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UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC
PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL

SYSTEMS

Sang Il Choi a and Yoon Hoe Goo b, ∗

Abstract. This paper shows that the solutions to the perturbed differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds + h(t, y(t))

have asymptotic property and uniform Lipschitz stability. To show these properties,
we impose conditions on the perturbed part

∫ t

t0
g(s, y(s), Ty(s))ds, h(t, y(t)), and on

the fundamental matrix of the unperturbed system y′ = f(t, y).

1. Introduction

Brauer[2] studied the asymptotic behavior of solutions of nonlinear systems and
perturbations of nonlinear systems by means of analogue of the variation of con-
stants formula for nonlinear systems due to V.M. Alekseev[1]. Elaydi and Farran[9]
introduced the notion of exponential asymptotic stability(EAS) which is a stronger
notion than that of ULS, which is introduced by Dannan and Elaydi[8]. They investi-
gated some analytic criteria for an autonomous differential system and its perturbed
systems to be EAS. Pachpatte[15,16] investigated the stability and asymptotic be-
havior of solutions of the functional differential equation. Gonzalez and Pinto[10]
proved theorems which relate the asymptotic behavior and boundedness of the so-
lutions of nonlinear differential systems. Choi et al.[6,7] examined Lipschitz and
exponential asymptotic stability for nonlinear functional systems. Goo[11] and Choi
et al.[3,5] investigated Lipschitz and asymptotic stability for perturbed differential
systems. Also, Im and Goo[13] investigated asymptotic property for solutions of the
perturbed functional differential systems.
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In this paper we will obtain some results on ULS and asymptotic property for
perturbed nonlinear differential systems. We will employ the theory of integral in-
equalities to study ULS and asymptotic property for solutions of perturbed nonlinear
differential systems.

2. Preliminaries

We consider the nonautonomous differential system

x′ = f(t, x), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0. Also, we consider the perturbed differential system of (2.1)

(2.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds + h(t, y(t)), y(t0) = y0,

where g ∈ C(R+ × Rn × Rn,Rn), h ∈ C(R+ × Rn,Rn) , g(t, 0, 0) = 0, h(t, 0) = 0,
and T : C(R+,Rn) → C(R+,Rn) is a continuous operator .

The symbol | · | will be used to denote any convenient vector norm in Rn. For an
n× n matrix A, define the norm |A| of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) = x0, existing
on [t0,∞). Then we can consider the associated variational systems around the zero
solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions that we need

in the sequel[9].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such that |x(t)| ≤
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M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0,
(ULSV)uniformly Lipschitz stable in variation if there exist M > 0 and δ > 0 such
that |Φ(t, t0, x0) ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0.
(EAS) exponentially asymptotically stable if there exist constants K > 0 , c > 0,
and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist constants K >

0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞
Remark 2.2 ([10]). The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

For the proof we prepare some related properties. We need Alekseev formula
to compare between the solutions of (2.1) and the solutions of perturbed nonlinear
system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution
of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.3 ([2]). Let x and y be a solution of (2.1) and (2.5), respectively. If
y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn, y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. (Bihari−type Inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c +
∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1

[
W (c) +

∫ t

t0

λ(s)ds

]
,
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where t0 ≤ t < b1, W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u), and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ(s)ds ∈ domW−1

}
.

Lemma 2.5 ([4]). Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds

+
∫ t

t0

λ5(s)
∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ + λ5(s)
∫ s

t0

λ6(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ

+λ5(s)
∫ s

t0

λ6(τ)dτ)ds ∈ domW−1

}
.

For the proof we need the following two corollaries from Lemma 2.5.

Corollary 2.6. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ2(s)w(u(s))ds +
∫ t

t0

λ3(s)
∫ s

t0

λ4(τ)u(τ)dτds.

Then

u(t) ≤ W−1

[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s) + λ3(s)
∫ s

t0

λ4(τ)dτ)ds ∈ domW−1

}
.

Corollary 2.7. Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nondecreasing
in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)
∫ s

t0

λ3(τ)u(τ)dτds.
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Then

u(t) ≤ W−1

[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ)dτ)ds ∈ domW−1

}
.

