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ON SOME UNBOUNDED DOMAINS FOR A MAXIMUM
PRINCIPLE

Sungwon Cho

Abstract. In this paper, we study some characterizations of unbounded domains.
Among these, so-called G-domain is introduced by Cabre for the Aleksandrov-
Bakelman-Pucci maximum principle of second order linear elliptic operator in a
non-divergence form. This domain is generalized to wG-domain by Vitolo for the
maximum principle of an unbounded domain, which contains G-domain. We study
the properties of these domains and compare some other characterizations. We prove
that sA-domain is wG-domain, but using the Cantor set, we are able to construct a
example which is wG-domain but not sA-domain.

1. Introduction

We consider the second order elliptic operator in the following non-divergence
form

(1.1) Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u

in a given domain Ω in Rn, where Di = ∂
∂xi

, Dij = DiDj . The operator is called a
uniformly elliptic if, for some positive constants λ,Λ,

(1.2) λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, ∀ξ ∈ Ω, c(x) ≤ 0.

For the elliptic operator, there is a well known property called maximum principles.
For the bounded domain, it can be written as follows:

Theorem 1.1. Let Lu ≥ 0 for some bounded domain Ω, then

sup
Ω

u ≤ sup
∂Ω

u.
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For an unbounded domain, one can consider the following simple example:

∆u = 0 in Rn
+, u = 0 on ∂Rn

+.

Here, ∆ is the Laplace operator, Rn
+ is an upper half plane. For the Dirichlet value

problem, we have infinitely many solutions of the form u(x) = u(x1, x2, ..., xn) :=
kxn for any k ∈ R.

Thus, unlike bounded domains, the maximum principle is not easy to obtain for
the unbounded domains, hence there are recent publications regarding the subject.
For example, one may refer to [1, 2, 3, 5] and references therein.

Definition 1.1 ([1]). We say that the maximum principle holds for the operator L

in Ω if

(1.3) Lw ≥ 0 in Ω,

(1.4) lim sup
x→∂Ω

w(x) ≤ 0

imply w ≤ 0 in Ω.

Using an improved classical Alexandrov-Bakelman-Pucci maximum principle,
Cabre [2] obtained the maximum principle above for the following type of domains,
which will be denoted by G-domain hereafter.

Definition 1.2 ([2]). We say that Ω satisfies a condition G if there exist positive
constants σ < 1, τ < 1 and R0 such that

(1.5) ∀x ∈ Ω ∃BRx s.t. |BRx \ Ωx,τ | ≥ σ|BRx |,
where BRx is a ball containing x of radius Rx ≤ R0 and Ωx,τ is the component of
Ω ∩BRx/τ to which x belongs.

As noted by Vitolo [5], the G-domain contains connected open sets with finite
measure, infinite cylinders, and strips. The explanations are presented in the next
section.

By Cafagna and Vitolo [3], G-domain was generalized to wG-domain, and they
obtained the maximum principle.

Definition 1.3 ([3]). We say that Ω satisfies a condition wG if there exist positive
constants σ < 1 and τ < 1 such that

(1.6) ∀x ∈ Ω ∃BRx s.t. |BRx \ Ωx,τ | ≥ σ|BRx |,
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where BRx is a ball containing x of radius Rx and Ωx,τ is the component of Ω∩BRx/τ

to which x belongs.

Observe that in the definition, we do not impose any restriction on the bound-
edness of radius R unlike G-domain. It is immediate to see that G-domain is wG-
domain. In the next section, we present examples of wG-domain, which is not
G-domain.

The following A-domain appear in the book by O. A. Ladyzhenskaya and N. N.
Uraltseva [4].

Definition 1.4. A domain Ω is called A-domain if there exists a constant σ > 0
and R > 0, such that for each y ∈ ∂Ω and r ∈ (0, R), the Lebesgue measure

(1.7) |Br(y) \ Ω| ≥ σ|Br|,
where Br(y) is the ball of radius r > 0, centered at y.

Similar to wG-domain, we may also consider the following sA-domain. But in
this case, the condition is stronger than A condition unlike G condition.

