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HUGE CONTRACTION ON PARTIALLY ORDERED METRIC
SPACES

Bhavana Deshpande a, ∗, Amrish Handa b and Chetna Kothari c

Abstract. We establish coincidence point theorem for g-nondecreasing mappings
satisfying generalized nonlinear contraction on partially ordered metric spaces. We
also obtain the coupled coincidence point theorem for generalized compatible pair of
mappings F, G : X2 → X by using obtained coincidence point results. Furthermore,
an example is also given to demonstrate the degree of validity of our hypothesis.
Our results generalize, modify, improve and sharpen several well-known results.

1. Introduction and Preliminaries

In the sequel, we denote by X a non-empty set and ¹ will represent a partial order
on X. Given n ∈ N with n ≥ 2, let Xn be the nth Cartesian product X×X× ...×X

(n times). For simplicity, if x ∈ X, we denote g(x) by gx.

The idea of the coupled fixed point was initiated by Guo and Lakshmikantham
[9] in 1987.

Definition 1 ([9]). Let F : X2 → X be a given mapping. An element (x, y) ∈ X2

is called a coupled fixed point of F if

(1) F (x, y) = x and F (y, x) = y.

Following this paper, Bhaskar and Lakshmikantham [2] where the authors intro-
duced the notion of mixed monotone property for F : X2 → X (wherein X is an
ordered metric space) and utilized the same to prove some theorems on the existence
and uniqueness of coupled fixed points.
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Definition 2 ([2]). Let (X, ¹) be a partially ordered set. Suppose F : X2 → X

be a given mapping. We say that F has the mixed monotone property if for all x,

y ∈ X, we have

(2) x1, x2 ∈ X, x1 ¹ x2 =⇒ F (x1, y) ¹ F (x2, y),

and

(3) y1, y2 ∈ X, y1 ¹ y2 =⇒ F (x, y1) º F (x, y2).

In 2009, Lakshmikantham and Ciric [15] generalized these results for nonlinear
contraction mappings by introducing the notions of coupled coincidence point and
mixed g-monotone property.

Definition 3 ([15]). Let F : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a coupled coincidence point of the mappings F and g if

(4) F (x, y) = gx and F (y, x) = gy.

Definition 4 ([15]). Let F : X2 → X and g : X → X be given mappings. An
element (x, y) ∈ X2 is called a common coupled fixed point of the mappings F and
g if

(5) x = F (x, y) = gx and y = F (y, x) = gy.

Definition 5 ([15]). The mappings F : X2 → X and g : X → X are said to be
commutative if

(6) gF (x, y) = F (gx, gy), for all (x, y) ∈ X2.

Definition 6 ([15]). Let (X, ¹) be a partially ordered set. Suppose F : X2 → X

and g : X → X are given mappings. We say that F has the mixed g-monotone
property if for all x, y ∈ X, we have

(7) x1, x2 ∈ X, gx1 ¹ gx2 =⇒ F (x1, y) ¹ F (x2, y),

and

(8) y1, y2 ∈ X, gy1 ¹ gy2 =⇒ F (x, y1) º F (x, y2).

If g is the identity mapping on X, then F satisfies the mixed monotone property.

Subsequently, Choudhury and Kundu [3] introduced the notion of compatibility
and by using this notion to improve the results of Lakshmikantham and Ciric [15],
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thenafter several authors established coupled fixed/coincidence point theorems by
using this notion.

Definition 7 ([3]). The mappings F : X2 → X and g : X → X are said to be
compatible if

lim
n→∞ d(gF (xn, yn), F (gxn, gyn)) = 0,(9)

lim
n→∞ d(gF (yn, xn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞F (xn, yn) = lim

n→∞ gxn = x,(10)

lim
n→∞F (yn, xn) = lim

n→∞ gyn = y, for some x, y ∈ X.

A great deal of these studies investigate contractions on partially ordered metric
spaces because of their applicability to initial value problems defined by differential
or integral equations.

Hussain et al. [11] introduced the notion of generalized compatibility of a pair
{F, G}, of mappings F, G : X ×X → X, then the authors employed this notion to
obtained coupled coincidence point results for such a pair of mappings involving (ϕ,

ψ)-contractive condition without mixed G-monotone property of F.

