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HUGE COUPLED COINCIDENCE POINT THEOREM FOR
GENERALIZED COMPATIBLE PAIR OF MAPPINGS WITH

APPLICATIONS

Bhavana Deshpande a, ∗ and Amrish Handa b

Abstract. We establish a coupled coincidence point theorem for generalized com-
patible pair of mappings under generalized nonlinear contraction on a partially or-
dered metric space. We also deduce certain coupled fixed point results without
mixed monotone property of F : X × X → X . An example supporting to our
result has also been cited. As an application the solution of integral equations are
obtained here to illustrate the usability of the obtained results. We improve, extend
and generalize several known results.

1. Introduction and Preliminaries

Bhaskar and Lakshmikantham [2] introduced the notion of coupled fixed point,
mixed monotone mappings in the setting of single-valued mappings and established
some coupled fixed point theorems for a mapping with the mixed monotone property
in the setting of partially ordered metric spaces.

In [2], Bhaskar and Lakshmikantham introduced the following:

Definition 1.1. Let (X, ≤) be a partially ordered set and endow the product space
X ×X with the following partial order:

(u, v) ≤ (x, y) ⇔ x ≥ u and y ≤ v, for all (u, v), (x, y) ∈ X ×X.

Definition 1.2. An element (x, y) ∈ X ×X is called a coupled fixed point of the
mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Received by the editors January 13. Accepted February 02, 2016.
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. coupled coincidence point, generalized nonlinear contraction, generalized

compatibility, increasing mapping, mixed monotone mapping, commuting mapping.
∗Corresponding author.

c© 2016 Korean Soc. Math. Educ.

73



74 Bhavana Deshpande & Amrish Handa

Definition 1.3. Let (X, ≤) be a partially ordered set. Suppose F : X ×X → X

be a given mapping. We say that F has the mixed monotone property if for all x,

y ∈ X, we have

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1) ≥ F (x, y2).

Lakshmikantham and Ciric [12] extended the notion of mixed monotone property
to mixed g−monotone property and established coupled coincidence point results
using a pair of commutative mappings, which generalized the results of Bhaskar and
Lakshmikantham [2].

In [12], Lakshmikantham and Ciric introduced the following:

Definition 1.4. An element (x, y) ∈ X ×X is called a coupled coincidence point
of the mappings F : X ×X → X and g : X → X if

F (x, y) = g(x) and F (y, x) = g(y).

Definition 1.5. an element (x, y) ∈ X ×X is called a common coupled fixed point

of the mappings F : X ×X → X and g : X → X if

x = F (x, y) = g(x) and y = F (y, x) = g(y).

Definition 1.6. The mappings F : X × X → X and g : X → X are said to be

commutative if

g(F (x, y)) = F (g(x), g(y)), for all (x, y) ∈ X ×X.

Definition 1.7. Let (X, ≤) be a partially ordered set. Suppose F : X ×X → X

and g : X → X are given mappings. We say that F has the mixed g−monotone
property if for all x, y ∈ X, we have

x1, x2 ∈ X, g(x1) ≤ g(x2) =⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, g(y1) ≤ g(y2) =⇒ F (x, y1) ≥ F (x, y2).

If g is the identity mapping on X, then F satisfies the mixed monotone property.
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Later, Choudhury and Kundu [4] introduced the following notion of compatibility
in the context of coupled coincidence point and used this notion to improve the
results of Lakshmikantham and Ciric [12] :

Definition 1.8. The mappings F : X × X → X and g : X → X are said to be
compatible if

lim
n→∞ d(g(Fxn, Fyn), F (gxn, gyn)) = 0,

lim
n→∞ d(g(Fyn, Fxn), F (gyn, gxn)) = 0,

whenever {xn} and {yn} are sequences in X such that

lim
n→∞F (xn, yn) = lim

n→∞ gxn = x,

lim
n→∞F (yn, xn) = lim

n→∞ gyn = y, for some x, y ∈ X.

These results used to study the existence and uniqueness of solution for periodic
boundary value problems.

Hussain et al. [10] introduced a new concept of generalized compatibility of a
pair of mappings F, G : X ×X → X defined on a product space and proved some
coupled coincidence point results. Hussain et al. [10] also deduce some coupled fixed
point results without mixed monotone property.

In [10], Hussain et al. introduced the following:

Definition 1.9. Suppose that F, G : X ×X → X are two mappings. F is said to
be G−increasing with respect to ≤ if for all x, y, u, v ∈ X, with G(x, y) ≤ G(u, v)
we have F (x, y) ≤ F (u, v).

Example 1.1. Let X = (0, +∞) be endowed with the natural ordering of real
numbers ≤ . Define mappings F, G : X ×X → X by F (x, y) = ln(x + y) and G(x,

y) = x + y for all (x, y) ∈ X ×X. Note that F is G−increasing with respect to ≤ .

Example 1.2. Let X = N endowed with the partial order defined by x, y ∈ X×X,

x ≤ y if and only if y divides x. Define the mappings F, G : X ×X → X by F (x,

y) = x2y2 and G(x, y) = xy for all (x, y) ∈ X ×X. Then F is G−increasing with
respect to ≤ .