Definition 1.5. A domain Ω is called sA-domain if there exists a constant σ > 0,
such that for each y ∈ ∂Ω and r > 0, the Lebesgue measure

(1.8) |Br(y) \ Ω| ≥ σ|Br|,
where Br(y) is the ball of radius r > 0, centered at y.

There are examples which are sA-domain, but not A-domain, which is also pre-
sented in the next section.

So far, we introduce 4 types of condition, G, wG, A, sA conditions. By its
definition, it is rather easy to tell the inclusion of between G and wG, A and sA. In
the paper, we show that the sA condition imply the wG condition, but the converse
does not hold.

Theorem 1.2. Any sA domain is wG domain, but the converse does not hold.

It is proved in Theorem 2.2 and Theorem 2.3. The main idea for a counter
example is to use Cantor set for its construction, such that, we are able to construct
locally A-domain, but not sA-domain for big r for any σ.

2. Main Results

In this section, we prove main results of the paper, and some known and unknown
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but simple related facts. Firstly, we enlist some known examples of G-domain.

Example 2.1. Any connected open set Ω with finite measure is a G-domain.
Namely Ω does satisfy Definition 1.2. Let the Lebesgue measure of Ω, |Ω| = m,
choose sufficiently large R such that |BR| ≥ 2m. Then Ω satisfies Definition with
σ = 1

2 , for any τ > 1, R0 = R. Note that for any x ∈ Ω, there exists BRx = BR(x),

|BRx \ Ωx,τ | ≥ |BR| − |Ω| ≥ 1
2
|BR|.

Example 2.2. Any infinite cylinder and strips are G-domain. Let Ω = {x ∈
Rn | |x′| ≤ r, r > 0, x = (x′, xn)}. Then for each x ∈ Ω, there exists BRx = B2r(x)
such that, for any τ > 1,

|BRx \ Ωx,τ | ≥ |Br/2(y)| ≥ 1
4n
|B2r|

for some y ∈ Rn \ Ω. Domains of strips case is similar.

Example 2.3. A checked domain is also G-domain. Let

Ω1 := {x ∈ R |x ∈ (2i, 2i + 1) for some integer i}, Ω := Ω1 × Ω1.

Note that for any x ∈ Ω, B10(x) contains a unit square in Rn \Ω. Similarly, one can
prove n-dimensional case.

The G-domain (Definition 1.2) is generalized to wG-domain (Definition 1.3). The
following examples show that the converse does not hold.

Example 2.4. Any open connected cone whose closure is different from the whole
space is wG-domain, but not G-domain. For example we consider 2-dimensional
case. Let Ω := {x ∈ R2 |x2 > x1 ∧ x2 > −x1, x = (x1, x2)}. For any x ∈ Ω, choose
B2|x|(0). With this ball, it is easy to that it satisfies the definition 1.3. But, note
that for any positive y, the point (0,

√
2y) in Ω has a distance of y to its boundary.

Thus at least By/2 is needed to touch outside of Ω containing the point. This means
that one can not impose the boundedness of R in the definition 1.2. Thus in all Ω
is not G-domain.

Example 2.5. Let

Ω1 := {x ∈ R |x ∈ (22i, 22i+1) for some natural number i}, Ω := Ω1 × Ω1.

Similar to the previous example, Ω is wG-domain, but not G-domain.

As discussed in the introduction, there are examples which are sA-domain, but
not A-domain.
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Theorem 2.1. There exist a domain which does satisfies A condition, but not sA
condition.

Proof. Consider the following domain in R2

Ω := {x ∈ R2 |x2 < x2
1, x = (x1, x2)}.

It is immediate to see that Ω is A-domain considering the unit ball centering on its
boundary. Considering the unit ball centered at the origin,

|Br(0) \ Ω| = 2
∫

√
−1+

√
1+4r2

2

0

√
r2 − x2 − x2dx ≤ 2 · r · √r.

Thus,
|Br(0) \ Ω|

|Br| → 0 as r ↗∞.

¤

The next theorem implies that the sA condition imply the wG condition.