Definition 8 ([11]). Suppose that F, G : X2 → X are two mappings. The mapping
F is said to be G−increasing with respect to ¹ if for all x, y, u, v ∈ X with G(x,

y) ¹ G(u, v) we have F (x, y) ¹ F (u, v).

Definition 9 ([11]). Let F, G : X2 → X be two mappings. We say that the pair
{F, G} is commuting if

(11) F (G(x, y), G(y, x)) = G(F (x, y), F (y, x)), for all x, y ∈ X.

Definition 10 ([11]). Suppose that F, G : X2 → X are two mappings. An element
(x, y) ∈ X2 is called a coupled coincidence point of mappings F and G if

(12) F (x, y) = G(x, y) and F (y, x) = G(y, x).

Definition 11 ([11]). Let (X, ¹) be a partially ordered set, F : X2 → X and
g : X → X are two mappings. We say that F is g-increasing with respect to ¹ if for
any x, y ∈ X,

(13) gx1 ¹ gx2 implies F (x1, y) ¹ F (x2, y),
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and

(14) gy1 ¹ gy2 implies F (x, y1) ¹ F (x, y2).

Definition 12 ([11]). Let (X, ¹) be a partially ordered set, F : X2 → X be a
mapping. We say that F is increasing with respect to ¹ if for any x, y ∈ X,

(15) x1 ¹ x2 implies F (x1, y) ¹ F (x2, y),

and

(16) y1 ¹ y2 implies F (x, y1) ¹ F (x, y2).

Definition 13 ([11]). Let F, G : X2 → X are two mappings. We say that the pair
{F, G} is generalized compatible if

lim
n→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

lim
n→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0,

whenever (xn) and (yn) are sequences in X such that

lim
n→∞G(xn, yn) = lim

n→∞F (xn, yn) = x,(17)

lim
n→∞G(yn, xn) = lim

n→∞F (yn, xn) = y, for some x, y ∈ X.

Obviously, a commuting pair is a generalized compatible but not conversely in gen-
eral.

Erhan et al. [7], announced that the results established in Hussain et al. [11] can
be easily derived from the coincidence point results in the literature.

In [7], Erhan et al. recalled the following basic definitions:

Definition 14 ([1, 8]). A coincidence point of two mappings T, g : X → X is a
point x ∈ X such that Tx = gx.

Definition 15 ([7]). An ordered metric space (X, d, ¹) is a metric space (X, d)
provided with a partial order ¹ .

Definition 16 ([2, 11]). An ordered metric space (X, d, ¹) is said to be non-
decreasing-regular (respectively, non-increasing-regular) if for every sequence {xn} ⊆
X such that {xn} → x and xn ¹ xn+1 (respectively, xn º xn+1) for all n, we have
that xn ¹ x (respectively, xn º x) for all n. (X, d, ¹) is said to be regular if it is
both non-decreasing-regular and non-increasing-regular.
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Definition 17 ([7]). Let(X, ¹) be a partially ordered set and let T, g : X → X

be two mappings. We say that T is (g, ¹)-non-decreasing if Tx ¹ Ty for all x,

y ∈ X such that gx ¹ gy. If g is the identity mapping on X, we say that T is
¹-non-decreasing.

Remark 18 ([7]). If T is (g, ¹)-non-decreasing and gx = gy, then Tx = Ty. It
follows that

(18) gx = gy ⇒
{

gx ¹ gy,
gy ¹ gx

}
⇒

{
Tx ¹ Ty,
Ty ¹ Tx

}
⇒ Tx = Ty.

Definition 19 ([18]). Let (X, ¹) be a partially ordered set and endow the product
space X2 with the following partial order:

(19) (u, v) v (x, y) ⇔ x º u and y ¹ v, for all (u, v), (x, y) ∈ X2.

Definition 20 ([3, 10, 17, 18]). Let (X, d, ¹) be an ordered metric space. Two
mappings T, g : X → X are said to be O-compatible if

(20) lim
n→∞ d(gTxn, T gxn) = 0,

provided that {xn} is a sequence in X such that {gxn} is ¹-monotone, that is, it is
either non-increasing or non-decreasing with respect to ¹ and

lim
n→∞Txn = lim

n→∞ gxn ∈ X.

Samet et al. [20] declared that most of the coupled fixed point theorems for
single-valued mappings on ordered metric spaces can be derived from well-known
fixed point theorems.

