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ON TRACE FORMS OF GALOIS EXTENSIONS

DoNG SEuUNG KANG

ABSTRACT. Let G be a finite group containing a non-abelian Sylow 2-subgroup. We
elementarily show that every G-Galois field extension L/K has a hyperbolic trace
form in the presence of root of unity.

1. INTRODUCTION

Let K be a field containing a primitive 4th root of unity with char(K)# 2. The
trace form of a finite field extension (or, more generally of an etale algebra) L is the
nonsingular quadratic form g7, /g : @ — trp, & (2%) defined over K. In this paper we

will be concerned with the following general question:

Question 1.1. Given a finite group G, which quadratic forms over K are trace
forms of G-Galois extensions L/K ?

Question 1.1 was studied in the mid-19th century; in particular, Sylvester [14],
Jacobi [7], and Hermite [5], [6] independently proved that the number of real roots
of a polynomial p(z) € R[x] equals the signature of the trace form of the Galois
algebra R[x]/(p(z)); see [1, Section 1]. There has been a resurgence of interest in
this topic at the end of the twentieth century, due in part, to an influential paper of
Serre [13], relating the trace form to the extension problem in inverse Galois theory.

In spite of all this activity, Question 1.1, in its full generality remains open: a
complete answer is not even known in the case where G is the cyclic group of order
16; see [4, p. 222]. But the situation simplifies considerably if we require K to

contain certain roots of unity.

Definition 1.2. Let (V, q) be a 2-dimensional nonsingular quadratic space over a
field K. The ¢ is said to be hyperbolic if it satisfies ¢ ~ (1, —1). Moreover, (V, q)
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is called a hyperbolic plane. In general, an orthogonal sum of hyperbolic planes is

called a hyperbolic space.

We write ((a1,--- ,a,)) to denote the n-fold Pfister form (1,a;) ® -+ ® (1, ay)
and q%/K is denoted by scaled trace form z — trL/K(ax2) , where a € K*.

Theorem 1.3 ([8, Theorem 1.1]). Let L/K be a G-Galois extension and let Go be
the Sylow 2-subgroup of G. Assume

(a) G2 is not abelian, and

(b) K contains a primitive eth root of unity, where e is the minimal value of

exp(H), as H ranges over all non-abelian subgroups of Ga.

Then the trace form qr i is hyperbolic over K.

Assuming only that K contains a primitive 4th root of unity, Mina¢ and Reich-
stein completely described the finite groups G which admit a G—Galois extension
L/K with a non-hyperbolic trace form; see [9, Theorem 1.3].

In view of [8, Reduction 3.3], the Theorem 1.3 reduced to the following Theo-

rem 1.4 :

Theorem 1.4. Let G be a non-abelian 2-group of exponent d. Then for every
G—Galois field extension L/K , the trace form qr,/k is hyperbolic, provided K con-

tains a primitive dth root of unity.

In [8], Theorem 1.4 was proved by contradiction with a counterexample of minimal
order, say Gpmin , and then [8, Propostion 4.6] gave us that G, = Qs or M(2n),
where n > 8 is a power of 2. The proof of [8, Proposition 4.6] relied on an old
group-theoretic result of Redei [10], which is actually a bit stronger that what we
needed; see [8, Lemma 4.5].

In this paper we will reprove Theorem 1.3. The approaches are in order: first of
all, we will investigate the properties of G, Without using the result of Redei and
then by using these properties we will produce that G, = M(2n), where n > 8
is a power of 2. Finally, we will also show that the quadratic form of M (2n) Galois

extension L/K is hyperbolic, provided K contains a primitive nth root of unity.

2. MAIN RESULTS

Throughout this paper the characteristic of any field K is not equal to 2.
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Definition 2.1. Let G be a 2-group of exponent d. We shall say that G has property
(*) if for every G-Galois extension L/K such that K contains a primitive dth root

of unity, the trace form g is hyperbolic.

2.1. Properties of G,,;,, Let G, be a counterexample of minimal order of The-

orem 1.4.