Lemma 2.8 ([12]). Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)), and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ)u(τ) + λ3(τ)w(u(τ)) + λ4(τ)
∫ τ

t0

λ5(r)u(r)dr)dτds.

Then

u(t) ≤ W−1

[
W (c) +

∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ) + λ3(τ) + λ4(τ)
∫ τ

t0

λ5(r)dr)dτds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ) + λ3(τ)

+ λ4(τ)
∫ τ

t0

λ5(r)dr)dτds ∈ domW−1

}
.

For the proof we need the following corollary.

Corollary 2.9. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)), and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c +
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ)w(u(τ)) + λ3(τ)
∫ τ

t0

λ4(r)u(r)dr)dτds.

Then

u(t) ≤ W−1

[
W (c) +

∫ t
t0

λ1(s)
∫ s

t0

(λ2(τ) + λ3(τ)
∫ τ

t0

λ4(r)dr)dτds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4, and

b1 = sup
{

t ≥ t0 : W (c)+
∫ t

t0

λ1(s)
∫ s

t0

(λ2(τ)+λ3(τ)
∫ τ

t0

λ4(r)dr)dτds ∈ domW−1

}
.
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3. Main Results

In this section, we investigate ULS and asymptotic property for solutions of the
perturbed nonlinear differential systems

To obtain ULS and asymptotic property, the following assumptions are needed:
(H1) The solution x = 0 of (1.1) is EASV.
(H2) w(u) is nondecreasing in u, u ≤ w(u).

Theorem 3.1. Suppose that (H1), (H2), and the perturbing term g(t, y, Ty) satisfies

(3.1) |g(t, y(t), T y(t))| ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
,

and

(3.2) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t))| ≤
∫ t

t0

e−αsc(s)|y(s)|ds,

where α > 0, a, b, c, k, u, w ∈ C(R+), a, b, c, k ∈ L1(R+). If

(3.3) M(t0) = W−1

[
W (c)+

∫ ∞

t0

Meαs

∫ s

t0

[a(τ)+c(τ)+b(τ)
∫ τ

t0

k(r)dr]dτds

]
< ∞,

where t ≥ t0 and c = |y0|Meαt0, then all solutions of (2.2) approach zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. By the assumption (H1), the solution x = 0 of (2.1) is EASV. Therefore,
it is EAS by remark 2.2. Using Lemma 2.3, together with (3.1) and (3.2), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
( ∫ s

t0

|g(τ, y(τ), Ty(τ))|dτ + |h(s, y(s))|
)

ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

e−ατ
(
a(τ)w(|y(τ)|) + c(τ)|y(τ)|

+b(τ)
∫ τ

t0

k(r)|y(r)|dr
)
dτds.

It follows from (H2) that

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

(
a(τ)w(|y(τ)|eατ ) + c(τ)|y(τ)|eατ

+b(τ)
∫ τ

t0

k(r)|y(r)|eαrdr
)
dτds.
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Set u(t) = |y(t)|eαt. By Lemma 2.8 and (3.3) we obtain

|y(t)| ≤ e−αtW−1

[
W (c) +

∫ t

t0

Meαs

∫ s

t0

(
a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr
)
dτds

]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . The above estimation yields the desired result. ¤

Remark 3.2. Letting c(s) = 0 for t0 ≤ s ≤ t in Theorem 3.1, we obtain the same
result as that of Theorem 3.1 in [13].

Theorem 3.3. Suppose that (H1), (H2), and the perturbing term g(t, y, Ty) satisfies

(3.4) |g(t, y(t), T y(t))| ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
,

and

(3.5) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t))| ≤
∫ t

t0

e−αsc(s)w(|y(s)|)ds,

where α > 0, a, b, c, k, u, w ∈ C(R+), a, b, c, k ∈ L1(R+). If
(3.6)

M(t0) = W−1

[
W (c)+

∫ ∞

t0

Meαs

∫ s

t0

[a(τ)+c(τ)+b(τ)
∫ τ

t0

k(r)dr]dτds

]
< ∞, t ≥ t0,

where c = |y0|Meαt0, then all solutions of (2.2) approach zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. By the assumption (H1), the solution x = 0 of (2.1) is EASV, and so it
is EAS by remark 2.2. Applying Lemma 2.3, together with (3.4) and (3.5), we have

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

e−ατ
(
(a(τ) + c(τ))w(|y(τ)|)

+b(τ)
∫ τ

t0

k(r)|y(r)|dr
)
dτds.

