
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2016.23.1.53 ISSN(Online) 2287-6081
Volume 23, Number 1 (February 2016), Pages 53–59

ON TRACE FORMS OF GALOIS EXTENSIONS

Dong Seung Kang

Abstract. Let G be a finite group containing a non-abelian Sylow 2-subgroup. We
elementarily show that every G-Galois field extension L/K has a hyperbolic trace
form in the presence of root of unity.

1. Introduction

Let K be a field containing a primitive 4th root of unity with char(K)6= 2 . The
trace form of a finite field extension (or, more generally of an etale algebra) L is the
nonsingular quadratic form qL/K : x 7→ trL/K(x2) defined over K. In this paper we
will be concerned with the following general question:

Question 1.1. Given a finite group G, which quadratic forms over K are trace
forms of G-Galois extensions L/K?

Question 1.1 was studied in the mid-19th century; in particular, Sylvester [14],
Jacobi [7], and Hermite [5], [6] independently proved that the number of real roots
of a polynomial p(x) ∈ R[x] equals the signature of the trace form of the Galois
algebra R[x]/(p(x)); see [1, Section 1]. There has been a resurgence of interest in
this topic at the end of the twentieth century, due in part, to an influential paper of
Serre [13], relating the trace form to the extension problem in inverse Galois theory.

In spite of all this activity, Question 1.1, in its full generality remains open: a
complete answer is not even known in the case where G is the cyclic group of order
16; see [4, p. 222]. But the situation simplifies considerably if we require K to
contain certain roots of unity.

Definition 1.2. Let (V, q) be a 2-dimensional nonsingular quadratic space over a
field K . The q is said to be hyperbolic if it satisfies q ' 〈1 ,−1〉 . Moreover, (V, q)
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is called a hyperbolic plane. In general, an orthogonal sum of hyperbolic planes is
called a hyperbolic space.

We write 〈〈a1 , · · · , an〉〉 to denote the n-fold Pfister form 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉
and qa

L/K is denoted by scaled trace form x 7→ trL/K(ax2) , where a ∈ K∗ .

Theorem 1.3 ([8, Theorem 1.1]). Let L/K be a G-Galois extension and let G2 be
the Sylow 2-subgroup of G. Assume

(a) G2 is not abelian, and

(b) K contains a primitive eth root of unity, where e is the minimal value of
exp(H), as H ranges over all non-abelian subgroups of G2.

Then the trace form qL/K is hyperbolic over K.

Assuming only that K contains a primitive 4th root of unity, Mináč and Reich-
stein completely described the finite groups G which admit a G−Galois extension
L/K with a non-hyperbolic trace form; see [9, Theorem 1.3].

In view of [8, Reduction 3.3], the Theorem 1.3 reduced to the following Theo-
rem 1.4 :

Theorem 1.4. Let G be a non-abelian 2-group of exponent d . Then for every
G−Galois field extension L/K , the trace form qL/K is hyperbolic, provided K con-
tains a primitive dth root of unity.

In [8], Theorem 1.4 was proved by contradiction with a counterexample of minimal
order, say Gmin , and then [8, Propostion 4.6] gave us that Gmin = Q8 or M(2n) ,

where n ≥ 8 is a power of 2. The proof of [8, Proposition 4.6] relied on an old
group-theoretic result of Rèdei [10], which is actually a bit stronger that what we
needed; see [8, Lemma 4.5].

In this paper we will reprove Theorem 1.3. The approaches are in order: first of
all, we will investigate the properties of Gmin without using the result of Rèdei and
then by using these properties we will produce that Gmin = M(2n) , where n ≥ 8
is a power of 2. Finally, we will also show that the quadratic form of M(2n) Galois
extension L/K is hyperbolic, provided K contains a primitive nth root of unity.

2. Main Results

Throughout this paper the characteristic of any field K is not equal to 2.
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Definition 2.1. Let G be a 2-group of exponent d. We shall say that G has property
(*) if for every G-Galois extension L/K such that K contains a primitive dth root
of unity, the trace form qL/K is hyperbolic.

2.1. Properties of Gmin Let Gmin be a counterexample of minimal order of The-
orem 1.4.

Theorem 2.2. (a) Every proper subgroup of Gmin is abelian.

(b) The center Z(Gmin) has index 4 in Gmin.

(c) If S is a proper subgroup of Gmin, then [S : (S ∩ Z(Gmin))] ≤ 2.

(d) x2 ∈ Z(Gmin) for every x ∈ Gmin.

Let G′
min be the commutator subgroup of Gmin.