Definition 1.10. An element (x, y) ∈ X ×X is called a coupled coincidence point
of mappings F, G : X ×X → X if F (x, y) = G(x, y) and F (y, x) = G(y, x).
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Example 1.3. Let F, G : R × R → R be defined by F (x, y) = xy and G(x,

y) = 2
3(x + y) for all (x, y) ∈ X ×X. Note that (0, 0), (1, 2) and (2, 1) are coupled

coincidence points of F and G.

Definition 1.11. Let F, G : X ×X → X be two mappings. We say that the pair
{F, G} is commuting if

F (G(x, y), G(y, x)) = G(F (x, y), F (y, x)), for all x, y ∈ X.

Definition 1.12. Let (X, ≤) be a partially ordered set, F : X × X → X and
g : X → X. We say that F is g−increasing with respect to ≤ if for any x, y ∈ X,

gx1 ≤ gx2 implies F (x1, y) ≤ F (x2, y),

and

gy1 ≤ gy2 implies F (x, y1) ≤ F (x, y2).

Definition 1.13. Let (X, ≤) be a partially ordered set, F : X ×X → X. We say
that F is increasing with respect to ≤ if for any x, y ∈ X,

x1 ≤ x2 implies F (x1, y) ≤ F (x2, y),

and

y1 ≤ y2 implies F (x, y1) ≤ F (x, y2).

Definition 1.14. Let F, G : X×X → X. We say that the pair {F, G} is generalized
compatible if

lim
n→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

lim
n→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0,

whenever (xn) and (yn) are sequences in X such that

lim
n→∞G(xn, yn) = lim

n→∞F (xn, yn) = x,

lim
n→∞G(yn, xn) = lim

n→∞F (yn, xn) = y.

Obviously, a commuting pair is a generalized compatible but not conversely in
general.

In [7], Ding et al. proved coupled coincidence and common coupled fixed point
theorems for generalized nonlinear contraction on partially ordered metric spaces
which generalize the results of Lakshmikantham and Ciric [12]. The main result of
Ding et al. [7] on complete partially ordered metric space X is as follows:
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Theorem 1.1. Assume that g : X → X is a continuous mapping, and F : X×X →
X is a continuous mapping with the mixed g-monotone property on X. Suppose that
the following assumptions hold:

(A1) there exists a non-decreasing function ϕ : [0, +∞) → [0, +∞) such that
limn→∞ ϕn(t) = 0 for each t > 0, and

d(F (x, y), F (u, v))

≤ ϕ


max





d(gx, gu), d(gy, gv), D(gx, F (x, y)),
D(gu, F (u, v)), D(gy, F (y, x)), D(gv, F (v, u)),
D(gx, F (u, v))+D(gu, F (x, y))

2 , D(gy, F (v, u))+D(gv, F (y, x))
2






 ,

for all x, y, u, v ∈ X with gx ≥ gu and gy ≤ gv.

(A2) there exist x0, y0 ∈ X such that gx0 ≤ F (x0, y0) and F (y0, x0) ≤ gy0.

(A3) F (X × X) ⊆ g(X), g and F are commuting, that is, g(F (x, y)) = F (gx,

gy) for all x, y ∈ X.

Then F and g have a coupled coincidence point, that is, there exist x∗, y∗ ∈ X

such that F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗.

Many authors focused on coupled fixed point theory including [1, 3, 5, 6, 8, 9,

11, 13, 14, 15, 17, 18, 19].
Recently Samet et al. [16] claimed that most of the coupled fixed point theorems

on ordered metric spaces are consequences of well-known fixed point theorems.
In this paper, we establish a coupled coincidence point theorem for generalized

compatible pair of mappings under generalized nonlinear contraction on a partially
ordered metric space. We also deduce certain coupled fixed point results without
mixed monotone property of F. We also give an example and an application to
integral equation to support our results presented here. We generalize the results of
Bhaskar and Lakshmikantham [2], Ding et al. [7] and Lakshmikantham and Ciric
[12].

2. Main Results

Let Φ denote the set of all functions ϕ : [0, +∞) → [0, +∞) satisfying
(iϕ) ϕ is non-decreasing,
(iiϕ) limn→∞ ϕn(t) = 0 for all t > 0.

It is clear that ϕ(t) < t for each t > 0. In fact, if ϕ(t0) ≥ t0 for some t0 > 0,

then, since ϕ is non-decreasing, ϕn(t0) ≥ t0 for all n ∈ N, which contradicts with
limn→∞ ϕn(t0) = 0. In addition, it is easy to see that ϕ(0) = 0.
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Theorem 2.1. Let (X, ≤) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X ×X → X be two generalized compatible mappings
such that F is G−increasing with respect to ≤, G is continuous and has the mixed
monotone property, and there exist two elements x0, y0 ∈ X with

G(x0, y0) ≤ F (x0, y0) and G(y0, x0) ≥ F (y0, x0).

