 1 < 2 < 3 < . . . } and B = Z<0 = {−1 <

−2 < −3 < . . . } with all entries even. Then

(T+, T−) =




2 2 2 3
1 3 3 3

2 2 4
3

,

-1
-1 -2

-1 -3 -3
-3 -4 -4




∈ SSTZ>0/Z<0
((3, 2, 0,−2))

where the vertical lines in T+ and T− correspond to the one in the generalized par-
tition (3, 2, 0,−2). In this case, we have sh(T+) =

(
(3, 2, 0,−2) + (34)

)
/(2, 1, 0, 0),

and sh(T−) = (34)/(2, 1, 0, 0).

For λ ∈ Zn
+, we define the character of SSTA/B(λ) to be

(1) S
A/B
λ =

∑

(T+,T−)∈SSTA/B(λ)

xT+

A (xT−
B )−1.

We put PA/B,n = {λ ∈ Zn
+ | SSTA/B(λ) 6= ∅}. For k ∈ Z, we put S

A/B
k = S

A/B
(k) .

2.3. Irreducible characters Let us briefly recall a representation theoretic mean-
ing of parabolically semistandard tableaux. For an arbitrary Z2-graded linearly or-
dered set C, we denote by VC a superspace with basis { vc | c ∈ C }, and let gl(VC) be
the general linear Lie superalgebra spanned by Ecc′ for c, c′ ∈ C. Here Ecc′ is the
matrix where the entry at (c, c′)-position is 1 and 0 elsewhere.

Let g = gl(VC) with C = B ∗ A, where B ∗ A is the Z2-graded set A t B with the
extended linear ordering defined by y < x for all x ∈ A and y ∈ B. Let

F = S(VA ⊕ V ∨
B )

be the super symmetric algebra generated by VA ⊕ V ∨
B , where V ∨

B is the restricted
dual space of VB. One can define a semisimple action of g on F , and a semisimple
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action of GLn(C) on F⊗n for n ≥ 1 so that we have the following multiplicity-free
decomposition as a (g, GLn(C))-module,

(2) F⊗n ∼=
⊕

λ∈Hn

L(λ)⊗ Ln(λ),

for a subset Hn of Zn
+, where Ln(λ) is the irreducible GLn(C)-module with highest

weight λ ∈ Hn, and L(λ) is an irreducible g-module corresponding to Ln(λ) (see the
arguments in [4, Sections 5.1 and 5.4]). We define the character chL(λ) to be the
trace of the operator

∏
c∈C xEcc

c on L(λ) for λ ∈ Hn. Finally from a Cauchy type
identity for parabolically semistandard tableaux [12, Theorem 4.1], we can conclude
the following (cf. [14, Theorem 2.3]).

Theorem 2.8. For n ≥ 1, we have

F⊗n ∼=
⊕

λ∈PA/B,n

L(λ)⊗ Ln(λ),

as a (g, GLn(C))-module, that is, Hn = PA/B,n, and the irreducible character chL(λ)

is given by S
A/B
λ for λ ∈ PA/B,n.

Recall that when A is finite with A = A0 or A1 and B = ∅, the decomposition
in Theorem 2.8 is the classical (GL`(C), GLn(C))-Howe duality on the symmetric
algebra or exterior algebra generated by C` ⊗Cn, where ` = |A| (cf. [8]). Moreover,
the decomposition in Theorem 2.8 includes other Howe dualities of type A which
have been studied in [1, 2, 3, 5, 8, 10, 11] under suitable choices of A and B (see [12]
for more details).

3. Jacobi-Trudi Formula

3.1. Lattice paths

Definition 3.1. A lattice path is a sequence

p = v1...vr

of points v1, ..., vr in Z× Z with vi = (ai, bi) such that b1 < 0 < br, and

vi+1 − vi =





(0, 1) or (−1, 0), for 1 ≤ i < r with bi, bi+1 < 0,

(0, 1) or (1, 0), for 1 ≤ i < r with bi, bi+1 > 0,

(0, 1), for 1 ≤ i < r with bi = 0 or bi+1 = 0.