On the other hand, Ding et al. [6] proved coupled coincidence and common cou-
pled fixed point theorems for generalized nonlinear contraction on partially ordered
metric spaces which generalize the results of Lakshmikantham and Ciric [15]. Our
fundamental sources are [4-7, 11-14, 16, 18-20].

In this paper, we obtain a coincidence point theorem for g-non-decreasing map-
pings satisfying generalized nonlinear contraction on partially ordered metric spaces.
With the help of our result, we derive a coupled coincidence point theorem of gen-
eralized compatible pair of mappings F, G : X2 → X. We also give an example and
an application to integral equation to support our results. Our results generalize,
extend, modify, improve and sharpen the results of Bhaskar and Lakshmikantham
[2], Ding et al. [6] and Lakshmikantham and Ciric [15].
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2. Main Results

Lemma 21. Let (X, d) be a metric space. Suppose Y = X2 and define δ : Y ×Y →
[0, +∞) by

(21) δ((x, y), (u, v)) = max {d(x, u), d(y, v)} , for all (x, y), (u, v) ∈ Y.

Then δ is metric on Y and (X, d) is complete if and only if (Y, δ) is complete.

Let Φ denote the set of all functions ϕ : [0, +∞) → [0, +∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) limn→∞ ϕn(t) = 0 for all t > 0, where ϕn+1(t) = ϕn(ϕ(t)).

It is clear that ϕ(t) < t for each t > 0. In fact, if ϕ(t0) ≥ t0 for some t0 > 0,

then, since ϕ is non-decreasing, ϕn(t0) ≥ t0 for all n ∈ N, which contradicts with
limn→∞ ϕn(t0) = 0. In addition, it is easy to see that ϕ(0) = 0.

Theorem 22. Let (X, d, ¹) be a partially ordered metric space and let T, g : X → X

be two mappings such that the following properties are fulfilled:
(i) T (X) ⊆ g(X),
(ii) T is (g, ¹)-non-decreasing,
(iii) there exists x0 ∈ X such that gx0 ¹ Tx0,

(iv) there exists ϕ ∈ Φ such that

d(Tx, Ty) ≤ ϕ (M(x, y)) ,

where

M(x, y) = max
{

d(gx, gy), d(gx, Tx), d(gy, Ty),
d(gx, Ty)+d(gy, Tx)

2

}
,

for all x, y ∈ X such that gx ¹ gy. Also assume that, at least, one of the following
conditions holds:

(a) (X, d) is complete, T and g are continuous and the pair (T, g) is O-compatible,
(b) (X, d) is complete, T and g are continuous and commuting,
(c) (g(X), d) is complete and (X, d, ¹) is non-decreasing-regular,
(d) (X, d) is complete, g(X) is closed and (X, d, ¹) is non-decreasing-regular,
(e) (X, d) is complete, g is continuous, the pair (T, g) is O-compatible and (X,

d, ¹) is non-decreasing-regular.
Then T and g have, at least, a coincidence point.

Proof. We divide the proof into four steps.
Step 1. We claim that there exists a sequence {xn} ⊆ X such that {gxn} is

¹-non-decreasing and gxn+1 = Txn, for all n ≥ 0. Let x0 ∈ X be arbitrary. Since
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Tx0 ∈ T (X) ⊆ g(X), therefore there exists x1 ∈ X such that Tx0 = gx1. Then
gx0 ¹ Tx0 = gx1. Since T is (g, ¹)-non-decreasing, therefore Tx0 ¹ Tx1. Again,
since Tx1 ∈ T (X) ⊆ g(X), therefore there exists x2 ∈ X such that Tx1 = gx2. Then
gx1 = Tx0 ¹ Tx1 = gx2. Since T is (g, ¹)-non-decreasing, therefore Tx1 ¹ Tx2.

Repeating this argument, there exists a sequence {xn}∞n=0 such that {gxn} is ¹-non-
decreasing, gxn+1 = Txn ¹ Txn+1 = gxn+2 and

(22) gxn+1 = Txn for all n ≥ 0.

Step 2. We claim that {gxn}∞n=0 is a Cauchy sequence in X. Now, by contractive
condition (iv), we have

(23) d(gxn+1, gxn+2) = d(Txn, Txn+1) ≤ ϕ (M(xn, xn+1)) ,

where

M(xn, xn+1)

= max
{

d(gxn, gxn+1), d(gxn, Txn), d(gxn+1, Txn+1),
d(gxn, Txn+1)+d(gxn+1, Txn)

2

}

= max
{

d(gxn, gxn+1), d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gxn, gxn+2)+d(gxn+1, gxn+1)

2

}

≤ max {d(gxn, gxn+1), d(gxn+1, gxn+2)} .