From (H2) , we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

(
(a(τ) + c(τ))w(|y(τ)|eατ )

+b(τ)
∫ τ

t0

k(r)|y(r)|eαrdr
)
dτds.

Defining u(t) = |y(t)|eαt, then by corollary 2.9 and (3.6) we obtain
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|y(t)| ≤ e−αtW−1

[
W (c) +

∫ t

t0

Meαs

∫ s

t0

(
a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr
)
dτds

]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . From the above estimation, we obtain the desired
result. ¤

Remark 3.4. Letting c(s) = 0 for t0 ≤ s ≤ t in Theorem 3.3, we obtain the same
result as that of Theorem 3.1 in [13].

Theorem 3.5. Suppose that (H1), (H2), and the perturbed term g(t, y, Ty) satisfies

(3.7)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ |Ty(t)|

)
,

and

(3.8) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t))| ≤ e−αtc(t)w(|y(t)|),

where α > 0, a, b, c, k, u, w ∈ C(R+), a, b, c, k ∈ L1(R+). If

(3.9) M(t0) = W−1

[
W (c) + M

∫ ∞

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds

]
< ∞,

where b1 = ∞ and c = M |y0|eαt0, then all solutions of (2.2) approach zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. From (H1), the solution x = 0 of (2.1) is EASV. Therefore, it is EAS.
Using Lemma 2.3, together with (3.7) and (3.8), we have

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)
(
e−αsa(s)|y(s)|

+e−αsb(s)
∫ s

t0

k(τ)|y(τ)|dτ + e−αsc(s)w(|y(s)|)
)
ds.

Applying (H2) , we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−αt
(
a(s)|y(s)|eαs + c(s)w(|y(s)|eαs)

)
ds

+
∫ t

t0

Me−αtb(s)
∫ s

t0

k(τ)|y(τ)|eατdτds.

Set u(t) = |y(t)|eαt. Then, it follows from Corollary 2.6 and (3.9) that
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|y(t)| ≤ e−αtW−1

[
W (c) + M

∫ t

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds

]

≤ e−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . The above estimation yields the desired result. ¤

Remark 3.6. Letting b(s) = c(s) = 0 for t0 ≤ s ≤ t in Theorem 3.5, we obtain the
same result as that of Corollary 3.8 in [5].

Theorem 3.7. Suppose that (H1), (H2), and the perturbed term g(t, y, Ty) satisfies

(3.10)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + |Ty(t)|

)
,

and

(3.11) |Ty(t)| ≤ b(t)
∫ t

t0

k(s)|y(s)|ds, |h(t, y(t))| ≤ e−αtc(t)w(|y(t)|),

where α > 0, a, b, c, k, u, w ∈ C(R+), a, b, c, k ∈ L1(R+). If

(3.12) M(t0) = W−1

[
W (c) + M

∫ ∞

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds

]
< ∞,

where b1 = ∞ and c = M |y0|eαt0, then all solutions of (2.2) approach zero as t →∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. From the assumption (H1), the solution x = 0 of (2.1) is EASV, and
so it is EAS. Using Lemma 2.3, together with (3.10) and (3.11), we have

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)
(
e−αsa(s)w(|y(s)|)

+e−αsb(s)
∫ s

t0

k(τ)|y(τ)|dτ + e−αsc(s)w(|y(s)|)
)
ds.

By the assumption (H2) , we obtain

|y(t)| ≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−αt(a(s) + c(s))w(|y(s)|eαs)ds

+
∫ t

t0

Me−αtb(s)
∫ s

t0

k(τ)|y(τ)|eατdτds.

Set u(t) = |y(t)|eαt. Then, it follows from Corollary 2.7 and (3.12) that

|y(t)| ≤ e−αtW−1

[
W (c) + M

∫ t

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds

]

≤ e−αtM(t0),
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where t ≥ t0 and c = M |y0|eαt0 . From the above estimation, we obtain the desired
result. ¤

Remark 3.8. Letting c(s) = 0 for t0 ≤ s ≤ t in Theorem 3.7, we obtain the same
result as that of Theorem 3.3 in [13].