Example 3.2. The following path
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p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p pr

r

r

(2,−4)

(0,0)

(1,4)

is the lattice path

p = (2,−4)(2,−3)(1,−3) . . . (−2,−1)(−2, 0)(−2, 1) . . . (1, 2)(1, 3)(1, 4).

We denote by P the set of lattice paths. Let p = v1...vr ∈ P be given with
vi = (ai, bi) for 1 ≤ i ≤ r. We often identify p with its extended lattice path
v0v1...vrvr+1, where v0 = (a1,−∞) and vr+1 = (ar,∞). Here we regard (a1,−∞) as
a point below (a1, y) for all y ≤ b1, and (ar,∞) as a point above (ar, y) for all y ≥ br.
We also write p : v0 −→ vr+1. For 0 ≤ i ≤ r, let vivi+1 denote the line segment
joining vi and vi+1, where we understand v0v1 (resp. vrvr+1) as an half-infinite line
joining (a1, b1) and (a1,−∞) (resp. (ar, br) and (ar,∞)). Let z = { zi | i ∈ Z× } be
a set of formal commuting variables, where Z× = Z \ {0}. We consider a weight
monomial

zp =
∏

vivi+1: horizontal

zbi .

Example 3.3. For a lattice path

p =

p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p p
p p p p p p p p pr

r

r
-1

-2 -2
-3

1
2 2

(0,0)

its weight monomial is zp = z1z
2
2z−1z

2
−2z−3 (the numbers on the horizontal line

segments denote their y-coordinates in Z× Z).
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Fix a positive integer n. Let Sn be the group of permutations on n letters.
Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn be given with α1 > . . . > αn and
β1 > . . . > βn. We define

P(α, β) =

{
p = (p1, . . . , pn) ∈ Pn

∣∣∣∣∣
there exists π ∈ Sn such that
pi : (αi,−∞) → (βπ(i),∞) for 1 ≤ i ≤ n

}
.

Put zp =
∏

i z
pi , and (−1)p = sgn(π) for p ∈ P(α, β) with its associated permuta-

tion π ∈ Sn.

Example 3.4. Let n = 4, α = (1, 0,−1,−2) and β = (4, 2,−1,−4). Then

∈ P(α, β)p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

-3-3-3
-2

3

-4

-1

2 2 2
3 3 3

-2
-1

-2

4

-1

2 2 2
3

r(0,0)

with the associated permutation

π =
(

1 2 3 4
1 3 4 2

)
.

A weight monomial of p is

zp = (z−1z
3
2z3)(z−2z−1z4)(z3

−3z−2z3)(z−4z−1z
3
2z

3
3)

= z−4z
3
−3z

2
−2z

3
−1z

6
2z

5
3z4

and (−1)p = sgn(π) = 1.

Let us define a map

φ : P(α, β) −→ P(α, β)

as follows; for p = (p1, ..., pn) ∈ P(α, β)

(1) If pi ∩ pj = ∅ for all 1 ≤ i 6= j ≤ n, then φ(p) = p.
(2) Otherwise, we choose the largest i such that pi has an intersection point w

with pj for some i > j, and assume that w is the first intersection point
appearing in pi from the bottom. Then we define φ(p) to be the n-tuple of
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paths obtained from p by replacing
{

pi = (u1 · · · up)(up+1 · · · ur)
pj = (v1 · · · vq)(vq+1 · · · vs)

with

{
pi = (u1 · · · up)(vq+1 · · · vs)
pj = (v1 · · · vq)(up+1 · · · ur)

,

where up = vq = w.

Example 3.5. Let p be as in Example 3.4. Then

p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

r

b

(0,0)

φ(p) =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

r

b

(0,0)

By definition of φ , we can check that for p ∈ P(α, β)

(1) φ(p) = p if and only if p has no intersection point,
(2) φ2(p) = p,
(3) zφ(p) = zp,
(4) (−1)φ(p) = −(−1)p.

We put

(3) P0(α, β) = {p |p ∈ P(α, β), φ(p) = p }
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the set of fixed points in P(α, β) under φ, or the subset of p in P(α, β) with no
intersection point.