Theorem 2.2. Any domain Ω which satisfies Definition 1.5 does satisfy Defini-
tion 1.3.

Proof. Let Ω be a sA-domain, x be an arbitrary point in Ω, d(x) be a distance of x

to ∂Ω, and |x − y| = d(x) for some y ∈ ∂Ω. Choose R = 2d(x), then x ∈ B2d(x)(y)
and

(2.1) |B2d(x)(y) \ Ωx,τ | ≥ |B2d(x)(y) \ Ω| ≥ σ|B2d(x)|
by Definition 1.5. Thus in all, Ω is wG domain with the same σ and for any τ < 1. ¤

For the next, we will present an example which is wG-domain, but not sA-domain.
Thus, the converse of the previous theorem does not hold.

First consider the domain in R2 using the Cantor set. The Cantor set C is defined
by

C = [0, 1] \ ∪∞m=1 ∪3m−1−1
k=0 (

3k + 1
3m

,
3k + 2

3m
).

For each positive integer m, let

Dm := ∪3m−1−1
k=0 (

3k + 1
3m

,
3k + 2

3m
), D := ∪∞m=1Dm.

Note that |C| = 0, |D| = 1. Now we define a set operations as follows: for any set
S, we set −S = {−x |x ∈ S}, m + S = S + m := {m + x |x ∈ S}.

We define an open set in R2.
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Ω+
1 := ∪∞m=1((m− 1) + Dm)× (−∞, +∞), Ω−1 := −Ω+

1 , Ω1 := Ω+
1 ∪ Ω−1 .

Note that Ω1 satisfies Definition 1.3, but is not connected. To connect these
components, we add the following sets: for any m ∈ N,

Bm := ([m− 1,m) ∪ (−m, 1−m])× (− 1
2 · 3m

,
1

2 · 3m
).

Now we take Ω′1 to be ∪∞m=1Bm ∪Ω1. Then Ω′1 is wG-domain. For Ω′1, it is not easy
to check that it satisfies Definition 1.5 due to the irregularity of the domain. It is
difficult to estimate |Br(0)\Ω′1|

|Br| .
We will modify the above idea to obtain the following theorem.

Theorem 2.3. There is wG-domain, which is not sA-domain.

Proof. First recall that the Cantor set C is defined by

C = [0, 1] \ ∪∞m=1 ∪3m−1−1
k=0 (

3k + 1
3m

,
3k + 2

3m
).

For each positive integer m, let

Dm := ∪3m−1−1
k=0 (

3k + 1
3m

,
3k + 2

3m
), D := ∪∞m=1Dm.

Note that |C| = 0, |D| = 1.
Now we define a set operations as follows: for any set S, we set m+S = S+m :=

{m + x |x ∈ S}. Also we define

E := ∪∞m=1(m− 1) + Dm.

Let

Ω := {x ∈ Rn | |x| ∈ E}∪{x ∈ Rn |x = (x1, x
′), |x1| ∈ [m−1,m), |x′| ≤ 1

3m
for some m ∈ N}.

It is easy to see that Ω is connected since x′ = 0 is contained in Ω. Observe that

(2.2)
|Ω ∩Br|
|Br| ↗ 1 as r ↗∞.

For any x ∈ Ω and |x| ≤ m, then x ∈ B 2
3m

(y) for some y ∈ ∂Ω, and B 1
2·3m

(z) ⊂
Rn \ Ω, B 1

2·3m
(z) ⊂ B 2

3m
(y). This is due to the fact that if |x| ≤ m, then x belongs

to a locally connected component of width 1
3m . Thus in all, Ω is wG-domain.

But 0 ∈ Ω and Br(0) is a disjoint union of Br \ Ω and Br ∩ Ω, we have that

|Br(0) \ Ω|
|Br| ↘ 0 as r ↗∞

due to (2.2). Thus Ω is not sA-domain. ¤
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Remark 2.6. In the definition of sA-domain, one may replace Ω by Ωx,τ as in the
definition of G or wG-domain. But the above example in the proof still works as a
counterexample.
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