Suppose that there exist ϕ ∈ Φ such that

d(F (x, y), F (u, v))(2.1)

≤ ϕ




max





d(G(x, y), G(u, v)), d(G(x, y), F (x, y)),
d(G(u, v), F (u, v)), d(G(y, x), G(v, u)),
d(G(y, x), F (y, x)), d(G(v, u), F (v, u)),

d(G(x, y), F (u, v))+d(G(u, v), F (x, y))
2 ,

d(G(y, x), F (v, u))+d(G(v, u), F (y, x))
2








,

for all x, y, u, v ∈ X, where G(x, y) ≤ G(u, v) and G(y, x) ≥ G(v, u). Suppose that
for any x, y ∈ X, there exist u, v ∈ X such that

(2.2) F (x, y) = G(u, v) and F (y, x) = G(v, u).

Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x in X then xn ≤ x, for all n,
(ii) if a non-increasing sequence {xn} → x in X then x ≤ xn, for all n.

Then F and G have a coupled coincidence point.

Proof. By hypothesis, there exist x0, y0 ∈ X such that

G(x0, y0) ≤ F (x0, y0) and G(y0, x0) ≥ F (y0, x0).

From (2.2), we can choose x1, y1 ∈ X such that

G(x1, y1) = F (x0, y0) and G(y1, x1) = F (y0, x0).

Continuing this process, we can construct sequences {xn} and {yn} in X such that

(2.3) G(xn+1, yn+1) = F (xn, yn) and G(yn+1, xn+1) = F (yn, xn), for all n ≥ 0.

We shall show that

(2.4) G(xn, yn) ≤ G(xn+1, yn+1) and G(yn, xn) ≥ G(yn+1, xn+1), for all n ≥ 0.
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We shall use the mathematical induction. Let n = 0, since

G(x0, y0) ≤ F (x0, y0) = G(x1, y1),

G(y0, x0) ≥ F (y0, x0) = G(y1, x1),

we have

G(x0, y0) ≤ G(x1, y1) and G(y0, x0) ≥ G(y1, x1).

Thus (2.4) hold for n = 0. Suppose now that (2.4) hold for some fixed n ∈ N. Then
since

G(xn, yn) ≤ G(xn+1, yn+1) and G(yn, xn) ≥ G(yn+1, xn+1),

and as F is G−increasing with respect to ≤, from (2.3), we have

G(xn+1, yn+1) = F (xn, yn) ≤ F (xn+1, yn+1) = G(xn+2, yn+2),

G(yn+1, xn+1) = F (yn, xn) ≥ F (yn+1, xn+1) = G(yn+2, xn+2).

Thus by the mathematical induction we conclude that (2.4) hold for all n ≥ 0.

Therefore

G(x0, y0) ≤ G(x1, y1) ≤ ... ≤ G(xn, yn) ≤ G(xn+1, yn+1) ≤ ...

and

G(y0, x0) ≥ G(y1, x1) ≥ ... ≥ G(yn, xn) ≥ G(yn+1, xn+1) ≥ ...

Now by (2.1), we have

d(G(xn, yn), G(xn+1, yn+1))

= d(F (xn−1, yn−1), F (xn, yn))

≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(xn−1, yn−1), F (xn−1, yn−1)),

d(G(xn, yn), F (xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),

d(G(yn−1, xn−1), F (yn−1, xn−1)),
d(G(yn, xn), F (yn, xn)),

d(G(xn−1, yn−1), F (xn, yn))+d(G(xn, yn), F (xn−1, yn−1))
2 ,

d(G(yn−1, xn−1), F (yn, xn))+d(G(yn, xn), F (yn−1, xn−1))
2







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≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(xn−1, yn−1), G(xn, yn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn+1, yn+1))+d(G(xn, yn), G(xn, yn))
2 ,

d(G(yn−1, xn−1), G(yn+1, xn+1))+d(G(yn, xn), G(yn, xn))
2








≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(xn, yn), G(xn+1, yn+1))),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn+1, yn+1))
2 ,

d(G(yn−1, xn−1), G(yn+1, xn+1))
2








.

Thus

d(G(xn, yn), G(xn+1, yn+1)) ≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1))),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn+1, yn+1))
2 ,

d(G(yn−1, xn−1), G(yn+1, xn+1))
2








.

Similarly

d(G(yn, xn), G(yn+1, xn+1)) ≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn+1, yn+1))
2 ,

d(G(yn−1, xn−1), G(yn+1, xn+1))
2








.

Combining them, we get

max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}

≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn+1, yn+1))
2 ,

d(G(yn−1, xn−1), G(yn+1, xn+1))
2







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≤ ϕ




max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1)),

d(G(xn−1, yn−1), G(xn, yn))+d(G(xn, yn), G(xn+1, yn+1))
2 ,

d(G(yn−1, xn−1), G(yn, xn))+d(G(yn, xn), G(yn+1, xn+1))
2








≤ ϕ


max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1))),
d(G(yn, xn), G(yn+1, xn+1))






 .

Thus

max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}
(2.5)

≤ ϕ


max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))






 .

If we suppose that

max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))





= max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}
.

Then by (2.5) and by the fact that ϕ(t) < t for all t > 0, we have

max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}

≤ ϕ

[
max

{
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}]

< max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}
,

which is a contradiction. Thus, we must have

max





d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn)),
d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))





= max
{

d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn))

}
.
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Hence by (2.5), we have for all n ∈ N,

max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}

≤ ϕ

[
max

{
d(G(xn−1, yn−1), G(xn, yn)),
d(G(yn−1, xn−1), G(yn, xn))

}]

≤ ϕn

[
max

{
d(G(x0, y0), G(x1, y1)),
d(G(y0, x0), G(y1, x1))

}]

≤ ϕn(δ).