For λ ∈ Zn
+, we define

(4) Sλ =
∑

p∈P0(δ,λ+δ)

zp,

where δ = (0,−1, . . . ,−n + 1) and λ + δ = (λ1, λ2 − 1, . . . , λn − n + 1). For k ∈ Z,
we put Sk = S(k). Then we have the following Jacobi-Trudi formula for Sλ, which
is an analogue of [12] for our zigzag-shaped lattice paths.

Proposition 3.6. For λ ∈ Zn
+, we have

Sλ = det (Sλi−i+j)1≤i,j≤n .

Proof. Recall from (4) that for 1 ≤ i, j ≤ n

Sλi−i+j =
∑

p:(−j+1,−∞)→(λi−i+1,∞)

zp,

where we shift the x-coordinates in p by −j + 1. Thus

det(Sλi−i+j)1≤i,j≤n =
∑

π∈Sn

sgn(π)Sλπ(1)−π(1)+1 · · · Sλπ(n)−π(n)+n

=
∑

π∈Sn

∑

p∈P(δ,λ+δ)
pi:(−i+1,−∞)→(λπ(i)−π(i)+1,∞)

sgn(π)zp

=
∑

p∈P(δ,λ+δ)

(−1)pzp

=
∑

p∈P0(δ,λ+δ)

(−1)pzp +
∑

p6∈P0(δ,λ+δ)

(−1)pzp.

Since φ(p) 6= p for p 6∈ P0(δ, λ + δ) and (−1)φ(p) = −(−1)p, we have
∑

p6∈P0(δ,λ+δ)

(−1)pzp = 0.

Also note that (−1)p = 1 for p ∈ P0(δ, λ + δ). Therefore, we have

det(Sλi−i+j)1≤i,j≤n =
∑

p∈P0(δ,λ+δ)

zp = Sλ.

¤
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3.2. Non-intersecting paths and Young tableaux Let α = (α1, . . . , αn), β =
(β1, . . . , βn) ∈ Zn

+ be such that α1 > . . . > αn, β1 > . . . > βn and αi ≤ βi for all
i. Consider an n-tuple p = (p1, . . . , pn) of non-intersecting (extended) lattice paths
where

(5) pi : (αi, 0) −→ (βi,∞)

for 1 ≤ i ≤ n. Note that pi is a lattice path starting from a point (αi, 0), which is a
upper half of a lattice path defined in Definition 3.1. Put δ = (0,−1, . . . ,−n + 1).
Choose d ≥ 0 satisfying

α− δ + (dn), β − δ + (dn) ∈ Pn.

If we put µ = α− δ +(dn) and λ = β− δ +(dn), then λ/µ is a skew Young diagram.
Now, associated to p, we define a tableau T of shape λ/µ with entries in Z>0 as

follows. For 1 ≤ i ≤ n with αi < βi and 1 ≤ j ≤ βi − αi, we fill the box in the ith
row and jth column of λ/µ with k if

pi = (αi, 0) . . . (αi + j − 1, k)(αi + j, k) . . . (βi,∞).

The following lemma is well-known [7]. But we give a detailed proof for the
readers’ convenience.

Lemma 3.7. Under the above assumptions, T is Z>0-semistandard or a Young
tableau of shape λ/µ.

Proof. Fix 1 ≤ i ≤ n. Let Ti,j denote the jth (non-empty) entry of T (from the left)
in the ith row (from the top) for 1 ≤ j ≤ βi − αi.

It is clear that the entries of T in each row are weakly increasing from left to right
since the y-coordinates of each path pi : (αi, 0) −→ (βi,∞) are weakly increasing
from bottom to top. Hence it is enough to show that the entries of T in each column
are strictly increasing from top to bottom.

Fix 1 ≤ i < n. Suppose first that αi − αi+1 = ` ≥ 1. Then µi − µi+1 =
{αi− (−i+1)+d}−{αi− (−i)+d} = (αi−αi+1)−1 = `−1. This implies that Ti,j

and Ti+1,j+(`−1) are in the same column in T for all j such that Ti,j and Ti+1,j+(`−1)

are non-empty. The jth and (j + ` − 1)th horizontal line segments of pi and pi+1

are given by
(αi + j − 1, k)(αi + j, k),

(αi+1 + j − 1 + (`− 1), k′)(αi+1 + j + (`− 1), k′)

= (αi + j − 2, k′)(αi + j − 1, k′)
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respectively, where k = Ti,j and k′ = Ti+1,j+(`−1). If k ≥ k′, then the paths pi

and pi+1 necessarily have an intersection point, which is a contradiction. Therefore,
Ti,j < Ti+1,j+(`−1). ¤

Note that the shape of T does not depend on the choice of d, and the correspon-
dence p 7→ T gives a bijection between the set of non-intersecting paths satisfying
(5) and SSTZ>0(λ/µ).