If d(gxn+1, gxn+2) ≥ d(gxn, gxn+1). Then

(24) M(xn, xn+1) ≤ d(gxn+1, gxn+2).

From (23), (24) and by the fact that ϕ(t) < t for all t > 0, we get

d(gxn+1, gxn+2) ≤ ϕ (d(gxn+1, gxn+2)) < d(gxn+1, gxn+2),

which is a contradiction. Hence, d(gxn, gxn+1) ≥ d(gxn+1, gxn+2). Then

(25) M(xn, xn+1) ≤ d(gxn, gxn+1).

Thus, by (23) and (25), we have for all n ∈ N,

(26) d(gxn+1, gxn+2) ≤ ϕ (d(gxn, gxn+1)) ≤ ϕn (d(gx0, gx1)) ≤ ϕn(δ),

where

δ = d(gx0, gx1).

Without loss of generality, we can assume that d(gx0, gx1) 6= 0. In fact, if this is not
true, then gx0 = gx1 = Tx0, that is, x0 is a coincidence point of g and T.
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Thus, for m, n ∈ N with m > n, by triangle inequality and (26), we get

d(gxn, gxm+n)

≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + ... + d(gxn+m−1, gxm+n)

≤ ϕn(δ) + ϕn+1(δ) + ... + ϕn+m−1(δ)

≤
n+m−1∑

i=n

ϕi(δ),

which implies, by (iiϕ), that {gxn} is a Cauchy sequence in X.

Step 3. We claim that T and g have a coincidence point distinguishing between
cases (a)− (e).

Suppose now that (a) holds, that is, (X, d) is complete, T and g are continuous
and the pair (T, g) is O-compatible. Since (X, d) is complete, therefore there exists
z ∈ X such that {gxn} → z and {Txn} → z. Since T and g are continuous, therefore
{Tgxn} → Tz and {ggxn} → gz. Since the pair (T, g) is O-compatible, therefore
limn→∞ d(gTxn, T gxn) = 0. Thus, we conclude that

d(gz, Tz) = lim
n→∞ d(ggxn+1, T gxn) = lim

n→∞ d(gTxn, T gxn) = 0,

that is, z is a coincidence point of T and g.

Suppose now that (b) holds, that is, (X, d) is complete, T and g are continuous
and commuting. It is evident that (b) implies (a).

Suppose now that (c) holds, that is, (g(X), d) is complete and (X, d, ¹) is non-
decreasing-regular. As {gxn} is a Cauchy sequence in the complete space (g(X), d),
so there exists y ∈ g(X) such that {gxn} → y. Let z ∈ X be any point such that
y = gz, then {gxn} → gz. Indeed, as (X, d, ¹) is non-decreasing-regular and {gxn}
is ¹-non-decreasing and converging to gz, we deduce that gxn ¹ gz for all n ≥ 0.

Applying the contractive condition (iv), we get

(27) d(gxn+1, T z) = d(Txn, T z) ≤ ϕ (M(xn, z)) ,

where

M(xn, z) = max
{

d(gxn, gz), d(gxn, Txn), d(gz, Tz),
d(gxn, T z)+d(gz, Txn)

2

}

= max
{

d(gxn, gz), d(gxn, gxn+1), d(gz, Tz),
d(gxn, T z)+d(gz, gxn+1)

2

}
.

Since {gxn} → gz, therefore there exists n0 ∈ N such that for all n > n0,

(28) M(xn, z) = d(gz, Tz).
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By (27) and (28), we get

d(gxn+1, T z) ≤ ϕ (d(gz, Tz) .

Now, we claim that d(gz, Tz) = 0. If this is not true, then d(gz, Tz) > 0, which, by
the fact that ϕ(t) < t for all t > 0, implies

d(gxn+1, T z) < d(gz, Tz).

Letting n →∞ in the above inequality and using limn→∞ gxn = gz, we get

d(gz, Tz) < d(gz, Tz),

which is a contradiction. Hence we must have d(gz, Tz) = 0, that is, z is a coinci-
dence point of T and g.