Thus

(2.6) max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}
≤ ϕn(δ),

where

δ = max
{

d(G(x0, y0), G(x1, y1)),
d(G(y0, x0), G(y1, x1))

}
.

Without loss of generality, one can assume that max{d(G(x0, y0), G(x1, y1)), d(G(y0,

x0), G(y1, x1))} 6= 0. In fact, if this is not true, then G(x0, y0) = G(x1, y1) = F (x0,

y0), G(y0, x0) = G(y1, x1) = F (y0, x0), that is, (x0, y0) is a coupled coincidence
point of F and G.

Thus, for m, n ∈ N with m > n, by triangle inequality and (2.6), we get

d(G(xn, yn), G(xm+n, ym+n))

≤ d(G(xn, yn), G(xn+1, yn+1)) + d(G(xn+1, yn+1), G(xn+2, yn+2))

+... + d(G(xn+m−1, yn+m−1), G(xm+n, ym+n))

≤ max
{

d(G(xn, yn), G(xn+1, yn+1)),
d(G(yn, xn), G(yn+1, xn+1))

}

+max
{

d(G(xn+1, yn+1), G(xn+2, yn+2)),
d(G(yn+1, xn+1), G(yn+2, xn+2))

}

+... + max
{

d(G(xn+m−1, yn+m−1), G(xm+n, ym+n)),
d(G(yn+m−1, xn+m−1), G(ym+n, xm+n))

}

≤ ϕn(δ) + ϕn+1(δ) + ... + ϕn+m−1(δ)

≤
n+m−1∑

i=n

ϕi(δ),

which implies, by (iiϕ), that {G(xn, yn)} is a Cauchy sequence in X. Similarly we
obtain that {G(yn, xn)} is also a Cauchy sequence in X. Since X is complete, there
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is some x, y ∈ X such that

lim
n→∞G(xn, yn) = lim

n→∞F (xn, yn) = x,(2.7)

lim
n→∞G(yn, xn) = lim

n→∞F (yn, xn) = y.

Since the pair {F, G} satisfies the generalized compatibility, from (2.7), we get

(2.8) lim
n→∞ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn))) = 0,

and

(2.9) lim
n→∞ d(F (G(yn, xn), G(xn, yn)), G(F (yn, xn), F (xn, yn))) = 0.

Now suppose that assumption (a) holds. Then

d(F (G(xn, yn), G(yn, xn)), G(x, y))

≤ d(F (G(xn, yn), G(yn, xn)), G(F (xn, yn), F (yn, xn)))

+d(G(F (xn, yn), F (yn, xn)), G(x, y)).

Taking limit as n →∞ in the above inequality, using (2.7), (2.8) and the fact that
F and G are continuous, we have

F (x, y) = G(x, y).

Similarly we can show that

F (y, x) = G(y, x).

Thus (x, y) is a coupled coincidence point of F and G.

Now, suppose that (b) holds. By (2.4) and (2.7), we have {G(xn, yn)} is a non-
decreasing sequence, G(xn, yn) → x and {G(yn, xn)} is a non-increasing sequence,
G(yn, xn) → y as n →∞. Thus for all n, we have

(2.10) G(xn, yn) ≤ x and G(yn, xn) ≥ y.

Since G is continuous, by (2.7), (2.8) and (2.9), we have

lim
n→∞G(G(xn, yn), G(yn, xn))

= G(x, y)

= lim
n→∞G(F (xn, yn), F (yn, xn))

= lim
n→∞F (G(xn, yn), G(yn, xn))(2.11)
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and

lim
n→∞G(G(yn, xn), G(xn, yn))

= G(y, x)

= lim
n→∞G(F (yn, xn), F (xn, yn))

= lim
n→∞F (G(yn, xn), G(xn, yn)).(2.12)

Since G has the mixed monotone property, it follows from (2.10) that G(G(xn, yn),
G(yn, xn)) ≤ G(x, y) and G(G(yn, xn), G(xn, yn)) ≥ G(y, x). Now using (2.1) and
(2.11), we get

d(G(x, y), F (x, y))

= lim
n→∞ d (G(F (xn, yn), F (yn, xn)), F (x, y))

= lim
n→∞ d (F (G(xn, yn), G(yn, xn)), F (x, y))

≤ lim
n→∞ϕ [∆n] ,

where

∆n = max





d(G(G(xn, yn), G(yn, xn)), G(x, y)),
d(G(G(xn, yn), G(yn, xn)), F (G(xn, yn), G(yn, xn))),

d(G(x, y), F (x, y)), d(G(G(yn, xn), G(xn, yn)), G(y, x)),
d(G(G(yn, xn), G(xn, yn)), F (G(yn, xn), G(xn, yn))),

d(G(y, x), F (y, x)),
d(G(G(xn, yn), G(yn, xn)), F (x, y))+d(G(x, y), F (G(xn, yn),G(yn, xn)))

2 ,
d(G(G(yn, xn), G(xn, yn)), F (y, x))+d(G(y, x), F (G(yn, xn), G(xn, yn)))

2





.