Example 3.8. Consider a quadruple of non-intersecting paths p = (p1, p2, p3, p4)
with α = (−1,−3,−5,−6) and β = (3, 1,−2,−5)

p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

3
2 2

4
3 3 3

1
2 2 2

3

(0,0)

r

Then the associated Young tableau is

T =

2 2 2 3
1 3 3 3

2 2 4
3

Now, consider parabolically semistandard tableaux, where A = Z>0 = { 1 < 2 <

3 < . . . } and B = Z<0 = {−1 < −2 < −3 < . . . } with all entries even. Note that
the linear ordering on B is a reverse ordering of the usual one. Then we have

Proposition 3.9. For λ ∈ Zn
+, there exists a bijection

ψ : P0(δ, λ + δ) −→ SSTZ>0/Z<0
(λ).

Proof. Let p = (p1, . . . , pn) ∈ P0(δ, λ + δ) be given with

pi = (−i + 1,−∞) . . . (γi, 0) . . . (λi − i + 1,∞)

for some γi ∈ Z (1 ≤ i ≤ n). Then we put p+ = (p+
1 , . . . , p+

n ), where p+
i =

(γi, 0) . . . (λi − i + 1,∞), an upper half of pi with the vertices having non-negative
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second components, and put p− = (p−1 , . . . , p−n ), where p−i = (−i+1,−∞) . . . (γi, 0),
the lower half of pi.

Choose d ≥ 0 such that γ − δ + (dn), (λ + δ) − δ + (dn) ∈ Pn. First, as in
Lemma 3.7, we may associate a Young tableau T+ of shape (λ + (dn))/µ where
µ = γ − δ + (dn).

Let p−∗ = (p−∗1 , . . . , p−∗n ), where p−∗i is obtained by reversing the order of the
vertices in p−i and changing the sign of their second components. By the same
argument, we may associate a Young tableau of shape (dn)/µ, and then replace an
entry k with −k once again to get a Z<0-semistandard tableau T− of (dn)/µ.

We define a map ψ : P0(δ, λ + δ) → SSTZ>0/Z<0
(λ) by ψ(p) = (T+, T−). Since

the correspondence p 7→ (T+, T−) is reversible, ψ is a bijection. ¤

Remark 3.10. The bijection ψ in Proposition 3.9 preserves weight in the following

sense: If (T+, T−) = ψ(p) for p ∈ P0(δ, λ + δ), then zp = xT+

Z>0

(
xT−
Z<0

)−1
, where we

assume that zk = xk and z−k = x−1
−k for k ≥ 1.

Example 3.11. Let p ∈ P0(δ, λ + δ) be a 4-tuple of lattice paths with δ =
(0,−1,−2,−3) and λ + δ = (3, 1,−2,−5) as follows.

p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

-4-4
-3

3

-3-3

-1

2 2

4

-2
-1

1

3 3 3

-1

2 2 2
3

r(0,0)

Then

(T+, T−) =




2 2 2 3
1 3 3 3

2 2 4
3

,

-1
-1 -2

-1 -3 -3
-3 -4 -4




∈ SSTZ>0/Z<0
((3, 2, 0,−2)).
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Now, we are in a position to prove our main theorem.

Theorem 3.12. For λ ∈ Zn
+, we have

S
Z>0/Z<0

λ = det(SZ>0/Z<0

λi−i+j )1≤i,j≤n.

Proof. Let us assume that zk = xk and z−k = x−1
−k for k ≥ 1. Then we have

Sl = S
Z>0/Z<0

l for l ∈ Z. So by Proposition 3.6, we have

(6) Sλ = det(Sλi−i+j)1≤i,j≤n = det(SZ>0/Z<0

λi−i+j )1≤i,j≤n.