Theorem 2.2. (a) Every proper subgroup of Gpin is abelian.
(b) The center Z(Gpmin) has index 4 in Guip,.
(c) If S is a proper subgroup of Gin, then [S : (SN Z(Gmin))] < 2.
(d) 22 € Z(Gumin) for every € Guin.

Let G!,,, be the commutator subgroup of Gin.

(¢) Grin © Z(Grmin).-

(f) |Gh il = 2. In the sequel we shall denote the non-identity element of G! ..
by c.

(9) If 7 € Goin is an element of order n > 4 then /% = c.
(h) Guin, s generated by two elements r and s such that rs = csr.

(i) |Gmin| > 16.

Proof. (a) Immediate from [8, Proposition 3.5 (a)].

(b) Let H be a subgroup of index 2 in Guin; see, e.g., [11, 5.3.1(ii)]. Choose
g € Gin\H; applying [11, 5.3.1(ii)] once again, we can find a subgroup H' C Guin
such that ¢ € H' and [Gppn @ H'] = 2. By part (a) both H and H' are abelian.
Thus every x € H N H' commutes with g and with every element of H. Since H
and g generate G, we conclude that x € Z(G), i.e.,
(2.1) HNH' CZ(Gmin) -
Since Gpip is non-abelian,
(2.2) [Gmin : Z(Gmin)] > 4;

see, e.g., [12, 6.3.4]. On the other hand, since [Gpin : H] = [Gpin : H'] = 2, it is

easy to see that
(2.3) (Gin : (HNH")] = 4.

Part (b) now follows from (2.1-2.3). For future reference we remark that our argu-

ment also shows that
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(2.4) HOH = Z(Gpin) .

(c) By [11, 5.3.1(ii)], S is contained in a subgroup H of index 2. By (2.4), Z(G) =
H N H', where H' is another subgroup of G of index 2. Then SN Z(G) = SN H',
and the latter clearly has index < 2 in S.

(d) Apply part (c) to the cyclic group S = (x).
(e) Follows from the fact that the factor group Guin/Z(Gmin) has order 4 and,

hence, is abelian.

(f) Since Gpuip is a non-abelian 2-group, it has an element r of order n > 4. Let
H = (r) and Hy = (r"/?) be cyclic subgroups of G of orders n and 2 respectively.
By part (d), Hy is central and, hence, normal in G,,;,. By [8, Proposition 3.5 (b)],
Gmin/Ho does not have property (*) (otherwise Gy, would have property (*) as
well, contrary to our choice of Gy,ip). By the minimality of G,p;n, we conclude that

Gmin/Ho is abelian. In other words,

(2.5) Grnin C Ho -

min
Thus |G/ ...| < |Ho| = 2. On the other hand, since G, is non-abelian, |G/ . | # 1.
Thus G/,,,, has exactly 2 elements, as claimed.
(2) By (2.5), 72 € G' . . Since r has order n, ™2 # 1; thus /2 = c.
(h) Choose two non-commuting elements r and s in Gn,. By part (a), these

elements generate Gy,. By part (f), rsr—1s™! =c.

(i) The only non-abelian groups of order < 8 and the dihedral group Dg and the
quaternion group (Jg. Thus it is enough to show that these groups have property
(*).

If L/K is a Dg-Galois extension then g,k has the form ((—1,a,b)) for some
a,b € K*; see [3, Section 6, Exemple] or [4, Proposition 12]. Note that exp(Dg) = 4,
and if ¢4 € K then —1 is a square, and thus ((—1,a,b)) splits over K. This shows
that Dg has property (*).

Similarly, if L/K is a Qg-Galois extension then qr/x = ((—1,—1,a)) for some
a € K*; see [3, Section 6, Exemple] or [4, Proposition 12]. Note that exp(Qs) = 4,
and if ¢4 € K then ((—1,a,b)) splits over K. This shows that Qg also has property
(*) and thus |Gpin| > 16. O

2.2. The group M(2n) Let n > 4 be a power of 2. We define the group M (2n)
as the semidirect product of Z/nZ >17Z/2Z, where the nontrivial element of Z/27Z



TRACE FORMS 57

acts on Z/nZ by sending 1 to § + 1. Equivalently,

(2.6) M(2n) = {z,y| 2" = y? = 1,yz = 2"/*Ty}.
Note that M (8) is the dihedral group Ds.