Similarly

d(G(y, x), F (y, x)) ≤ lim
n→∞ϕ [∆n] .

Combining them, we get

(2.13) max {d(G(x, y), F (x, y)), d(G(y, x), F (y, x))} ≤ lim
n→∞ϕ [∆n] ,

which, by (2.7), implies

max
{

d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}
(2.14)

≤ ϕ

[
max

{
d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}]
.

Now, we claim that

(2.15) max
{

d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}
= 0.
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If this is not true, then

max
{

d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}
> 0.

Thus, by (2.14) and by the fact that ϕ(t) < t for all t > 0, we get

max
{

d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}

≤ ϕ

[
max

{
d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}]

< max
{

d(G(x, y), F (x, y)),
d(G(y, x), F (y, x))

}
,

which is a contradiction. So (2.15) holds. Thus, it follows that

G(x, y) = F (x, y) and G(y, x) = F (y, x),

that is, (x, y) is a coupled coincidence point of F and G. ¤

Corollary 2.2. Let (X, ≤) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G : X ×X → X be two commuting mappings such that
F is G−increasing with respect to ≤, G is continuous and has the mixed monotone
property, and there exist two elements x0, y0 ∈ X with

G(x0, y0) ≤ F (x0, y0) and G(y0, x0) ≥ F (y0, x0).

Suppose that the inequalities (2.1) and (2.2) hold and either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x in X then xn ≤ x, for all n,
(ii) if a non-increasing sequence {xn} → x in X then x ≤ xn, for all n.

Then F and G have a coupled coincidence point.

Now, we deduce results which are analogous to Theorem 1.1 without g−mixed
monotone property of F.

Corollary 2.3. Let (X, ≤) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X ×X → X and g : X → X be two mappings such that
F is g−increasing with respect to ≤, and there exist ϕ ∈ Φ such that

d(F (x, y), F (u, v))

≤ ϕ


max





d(gx, gu), d(gy, gv), D(gx, F (x, y)),
D(gu, F (u, v)), D(gy, F (y, x)), D(gv, F (v, u)),
D(gx, F (u, v))+D(gu, F (x, y))

2 , D(gy, F (v, u))+D(gv, F (y, x))
2






 ,
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for all x, y, u, v ∈ X, where g(x) ≤ g(u) and g(y) ≥ g(v). Suppose that F (X×X) ⊆
g(X), g is continuous and monotone increasing with respect to ≤ and the pair {F,

g} is compatible. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x in X then xn ≤ x, for all n,
(ii) if a non-increasing sequence {xn} → x in X then x ≤ xn, for all n.

If there exist two elements x0, y0 ∈ X with

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 2.4. Let (X, ≤) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X ×X → X and g : X → X be two mappings such that
F is g−increasing with respect to ≤, and there exist ϕ ∈ Φ such that

d(F (x, y), F (u, v))

≤ ϕ


max





d(gx, gu), d(gy, gv), D(gx, F (x, y)),
D(gu, F (u, v)), D(gy, F (y, x)), D(gv, F (v, u)),
D(gx, F (u, v))+D(gu, F (x, y))

2 , D(gy, F (v, u))+D(gv, F (y, x))
2






 ,

for all x, y, u, v ∈ X, where g(x) ≤ g(u) and g(y) ≥ g(v). Suppose that F (X×X) ⊆
g(X), g is continuous and monotone increasing with respect to ≤ and the pair {F,

g} is commuting. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x in X then xn ≤ x, for all n,
(ii) if a non-increasing sequence {xn} → x in X then x ≤ xn, for all n.

If there exist two elements x0, y0 ∈ X with

gx0 ≤ F (x0, y0) and gy0 ≥ F (y0, x0).

Then F and g have a coupled coincidence point.

Corollary 2.5. Let (X, ≤) be a partially ordered set such that there exists a complete
metric d on X. Assume F : X ×X → X be an increasing mapping with respect to
≤ and there exist ϕ ∈ Φ such that

d(F (x, y), F (u, v))
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≤ ϕ


max





d(x, u), d(y, v), D(x, F (x, y)),
D(u, F (u, v)), D(y, F (y, x)), D(v, F (v, u)),
D(x, F (u, v))+D(u, F (x, y))

2 , D(y, F (v, u))+D(v, F (y, x))
2






 ,

for all x, y, u, v ∈ X, where x ≤ u and y ≥ v. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {xn} → x in X then xn ≤ x, for all n,
(ii) if a non-increasing sequence {xn} → x in X then x ≤ xn, for all n.

If there exist two elements x0, y0 ∈ X with

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0).

Then F has a coupled fixed point.

Example 2.1. Suppose that X = [0, 1], equipped with the usual metric d : X×X →
[0, +∞). Let F, G : X ×X → X be defined as

F (x, y) =
{

x2−y2

3 if x ≥ y
0 if x < y,

and

G(x, y) =
{

x2 − y2 if x ≥ y
0 if x < y.

.

Define ϕ : [0, +∞) → [0, +∞) as follows

ϕ(t) =
{

t
3 , for t 6= 1
1, for t = 1.