On the other hand, by Proposition 3.9 and Remark 3.10 we have

(7) Sλ = S
Z>0/Z<0

λ .

Combining (6) and (7), we obtain

S
Z>0/Z<0

λ = det(SZ>0/Z<0

λi−i+j )1≤i,j≤n.

This completes the proof. ¤

3.3. General cases for A and B In this subsection, we prove that Theorem 3.12
can be naturally extended to the case of S

A/B
λ , where A = Z>0 = { 1 < 2 < 3 < . . . }

and B = Z<0 = {−1 < −2 < −3 < . . . } with arbitrary Z2-gradings.
For this, we consider a lattice path p = v1...vr of points v1, ..., vr in Z × Z with

vi = (si, ti) satisfying the following conditions:

(1) t1 < 0 < tr,
(2) if ti 6= 0 and ti ∈ A0 t B0, then

vi+1 − vi =

{
(0, 1) or (−1, 0), for 1 ≤ i < r with ti, ti+1 < 0,

(0, 1) or (1, 0), for 1 ≤ i < r with ti, ti+1 > 0,

(3) if ti 6= 0 and ti ∈ A1 t B1, then

vi+1 − vi =

{
(0, 1) or (−1, 1), for 1 ≤ i < r with ti, ti+1 < 0,

(0, 1) or (1, 1), for 1 ≤ i < r with ti, ti+1 > 0,

(4) if ti = 0, then vi+1 − vi = (0, 1).

We may define the notion of an extended path in the same way as in Section 3.1,
and accordingly P(α, β), the involution φ, and P0(α, β). For an (extended) path p

and z = { zi | i ∈ Z× } the set of formal commuting variables, we put
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zp =
∏

vivi+1: horizontal
or diagonal

zti ,

where p = (s1,−∞)v1 . . . vr(sr,∞) with vi = (si, ti) for 1 ≤ i ≤ r. Then we define

Sλ =
∑

p∈P0(δ,λ+δ)

zp,

and we have

(8) Sλ = det (Sλi−i+j)1≤i,j≤n

by the same arguments as in Proposition 3.6.

Example 3.13. Suppose that Z2-gradings on A and B are given by

A0 = { 2, 4, 6, . . . }, B0 = {−2,−4,−6, . . . },
A1 = { 1, 3, 5, . . . }, B1 = {−1,−3,−5 . . . }.(9)

For a lattice path

p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

@@

@@

¡¡

¡¡

-3
-2

-1

1

3
4 4

r(0,0)

its weight monomial is zp = z1z3z
2
4z−1z−2z−3 (the numbers on the horizontal or the

diagonal denote their y-coordinates in Z× Z).

Now, for λ ∈ Zn
+, there is also a weight-preserving bijection from P0(δ, λ + δ) to

SSTA/B(λ) (see Lemma 3.7 and Proposition 3.9).

Example 3.14. We assume that A and B are as in (9). Let p ∈ P0(δ, λ + δ) be a
4-tuple of lattice paths with δ = (0,−1,−2,−3) and λ+δ = (3, 1,−2,−5) as follows.
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p =

p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p
p p p p p p p p p p p

@@

¡¡

-4 -4
-3

3

@@

@@

¡¡

-3
-2

-1

2 2
3

@@

¡¡

¡¡

-2
-1

1

3
4 4

@@

¡¡

-1

2 2 2
3

r(0,0)

Then it corresponds to

(T+, T−) =




2 2 2 3
1 3 4 4

2 2 3
3

,

-1
-1 -2

-1 -2 -3
-3 -4 -4




∈ SSTA/B((3, 2, 0,−2))

Therefore, combining with (8), we obtain the Jacobi-Trudi type formula for S
A/B
λ .

Theorem 3.15. For λ ∈ Zn
+, we have

S
A/B
λ = det(SA/B

λi−i+j)1≤i,j≤n.

Remark 3.16. One can also prove Theorem 3.15 when A and B are arbitrary two
disjoint linearly ordered Z2-graded sets, by slightly modifying the notion of extended
paths.
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