Theorem 2.3. G, = M(2n) for some n > 8.

Proof. Write G, = (1, s), G).. = {1, c}, and sr = crs. Denote the orders of r and
s by n and m respectively. We may assume without loss of generality that n > m.

Since Gy is non-abelian, m > 2.

/
min

We claim that n > 4. Indeed, assume the contrary: n = m = 2. Then G /G

is an abelian group of order < 4. Thus |Gpin| < 4|G.,.;,,| = 8, contradicting Theo-
rem 2.2(i).

Thus n > 4. By Theorem 2.2(g), ¢ = /2. We now claim that n > 8. To prove
this claim we need to show that (n,m) # (4,2), and (4,4).

Indeed, if (n,m) = (4,2) then 7* = s> = 1 and sr = crs = r~!s, i.e., r and s
satisfy the defining relations of the dihedral group Dg. In other words, there exists
a surjective homomorphism Dg — Gin; thus |Gpmin| < |Dg| = 8, contradicting
Theorem 2.2(i). If (n,m) = (4,4) then by Theorem 2.2(g), s> = ¢ = r2. In this case
r and s satisfy the defining relations of the quaternion group Qg, namely % = 1,
r? = s2, and srs™! = r71; see, e.g., [12, Example 8.2.4]. Hence there exists a
surjecive homomorphism Qg — Gin, and thus |Gpin| < |Qs| = 8, once again
contradicting Theorem 2.2(i).

From now on we shall assume that n > 8. Let 5 = r/Mg We claim that

(2.7) 5

vl3

=1

Indeed, recall that 7/2 = §"/% = ¢; see Theorem 2.2(g). We now consider two cases.
Case I: m < n. Then /™ is a square; hence, this element is central in Gomin (see
Theorem 2.2(d)) and thus

S
|
<
3
[V
of3
|
o
no
|
—_

as claimed.

Case II: m = n. Since r and s commute modulo C’ . = {1,c}, we have 3% =
2n/m

cr2n/ ms2 where i = 0 or 1. Since ¢, r and s? are central elements of C,,;, (see

Theorem 2.2(d) and (e)), ¢ =1 and m = n > 8, we have

This proves the claim.
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Now observe that Guin = (r,s) = (r,5) and rsr~ts~t = 7571571 = ¢. Thus we
may replace s by s. By (2.7), s has order < m/2. After repeating this process a
finite number of times, we may assume m = 2.

Thus Gnin is generated by elements r and s such that " = s*> = 1 and
sr = r"/?*1s. Since these are the defining relations for M (2n) (see (2.6)), there
exists a surjective homomorphism M (2n) — G- By [8, Lemma 4.4 (b)], this

homomorphism is an isomorphism. This completes the proof of Theorem 2.3. O

2.3. Trace form of M (2n)-Galois extension In this section we will show the
quadratic form of a M (2n)-Galois extension is hyperbolic. Hence it complete the
proof of Theorem 1.4 (and thus of Theorem 1.3). We introduce a notation. If G is
a group and j > 1 is an integer, then G7 = (¢’|g € G) and it is a normal subgroup
of G.

Lemma 2.4. Letn > 8. M(2n)" = (1).
Proof. Assume y € M(2n)", we have y = (s%r)", where a = 0 or 1. If a = 0 then
y= ("= (") =1.1fa =1 then
y= o) = (srhE = (P = (P =,
Thus M (2n)"™ = (1), as desired. O

Proposition 2.5. Let n > 8. Suppose L/K be an M(2n)-Galois extension, and
Cn € K. Then the trace form qr i is hyperbolic.

Proof. Assume qr, is not hyperbolic. Then the quotient group M (2n)/M (2n)" =
M (2n) is not abelian. This is a contradiction to [9, Theorem 1.3]. O

Remark 2.6. By [9, Theorem 1.3], we can also conclude that condition (b) of
Theorem 1.3 cannot be substantially weakened. Indeed, for any power of 2 (2 < j <
) M(2n) is a normal subgroup of M (2n) . Then the quotient group M (2n)/M (2n)’

is abelian.
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