First, we shall show that the mappings F and G satisfy the condition (2.1). Let x,

y ∈ X such that G(x, y) ≤ G(u, v) and G(y, x) ≥ G(v, u), we have

d(F (x, y), F (u, v))

=
∣∣∣∣
x2 − y2

3
− u2 − v2

3

∣∣∣∣

=
1
3
|G(x, y)−G(u, v)|

=
1
3
d(G(x, y), G(u, v))

≤ 1
3

max





d(G(x, y), G(u, v)), d(G(x, y), F (x, y)),
d(G(u, v), F (u, v)), d(G(y, x), G(v, u)),
d(G(y, x), F (y, x)), d(G(v, u), F (v, u)),

d(G(x, y), F (u, v))+d(G(u, v), F (x, y))
2 ,

d(G(y, x), F (v, u))+d(G(v, u), F (y, x))
2




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≤ ϕ




max





d(G(x, y), G(u, v)), d(G(x, y), F (x, y)),
d(G(u, v), F (u, v)), d(G(y, x), G(v, u)),
d(G(y, x), F (y, x)), d(G(v, u), F (v, u)),

d(G(x, y), F (u, v))+d(G(u, v), F (x, y))
2 ,

d(G(y, x), F (v, u))+d(G(v, u), F (y, x))
2








.

Thus the contractive condition (2.1) is satisfied for all x, y, u, v ∈ X. In addition,
like in [10], all the other conditions of Theorem 2.1 are satisfied and z = (0, 0) is a
coincidence point of F and G.

Now we prove the uniqueness of the coupled coincidence point. Note that if (X,

≤) is a partially ordered set, then we endow the product X ×X with the following
partial order relation, for all (x, y), (u, v) ∈ X ×X :

(x, y) ≤ (u, v) ⇐⇒ G(x, y) ≤ G(u, v) and G(y, x) ≥ G(v, u),

where G : X ×X → X is one-one.

Theorem 2.6. In addition to the hypotheses of Theorem 2.1, suppose that for every
(x, y), (x∗, y∗) in X ×X, there exists another (u, v) in X ×X which is comparable
to (x, y) and (x∗, y∗), then F and G have a unique coupled coincidence point.

Proof. From Theorem 2.1, the set of coupled coincidence points of F and G is non-
empty. Assume that (x, y), (x∗, y∗) ∈ X ×X are two coupled coincidence points of
F and G, that is,

F (x, y) = G(x, y) and F (y, x) = G(y, x),

F (x∗, y∗) = G(x∗, y∗) and F (y∗, x∗) = G(y∗, x∗).

We shall prove that G(x, y) = G(x∗, y∗) and G(y, x) = G(y∗, x∗). By assumption,
there exists (u, v) ∈ X ×X, that is, comparable to (x, y) and (x∗, y∗). We define
the sequences {G(un, vn)} and {G(vn, un)} as follows, with u0 = u, v0 = v :

G(un+1, vn+1) = F (un, vn), G(vn+1, un+1) = F (vn, un), n ≥ 0.

Since (u, v) is comparable to (x, y), we may assume that (x, y) ≤ (u, v) = (u0,

v0), which implies that G(x, y) ≤ G(u0, v0) and G(y, x) ≥ G(v0, u0). We suppose
that (x, y) ≤ (un, vn) for some n. We prove that (x, y) ≤ (un+1, vn+1). Since F is
G−increasing, we have G(x, y) ≤ G(un, vn) implies F (x, y) ≤ F (un, vn) and G(y,

x) ≥ G(vn, un) implies F (y, x) ≥ F (vn, un). Therefore

G(x, y) = F (x, y) ≤ F (un, vn) = G(un+1, vn+1)
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and

G(y, x) = F (y, x) ≥ F (vn, un) = G(vn+1, un+1).

Thus, we have

(x, y) ≤ (un+1, vn+1), for all n.

Now, by (2.1), we have

d(G(x, y), G(un+1, vn+1)) = d(F (x, y), F (un, vn)) ≤ ϕ[∇n],

d(G(y, x), G(vn+1, un+1)) = d(F (y, x), F (vn, un)) ≤ ϕ[∇n],(2.16)

where

∇n = max





d(G(x, y), G(un, vn)), d(G(un, vn), G(un+1, vn+1)),
d(G(y, x), G(vn, un)), d(G(vn, un), G(vn+1, un+1)),

d(G(x, y), G(un+1, vn+1))+d(G(un, vn), G(x, y))
2 ,

d(G(y, x), G(vn+1, un+1))+d(G(vn, un), G(y, x))
2





.

Since, there exists n0 ∈ N such that for all n > n0,

(2.17) ∇n = max





d(G(x, y), G(un, vn)), d(G(y, x), G(vn, un)),
d(G(x, y), G(un+1, vn+1))+d(G(un, vn), G(x, y))

2 ,
d(G(y, x), G(vn+1, un+1))+d(G(vn, un), G(y, x))

2



 .

Combining (2.16) and (2.17), we get

(2.18) max
{

d(G(x, y), G(un+1, vn+1)),
d(G(y, x), G(vn+1, un+1))

}
≤ ϕ[∇n].