(e) G′
min ⊂ Z(Gmin).

(f) |G′
min| = 2. In the sequel we shall denote the non-identity element of G′

min

by c.

(g) If r ∈ Gmin is an element of order n ≥ 4 then rn/2 = c.

(h) Gmin is generated by two elements r and s such that rs = csr.

(i) |Gmin| ≥ 16.

Proof. (a) Immediate from [8, Proposition 3.5 (a)].
(b) Let H be a subgroup of index 2 in Gmin; see, e.g., [11, 5.3.1(ii)]. Choose

g ∈ Gmin\H; applying [11, 5.3.1(ii)] once again, we can find a subgroup H ′ ⊂ Gmin

such that q ∈ H ′ and [Gmin : H ′] = 2. By part (a) both H and H ′ are abelian.
Thus every x ∈ H ∩ H ′ commutes with g and with every element of H. Since H

and g generate G, we conclude that x ∈ Z(G), i.e.,

(2.1) H ∩H ′ ⊂ Z(Gmin) .

Since Gmin is non-abelian,

(2.2) [Gmin : Z(Gmin)] ≥ 4 ;

see, e.g., [12, 6.3.4]. On the other hand, since [Gmin : H] = [Gmin : H ′] = 2, it is
easy to see that

(2.3) [Gmin : (H ∩H ′)] = 4 .

Part (b) now follows from (2.1-2.3). For future reference we remark that our argu-
ment also shows that
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(2.4) H ∩H ′ = Z(Gmin) .

(c) By [11, 5.3.1(ii)], S is contained in a subgroup H of index 2. By (2.4), Z(G) =
H ∩H ′, where H ′ is another subgroup of G of index 2. Then S ∩ Z(G) = S ∩H ′,
and the latter clearly has index ≤ 2 in S.

(d) Apply part (c) to the cyclic group S = 〈x〉.
(e) Follows from the fact that the factor group Gmin/Z(Gmin) has order 4 and,

hence, is abelian.

(f) Since Gmin is a non-abelian 2-group, it has an element r of order n ≥ 4. Let
H = 〈r〉 and H0 = 〈rn/2〉 be cyclic subgroups of G of orders n and 2 respectively.
By part (d), H0 is central and, hence, normal in Gmin. By [8, Proposition 3.5 (b)],
Gmin/H0 does not have property (*) (otherwise Gmin would have property (*) as
well, contrary to our choice of Gmin). By the minimality of Gmin, we conclude that
Gmin/H0 is abelian. In other words,

(2.5) G′
min ⊂ H0 .

Thus |G′
min| ≤ |H0| = 2. On the other hand, since Gmin is non-abelian, |G′

min| 6= 1.
Thus G′

min has exactly 2 elements, as claimed.

(g) By (2.5), rn/2 ∈ G′
min. Since r has order n, rn/2 6= 1; thus rn/2 = c.

(h) Choose two non-commuting elements r and s in Gmin. By part (a), these
elements generate Gmin. By part (f), rsr−1s−1 = c.

(i) The only non-abelian groups of order ≤ 8 and the dihedral group D8 and the
quaternion group Q8. Thus it is enough to show that these groups have property
(*).

If L/K is a D8-Galois extension then qL/K has the form 〈〈−1, a, b〉〉 for some
a, b ∈ K∗; see [3, Section 6, Exemple] or [4, Proposition 12]. Note that exp(D8) = 4,
and if ζ4 ∈ K then −1 is a square, and thus 〈〈−1, a, b〉〉 splits over K. This shows
that D8 has property (*).

Similarly, if L/K is a Q8-Galois extension then qL/K = 〈〈−1,−1, a〉〉 for some
a ∈ K∗; see [3, Section 6, Exemple] or [4, Proposition 12]. Note that exp(Q8) = 4,
and if ζ4 ∈ K then 〈〈−1, a, b〉〉 splits over K. This shows that Q8 also has property
(*) and thus |Gmin| ≥ 16. ¤

2.2. The group M(2n) Let n ≥ 4 be a power of 2. We define the group M(2n)
as the semidirect product of Z/nZ >/ Z/2Z, where the nontrivial element of Z/2Z
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acts on Z/nZ by sending 1 to n
2 + 1. Equivalently,

(2.6) M(2n) = {x, y |xn = y2 = 1, yx = xn/2+1y} .

Note that M(8) is the dihedral group D8.

Theorem 2.3. Gmin = M(2n) for some n ≥ 8.