Theorem 3.9. For the perturbed (2.2), we suppose that (H2),

(3.13)
∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)|y(t)|+ b(t)
∫ t

t0

k(s)|y(s)|ds + |Ty(t)|,

and

(3.14) |Ty(t)| ≤ c(t)w(|y(t)|), |h(t, y(t))| ≤ d(t)
∫ t

t0

q(s)w(|y(s)|)ds

where a, b, c, d, k, q, u ∈ C(R+), a, b, c, d, k, q ∈ L1(R+), w ∈ C((0,∞), 1
vw(u) ≤

w(u
v ) for some v > 0, and

(3.15)

M(t0) = W−1

[
W (K) + K

∫ ∞

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ + d(s)
∫ s

t0

q(τ)dτ
)
ds

]
,

where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV, then the zero
solution of (2.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since x = 0 of (2.1) is ULSV, it is ULS by Theorem 3.3[8]. In view of
Lemma 2.3, together with ULSV condition of x = 0 of (2.1), (3.13) and (3.14), we
obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
( ∫ s

t0

|g(τ, y(τ), Ty(τ))|dτ + |h(s, y(s))|
)

ds

≤ K|y0|+
∫ t

t0

K|y0|
(

a(s)
|y(s)|
|y0| + c(s)w

( |y(s)|
|y0|

))
ds

+
∫ t

t0

K|y0|(b(s)
( ∫ s

t0

k(τ)
|y(τ)|
|y0| dτ + d(s)

∫ s

t0

q(τ)w(
|y(τ)|
|y0| )dτ

)
ds.

Set u(t) = |y(t)||y0|−1. Then, by Lemma 2.5, we have

|y(t)| ≤ |y0|W−1

[
W (K) + K

∫ t

t0

(
a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ + d(s)
∫ s

t0

q(τ)dτ
)
ds

]
.

The above estimation and (3.15) yield the desired result. Hence the proof is com-
plete. ¤
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Remark 3.10. Letting b(s) = c(s) = d(s) = 0 for t0 ≤ s ≤ t in Theorem 3.9, we
obtain the same result as that of Corollary 3.4 in [5].

Theorem 3.11. For the perturbed (2.2), we suppose that (H2),

(3.16) |g(t, y(t), T y(t))| ≤ a(t)|y(t)|+ b(t)
∫ t

t0

k(s)|y(s)|ds + |Ty(t)|,

and

(3.17) |Ty(t)| ≤ c(t)w(|y(t)|), |h(t, y(t))| ≤
∫ t

t0

q(s)w(|y(s)|)ds

where a, b, c, k, q, u ∈ C(R+), a, b, c, k, q ∈ L1(R+) , w ∈ C((0,∞), 1
vw(u) ≤ w(u

v )
for some v > 0, and
(3.18)

M(t0) = W−1

[
W (K) + K

∫ ∞

t0

∫ s

t0

(
a(τ) + c(τ) + q(τ) + b(τ)

∫ τ

t0

k(r)dr
)
dτds

]
,

where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV, then the zero
solution of (2.2) ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since x = 0 of (2.1) is ULSV, it is ULS. Using Lemma 2.3, together
with ULSV condition of x = 0 of (2.1), (3.16), and (3.17) , we obtain

|y(t)| ≤ K|y0|+
∫ t

t0

K|y0|
∫ s

t0

(
a(τ)

|y(τ)|
|y0| + (c(τ) + q(τ))w

( |y(τ)|
|y0|

))
dτds

+
∫ t

t0

K|y0|
∫ s

t0

b(τ)
∫ τ

t0

k(r)
|y(r)|
|y0| drdτds.

Set u(t) = |y(t)||y0|−1. Then, an application of Lemma 2.8 yields

|y(t)| ≤ |y0|W−1

[
W (K) + K

∫ t

t0

∫ s

t0

(
a(τ) + c(τ) + q(τ) + b(τ)

∫ τ

t0

k(r)dr
)
dτds

]
.

Thus, by (3.18), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
This completes the proof. ¤

Remark 3.12. Letting b(s) = c(s) = q(s) = 0 for t0 ≤ s ≤ t in Theorem 3.11, we
obtain the same result as that of Corollary 3.2 in [5].
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