We claim that

(2.19) ∇n = max {d(G(x, y), G(un, vn)), d(G(y, x), G(vn, un))} .

In fact, if

∇n =
d(G(x, y), G(un+1, vn+1)) + d(G(un, vn), G(x, y))

2
,

then, by (2.16) and the fact that ϕ(t) < t for all t > 0, we have

d(G(x, y), G(un+1, vn+1))

≤ ϕ

[
d(G(x, y), G(un+1, vn+1)) + d(G(un, vn), G(x, y))

2

]

<
d(G(x, y), G(un+1, vn+1)) + d(G(un, vn), G(x, y))

2
,

which implies that

d(G(x, y), G(un+1, vn+1)) < d(G(un, vn), G(x, y)),
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and so

∇n =
d(G(x, y), G(un+1, vn+1)) + d(G(un, vn), G(x, y))

2
< d(G(un, vn), G(x, y)),

which is a contradiction. In addition, if

∇n =
d(G(y, x), G(vn+1, un+1)) + d(G(vn, un), G(y, x))

2
,

then there is again a contradiction. So (2.19) holds. Thus, by (2.18), we have

max
{

d(G(x, y), G(un+1, vn+1)),
d(G(y, x), G(vn+1, un+1))

}

≤ ϕ

[
max

{
d(G(x, y), G(un, vn)),
d(G(y, x), G(vn, un))

}]
.

Then it follows that

max
{

d(G(x, y), G(un+1, vn+1)),
d(G(y, x), G(vn+1, un+1))

}

≤ ϕn+1

[
max

{
d(G(x, y), G(u0, v0)),
d(G(y, x), G(v0, u0))

}]
.

Letting n →∞ in the above inequality, using (iiϕ), we get

G(x, y) = lim
n→∞G(un+1, vn+1) and G(y, x) = lim

n→∞G(vn+1, un+1).

Similarly, we can show that

G(x∗, y∗) = lim
n→∞G(un+1, vn+1) and G(y∗, x∗) = lim

n→∞G(vn+1, un+1)).

Thus G(x, y) = G(x∗, y∗) and G(y, x) = G(y∗, x∗). ¤

3. Application to Integral Equations

As an application of the results established in section 2 of our paper, we study
the existence of the solution to a Fredholm nonlinear integral equation. We shall
consider the following integral equation

(3.1) x(p) =
∫ b

a
(K1(p, q) + K2(p, q)) [f(q, x(q)) + g(q, x(q))] dq + h(p),

for all p ∈ I = [a, b].
Let Θ denote the set of all functions θ : [0, +∞) → [0, +∞) satisfying
(iθ) θ is non-decreasing,
(iiθ) θ(p) ≤ p.
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Assumption 3.1. We assume that the functions K1, K2, f, g fulfill the following
conditions:

(i) K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ I,

(ii) There exists λ, µ and θ ∈ Θ such that for all x, y ∈ R with x ≥ y, the
following conditions hold:

(3.2) 0 ≤ f(q, x)− f(q, y) ≤ λθ(x− y)

and

(3.3) −µθ(x− y) ≤ g(q, x)− g(q, y) ≤ 0,

(iii)

(3.4) max{λ, µ} sup
p∈I

∫ b

a
[K1(p, q)−K2(p, q)]dq ≤ 1

4
.

Definition 3.1 ([13]). A pair (α, β) ∈ X2 with X = C(I, R), where C(I, R) denote
the set of all continuous functions from I to R, is called a coupled lower-upper solution
of (3.1) if, for all p ∈ I,

α(p) ≤
∫ b

a
K1(p, q) [f(q, α(q)) + g(q, β(q))] dq

+
∫ b

a
K2(p, q) [f(q, β(q)) + g(q, α(q))] dq + h(p),

and

β(p) ≥
∫ b

a
K1(p, q) [f(q, β(q)) + g(q, α(q))] dq

+
∫ b

a
K2(p, q) [f(q, α(q)) + g(q, β(q))] dq + h(p).

Theorem 3.1. Consider the integral equation (3.1) with K1, K2 ∈ C(I × I, R), f,

g ∈ C(I × R, R) and h ∈ C(I, R). Suppose that there exists a coupled lower-upper
solution (α, β) of (3.1) and Assumption 3.1 is satisfied. Then the integral equation
(3.1) has a solution in C(I, R).

Proof. Consider X = C(I, R), the natural partial order relation, that is, for x,

y ∈ C(I, R),

x ≤ y ⇐⇒ x(p) ≤ y(p), ∀p ∈ I.



92 Bhavana Deshpande & Amrish Handa

It is well known that X is a complete metric space with respect to the sup metric

d(x, y) = sup
p∈I

|x(p)− y(p)| .

Now define on X ×X the following partial order: for (x, y), (u, v) ∈ X2,

(x, y) ≤ (u, v) ⇐⇒ x(p) ≤ u(p) and y(p) ≥ v(p), for all p ∈ I.

Obviously, for any (x, y) ∈ X × X, the functions max{x, y} and min{x, y} are
the upper and lower bounds of x and y respectively. Therefore for every (x, y), (u,

v) ∈ X ×X, there exists the element (max{x, u}, min{y, v}) which is comparable
to (x, y) and (u, v). Define ϕ : [0, +∞) → [0, +∞) as follows

ϕ(t) =
{

t
2 , for t 6= 1
1, for t = 1.