Suppose now that (d) holds, that is, (X, d) is complete, g(X) is closed and (X,

d, ¹) is non-decreasing-regular. It follows from the fact that a closed subset of a
complete metric space is also complete. Then, (g(X), d) is complete and (X, d, ¹)
is non-decreasing-regular. Thus (d) implies (c).

Suppose now that (e) holds, that is, (X, d) is complete, g is continuous, the pair
(T, g) is O-compatible and (X, d, ¹) is non-decreasing-regular. As (X, d) is com-
plete, so there exists z ∈ X such that {gxn} → z. Since Txn = gxn+1 for all n, we also
have that {Txn} → z. As g is continuous, then {ggxn} → gz. Furthermore, since the
pair (T, g) is O-compatible, we have limn→∞ d(ggxn+1, T gxn) = limn→∞ d(gTxn,

T gxn) = 0. As {ggxn} → gz the previous property means that {Tgxn} → gz.

Indeed, as (X, d, ¹) is non-decreasing-regular and {gxn} is ¹-non-decreasing and
converging to z, we deduce that gxn ¹ z for all n ≥ 0. Applying the contractive
condition (iv), we get

(29) d(Tgxn, T z) ≤ ϕ (M(gxn, z)) ,

where

M(gxn, z) = max
{

d(ggxn, gz), d(ggxn, T gxn), d(gz, Tz),
d(ggxn, T z)+d(gz, Tgxn)

2

}
.

Since {ggxn} → gz, therefore there exists n0 ∈ N such that for all n > n0,

(30) M(gxn, z) = d(gz, Tz).

By (29) and (30), we get

d(Tgxn, T z) ≤ ϕ (d(gz, Tz)) ,
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Now, we claim that d(gz, Tz) = 0. If this is not true, then d(gz, Tz) > 0, which, by
the fact that ϕ(t) < t for all t > 0, implies

d(Tgxn, T z) < d(gz, Tz).

Letting n →∞ in the above inequality and using {Tgxn} → gz, we get

d(gz, Tz) < d(gz, Tz),

which is a contradiction. Hence we must have d(gz, Tz) = 0, that is, z is a coinci-
dence point of T and g. ¤

Next, we derive the two dimensional version of Theorem 22. For the ordered
metric space (X, d, ¹), let us consider the ordered metric space (X2, δ, v), where
δ was defined in Lemma 21 and v was introduced in (19). Define the mappings TF ,

TG : X2 → X2, for all (x, y) ∈ X2, by,

(31) TF (x, y) = (F (x, y), F (y, x)) and TG(x, y) = (G(x, y), G(y, x)).

Under these conditions, the following properties hold:

Lemma 23. Let (X, d, ¹) be a partially ordered metric space and let F, G : X2 →
X be two mappings. Then

(1) (X, d) is complete if and only if (X2, δ) is complete.
(2) If (X, d, ¹) is regular, then (X2, δ, v) is also regular.
(3) If F is d-continuous, then TF is δ-continuous.
(4) If F is G-increasing with respect to ¹, then TF is (TG, v)-nondecreasing.
(5) If there exist two elements x0, y0 ∈ X with G(x0, y0) ¹ F (x0, y0) and

G(y0, x0) º F (y0, x0), then there exists a point (x0, y0) ∈ X2 such that TG(x0,

y0) v TF (x0, y0).
(6) For any x, y ∈ X, there exist u, v ∈ X such that F (x, y) = G(u, v) and F (y,

x) = G(v, u), then TF (X2) ⊆ TG(X2).
(7) Assume there exists ϕ ∈ Φ such that

(32) d(F (x, y), F (u, v)) ≤ ϕ (M(x, y, u, v)) ,

where

M(x, y, u, v)

= max





d(G(x, y), G(u, v)), d(G(x, y), F (x, y)),
d(G(u, v), F (u, v)), d(G(x, y), F (u, v))+d(G(u, v), F (x, y))

2 ,
d(G(y, x), G(v, u)), d(G(y, x), F (y, x)),

d(G(v, u), F (v, u)), d(G(y, x), F (v, u))+d(G(v, u), F (y, x))
2





,
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for all x, y, u, v ∈ X, where G(x, y) ¹ G(u, v) and G(y, x) º G(v, u), then

δ(TF (x, y), TF (u, v)) ≤ ϕ (Mδ((x, y), (u, v))) ,

where

Mδ((x, y), (u, v)) = max





δ(TG(x, y), TG(u, v)),
δ(TG(x, y), TF (x, y)),
δ(TG(u, v), TF (u, v)),

δ(TG(x, y), TF (u, v))+δ(TG(u, v), TF (x, y))
2





,

for all (x, y), (u, v) ∈ X2, where TG(x, y) v TG(u, v).
(8) If the pair {F, G} is generalized compatible, then the mappings TF and TG

are O-compatible in (X2, δ, v).
(9) A point (x, y) ∈ X2 is a coupled coincidence point of F and G if and only if

it is a coincidence point of TF and TG.