Proof. Write Gmin = 〈r, s〉, G′
min = {1, c}, and sr = crs . Denote the orders of r and

s by n and m respectively. We may assume without loss of generality that n ≥ m.
Since Gmin is non-abelian, m ≥ 2.

We claim that n ≥ 4. Indeed, assume the contrary: n = m = 2. Then Gmin/G′
min

is an abelian group of order ≤ 4. Thus |Gmin| ≤ 4|G′
min| = 8, contradicting Theo-

rem 2.2(i).
Thus n ≥ 4. By Theorem 2.2(g), c = rn/2. We now claim that n ≥ 8. To prove

this claim we need to show that (n,m) 6= (4, 2), and (4, 4).
Indeed, if (n,m) = (4, 2) then r4 = s2 = 1 and sr = crs = r−1s, i.e., r and s

satisfy the defining relations of the dihedral group D8. In other words, there exists
a surjective homomorphism D8 −→ Gmin; thus |Gmin| ≤ |D8| = 8, contradicting
Theorem 2.2(i). If (n,m) = (4, 4) then by Theorem 2.2(g), s2 = c = r2. In this case
r and s satisfy the defining relations of the quaternion group Q8, namely r4 = 1,
r2 = s2, and srs−1 = r−1; see, e.g., [12, Example 8.2.4]. Hence there exists a
surjecive homomorphism Q8 −→ Gmin, and thus |Gmin| ≤ |Q8| = 8, once again
contradicting Theorem 2.2(i).

From now on we shall assume that n ≥ 8. Let s̃ = rn/ms. We claim that

(2.7) s̃
m
2 = 1

Indeed, recall that rn/2 = sm/2 = c; see Theorem 2.2(g). We now consider two cases.
Case I: m < n. Then rn/m is a square; hence, this element is central in Gmin (see

Theorem 2.2(d)) and thus

s̃
m
2 = r

n
2 s

m
2 = c2 = 1 ,

as claimed.
Case II: m = n. Since r and s commute modulo C ′

min = {1, c}, we have s̃2 =
cir2n/ms2, where i = 0 or 1. Since c, r2n/m and s2 are central elements of Cmin (see
Theorem 2.2(d) and (e)), c2 = 1 and m = n ≥ 8, we have

s̃
m
2 = (cir

2n
m s2)

m
4 = c

mi
4 r

n
2 s

m
2 = 1 · c · c = 1 .

This proves the claim.
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Now observe that Gmin = 〈r, s〉 = 〈r, s̃〉 and rsr−1s−1 = rs̃r−1s̃−1 = c. Thus we
may replace s by s̃. By (2.7), s̃ has order ≤ m/2. After repeating this process a
finite number of times, we may assume m = 2.

Thus Gmin is generated by elements r and s such that rn = s2 = 1 and
sr = rn/2+1s. Since these are the defining relations for M(2n) (see (2.6)), there
exists a surjective homomorphism M(2n) −→ Gmin. By [8, Lemma 4.4 (b)], this
homomorphism is an isomorphism. This completes the proof of Theorem 2.3. ¤

2.3. Trace form of M(2n)-Galois extension In this section we will show the
quadratic form of a M(2n)-Galois extension is hyperbolic. Hence it complete the
proof of Theorem 1.4 (and thus of Theorem 1.3). We introduce a notation. If G is
a group and j ≥ 1 is an integer, then Gj = 〈gj |g ∈ G〉 and it is a normal subgroup
of G .

Lemma 2.4. Let n ≥ 8. M(2n)n = 〈1〉 .

Proof. Assume y ∈ M(2n)n , we have y = (sarb)n , where a = 0 or 1 . If a = 0 then
y = (rb)n = (rn)b = 1 . If a = 1 then

y = (srb)n = (srb)2
n
2 = (r

n
4
+2)b n

2 = (rn)b(n
8
+1) = 1.

Thus M(2n)n = 〈1〉 , as desired. ¤

Proposition 2.5. Let n ≥ 8. Suppose L/K be an M(2n)-Galois extension, and
ζn ∈ K. Then the trace form qL/K is hyperbolic.

Proof. Assume qL/K is not hyperbolic. Then the quotient group M(2n)/M(2n)n =
M(2n) is not abelian. This is a contradiction to [9, Theorem 1.3]. ¤

Remark 2.6. By [9, Theorem 1.3], we can also conclude that condition (b) of
Theorem 1.3 cannot be substantially weakened. Indeed, for any power of 2 (2 ≤ j ≤
n
2 ) M(2n)j is a normal subgroup of M(2n) . Then the quotient group M(2n)/M(2n)j

is abelian.
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