Define now the mapping F : X ×X → X by

F (x, y)(p) =
∫ b

a
K1(p, q) [f(q, x(q)) + g(q, y(q))] dq

+
∫ b

a
K2(p, q) [f(q, y(q)) + g(q, x(q))] dq + h(p),

for all p ∈ I. We can prove, like in [13], that F is increasing. Now for x, y, u, v ∈ X

with x ≤ u and y ≥ v, by using (3.2) and (3.3), we have

F (x1, y)(p)− F (x2, y)(p)

=
∫ b

a
K1(p, q) [f(q, x1(q)) + g(q, y(q))] dq

+
∫ b

a
K2(p, q) [f(q, y(q)) + g(q, x1(q))] dq

−
∫ b

a
K1(p, q) [f(q, x2(q)) + g(q, y(q))] dq

−
∫ b

a
K2(p, q) [f(q, y(q)) + g(q, x2(q))] dq

=
∫ b

a
K1(p, q) [f(q, x1(q))− f(q, x2(q))] dq

+
∫ b

a
K2(p, q) [g(q, x1(q))− g(q, x2(q))] dq
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≤
∫ b

a
K1(p, q) [λθ (x(q)− u(q)) + µθ (v(q)− y(q))] dq

−
∫ b

a
K2(p, q) [λθ (v(q)− y(q)) + µθ (x(q)− u(q))] dq.

Thus

F (x, y)(p)− F (u, v)(p)(3.5)

≤
∫ b

a
K1(p, q) [λθ (x(q)− u(q)) + µθ (v(q)− y(q))] dq

−
∫ b

a
K2(p, q) [λθ (v(q)− y(q)) + µθ (x(q)− u(q))] dq.

Since the function θ is non-decreasing and x ≥ u and y ≤ v, we have

θ (x(q)− u(q)) ≤ θ

(
sup
p∈I

|x(q)− u(q)|
)

= θ(d(x, u)),

θ (v(q)− y(q)) ≤ θ

(
sup
p∈I

|v(q)− y(q)|
)

= θ(d(y, v)).

Hence by (3.5), in view of the fact that K2(p, q) ≤ 0, we obtain

|F (x, y)(p)− F (u, v)(p)|

≤
∫ b

a
K1(p, q) [λθ(d(x, u)) + µθ(d(y, v))] dq

−
∫ b

a
K2(p, q) [λθ(d(y, v)) + µθ(d(x, u))] dq,

≤
∫ b

a
K1(p, q) [max{λ, µ}θ(d(x, u)) + max{λ, µ}θ(d(y, v))] dq

−
∫ b

a
K2(p, q) [max{λ, µ}θ(d(y, v)) + max{λ, µ}θ(d(x, u))] dq,

as all the quantities on the right hand side of (3.5) are non-negative. Now, taking
the supremum with respect to p we get, by using (3.4),

d(F (x, y), F (u, v))

≤ max{λ, µ} sup
p∈I

∫ b

a
(K1(p, q)−K2(p, q)) dq. [θ(d(x, u)) + θ(d(y, v))]

≤ θ(d(x, u)) + θ(d(y, v))
4

.
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Thus

(3.6) d(F (x, y), F (u, v)) ≤ θ(d(x, u)) + θ(d(y, v))
4

.

Now, since θ is non-decreasing, we have

θ(d(x, u)) ≤ θ (max {d(x, u), d(y, v)}) ,

θ(d(y, v)) ≤ θ (max {d(x, u), d(y, v)}) ,

which implies, by (iiθ), that

θ(d(x, u)) + θ(d(y, v))
2

≤ θ (max {d(x, u), d(y, v)})
≤ max {d(x, u), d(y, v)} .

Hence

(3.7)
θ(d(x, u)) + θ(d(y, v))

4
≤ 1

2
max {d(x, u), d(y, v)} .

Thus by (3.6) and (3.7), we have

d(F (x, y), F (u, v))

≤ 1
2

max {d(x, u), d(y, v)}

≤ 1
2

max





d(x, u), d(y, v), D(x, F (x, y)),
D(u, F (u, v)), D(y, F (y, x)), D(v, F (v, u)),
D(x, F (u, v))+D(u, F (x, y))

2 , D(y, F (v, u))+D(v, F (y, x))
2





≤ ϕ


max





d(x, u), d(y, v), D(x, F (x, y)),
D(u, F (u, v)), D(y, F (y, x)), D(v, F (v, u)),
D(x, F (u, v))+D(u, F (x, y))

2 , D(y, F (v, u))+D(v, F (y, x))
2






 ,

which is the contractive condition in Corollary 2.5. Now, let (α, β) ∈ X ×X be a
coupled upper-lower solution of (3.1), then we have α(p) ≤ F (α, β)(p) and β(p) ≥F (
β, α)(p), for all p ∈ I, which shows that all hypothesis of Corollary 2.5 are satisfied.
This proves that F has a coupled fixed point (x, y) ∈ X ×X which is the solution
in X = C(I, R) of the integral equation (3.1). ¤
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