Proof. Statement (1) follows from Lemma 21 and (2), (3), (5), (6) and (9) are
obvious.

(4) Assume that F is G-increasing with respect to ¹ and let (x, y), (u, v) ∈ X2

be such that TG(x, y) v TG(u, v). Then G(x, y) ¹ G(u, v) and G(y, x) º G(v,

u). Since F is G-increasing with respect to ¹, we have that F (x, y) ¹ F (u, v) and
F (y, x) º F (v, u). Therefore TF (x, y) v TF (u, v) which shows that TF is (TG,

v)-non-decreasing.
(7) Let (x, y), (u, v) ∈ X2 be such that TG(x, y) v TG(u, v). Therefore G(x,

y) ¹ G(u, v) and G(y, x) º G(v, u). From (32), we have

(33) d(F (x, y), F (u, v)) ≤ ϕ (M(x, y, u, v)) .

Furthermore G(y, x) º G(v, u) and G(x, y) ¹ G(u, v), the contractive condition
(32) implies that

(34) d(F (y, x), F (v, u)) ≤ ϕ (M(x, y, u, v)) .

Combining (33) and (34), we get

(35) max {d(F (x, y), F (u, v)), d(F (y, x), F (v, u))} ≤ ϕ (M(x, y, u, v)) .
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It follows from (35) that

δ(TF (x, y), TF (u, v))

= δ ((F (x, y), F (y, x)), (F (u, v), F (v, u)))

= max {d(F (x, y), F (u, v)), d(F (y, x), F (v, u))}
≤ ϕ (M(x, y, u, v))

≤ ϕ (Mδ((x, y), (u, v))) .

(8) Let {(xn, yn)} ⊆ X2 be any sequence such that TF (xn, yn) δ→ (x, y) and
TG(xn, yn) δ→ (x, y) (Note that it is not require to suppose that {TG(xn, yn)} is
v-monotone). Thus

(F (xn, yn), F (yn, xn)) δ→ (x, y)

⇒ F (xn, yn) d→ x and F (yn, xn) d→ y,

and

(G(xn, yn), G(yn, xn)) δ→ (x, y)

⇒ G(xn, yn) d→ x and G(yn, xn) d→ y.

Therefore

lim
n→∞F (xn, yn) = lim

n→∞G(xn, yn) = x ∈ X,

lim
n→∞F (yn, xn) = lim

n→∞G(yn, xn) = y ∈ X.

Since the pair {F, G} is generalized compatible, therefore

lim
n→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

lim
n→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0.

In particular,

lim
n→∞ δ(TGTF (xn, yn), TF TG(xn, yn))

= lim
n→∞ δ(TG(F (xn, yn), F (yn, xn)), TF (G(xn, yn), G(yn, xn)))

= lim
n→∞ δ

(
(G(F (xn, yn), F (yn, xn)), G(F (yn, xn), F (xn, yn))),
(F (G(xn, yn), G(yn, xn)), F (G(yn, xn), G(xn, yn)))

)

= lim
n→∞max

{
d(G(F (xn, yn), F (yn, xn)), F (G(xn, yn), G(yn, xn))),
d(G(F (yn, xn), F (xn, yn)), F (G(yn, xn), G(xn, yn)))

}

= 0.

Hence, the mappings TF and TG are O-compatible in (X2, δ, v). ¤
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Theorem 24. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X2 → X be two generalized compatible mappings such
that F is G-increasing with respect to ¹, G is continuous and there exist two elements
x0, y0 ∈ X with

G(x0, y0) ¹ F (x0, y0) and G(y0, x0) º F (y0, x0).

Suppose that there exists ϕ ∈ Φ satisfying (32) and for any x, y ∈ X, there exist u,

v ∈ X such that

(36) F (x, y) = G(u, v) and F (y, x) = G(v, u).

Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
Then F and G have a coupled coincidence point.

Proof. It is only require to use Theorem 22 to the mappings T = TF and g = TG in
the ordered metric space (X2, δ, v) with Lemma 23. ¤

Corollary 25. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X2 → X be two commuting mappings satisfying (32)
and (36) such that F is G-increasing with respect to ¹, G is continuous and there
exist two elements x0, y0 ∈ X with

G(x0, y0) ¹ F (x0, y0) and G(y0, x0) º F (y0, x0).

Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
Then F and G have a coupled coincidence point.

Next, we deduce results without g-mixed monotone property of F.

Corollary 26. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X, F : X ×X → X and g : X → X be two compatible mappings such
that F is g-increasing with respect to ¹ . Assume there exists ϕ ∈ Φ such that

(37) d(F (x, y), F (u, v)) ≤ ϕ (Mg(x, y, u, v)) ,
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where

Mg(x, y, u, v) = max





d(gx, gu), d(gx, F (x, y)), d(gu, F (u, v)),
d(gx, F (u, v))+d(gu, F (x, y))

2 ,
d(gy, gv), d(gy, F (y, x)), d(gv, F (v, u)),

d(gy, F (v, u))+d(gv, F (y, x))
2





,

for all x, y, u, v ∈ X, where gx ¹ gu and gy º gv. Furthermore F (X ×X) ⊆ g(X),
g is continuous and monotone increasing with respect to ¹ . Also suppose that either

(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

gx0 ¹ F (x0, y0) and gy0 º F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 27. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X × X → X and g : X → X be two commuting
mappings satisfying (37) such that F is g-increasing with respect to ¹ . Furthermore
F (X × X) ⊆ g(X), g is continuous and monotone increasing with respect to ¹ .

Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

gx0 ¹ F (x0, y0) and gy0 º F (y0, x0).

Then F and g have a coupled coincidence point.

Now, we deduce result without mixed monotone property of F.

Corollary 28. Let (X, ¹) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X ×X → X be an increasing mapping with respect to
¹ and there exists ϕ ∈ Φ such that

d(F (x, y), F (u, v)) ≤ ϕ (m(x, y, u, v)) ,

where

m(x, y, u, v) = max





d(x, u), d(x, F (x, y)), d(u, F (u, v)),
d(x, F (u, v))+d(u, F (x, y))

2 ,
d(y, v), d(y, F (y, x)), d(v, F (v, u)),

d(y, F (v, u))+d(v, F (y, x))
2





,
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for all x, y, u, v ∈ X, where x ¹ u and y º v. Also suppose that either
(a) F is continuous or
(b) (X, d, ¹) is regular.
If there exist two elements x0, y0 ∈ X with

x0 ¹ F (x0, y0) and y0 º F (y0, x0).

Then F has a coupled fixed point.

Example 29. Suppose that X = [0, 1], equipped with the usual metric d : X×X →
[0, +∞) with the natural ordering of real numbers ≤ . Let F, G : X ×X → X be
defined as

F (x, y) =
{

x2−y2

3 , if x ≥ y,
0, if x < y,

and G(x, y) =
{

x2 − y2, if x ≥ y,
0, if x < y.

Define ϕ : [0, +∞) → [0, +∞) as follows

ϕ(t) =
{

t
3 , for t 6= 1,
1, for t = 1.

First, we shall show that the contractive condition (32) holds for the mappings F

and G. Let x, y, u, v ∈ X such that G(x, y) ¹ G(u, v) and G(y, x) º G(v, u), we
have

d(F (x, y), F (u, v)) =
∣∣∣∣
x2 − y2

3
− u2 − v2

3

∣∣∣∣

=
1
3
|G(x, y)−G(u, v)|

=
1
3
d(G(x, y), G(u, v))

≤ 1
3
M(x, y, u, v)

≤ ϕ (M(x, y, u, v)) .

Thus the contractive condition (32) holds for all x, y, u, v ∈ X. In addition, like
in [11], all the other conditions of Theorem 24 are satisfied and z = (0, 0) is a
coincidence point of F and G.

Remark 30. Using the same technique that can be used in [12− 14, 18, 19, 20] it
is possible to derive tripled, quadruple and in general, multidimensional coincidence
point theorems from Theorem 22.
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