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ADDITIVE-QUADRATIC p-FUNCTIONAL INEQUALITIES
IN FUZZY BANACH SPACES

SuNG JIN LEE?® AND JEONG PIL SEO P *

ABSTRACT. Let

Mif@y): = Sf+y) - 1f(-o—9)+ 3@ —y) + o) ) — ),
Mof(ey): = 2f (30 + 1 (55E) + £ (50) - 1) - Fw).

Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic
p-functional inequalities
t

(0.1) N (M f(z,y) — pMaf(2,y),t) > T o(zy)
and
(0.2) N (Maf(x,y) — pMif(z,y),t) > m

in fuzzy Banach spaces, where p is a fixed real number with p # 1.

1. INTRODUCTION AND PRELIMINARIES

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [11, 16, 37]. In particular, Bag and
Samanta [3], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [15].
They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3, 19, 20] to investigate the

Hyers-Ulam stability of additive p-functional inequalities in fuzzy Banach spaces.

Definition 1.1 ([3, 19, 20, 21]). Let X be a real vector space. A function N :
X xR — [0,1] is called a fuzzy norm on X if for all x,y € X and all s,t € R,
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(x,t) =0 for t <0;
=0 if and only if N(x,t) =1 for all £ > 0;

1) N
N(ez,t) = (,||)1fc7é0
N
N

N
N
N3
Ny) N(x +y,s+t) > min{N(z,s), N(y,t)};

N5) N(z,-) is a non-decreasing function of R and lim;_,oo N(z,t) = 1.

)
)
)
)
)
Ne)

(
(
(
(
(
( for z # 0, N(x,-) is continuous on R.

The pair (X, N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are
given in [19, 20].

Definition 1.2 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A
sequence {z,} in X is said to be convergent or converge if there exists an x € X
such that lim,, o N(z, —x,t) = 1 for all ¢ > 0. In this case, x is called the limit of

the sequence {z,,} and we denote it by N-lim, o z,, = .

Definition 1.3 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A
sequence {x,} in X is called Cauchy if for each € > 0 and each ¢ > 0 there exists
an ng € N such that for all n > ny and all p > 0, we have N(zp4p — 2y, t) > 1 —c.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X — Y between fuzzy normed vector spaces X and
Y is continuous at a point xg € X if for each sequence {z,} converging to zp in X,
then the sequence {f(x,)} converges to f(zg). If f: X — Y is continuous at each
x € X, then f: X — Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of
Ulam [36] concerning the stability of group homomorphisms.

The functional equation f(x+vy) = f(z)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [13] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Rassias [28] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [12] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’

approach.
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The functional equation f(z +y) + f(z —y) = 2f(z) + 2f(y) is called the qua-
dratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. The stability of quadratic functional
equation was proved by Skof [35] for mappings f : By — Es, where E} is a normed
space and Fjs is a Banach space. Cholewa [9] noticed that the theorem of Skof is still
true if the relevant domain FE; is replaced by an Abelian group. The stability prob-
lems of various functional equations have been extensively investigated by a number
of authors (see [1, 5, 6, 7, 10, 17, 18, 22, 25, 26, 27, 29, 30, 31, 32, 33, 34, 38, 39)).

Park [23, 24| defined additive p-functional inequalities and proved the Hyers-
Ulam stability of the additive p-functional inequalities in Banach spaces and non-
Archimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic p-
functional inequality (0.1) in fuzzy Banach spaces by using the direct method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic p-
functional inequality (0.2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that X is a real vector space and (Y, N) is a fuzzy

Banach space. Let p be a real number with p #£ 1.

2. ADDITIVE-QUADRATIC p-FUNCTIONAL INEQUALITY (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic p-
functional inequality (0.1) in fuzzy Banach spaces.

We need the following lemma to prove the main results.

Lemma 2.1.
(i) If an odd mapping f : X — Y satisfies

(2.1) My f(x,y) = pMaf(z,y)

for all x,y € X, then f is the Cauchy additive mapping.
(ii) If an even mapping f : X — Y satisfies f(0) = 0 and (2.1), then f is the

quadratic mapping.

Proof. (i) Letting y = = in (2.1), we get f(2z) — 2f(x) = 0 and so f(2z) = 2f(z)
for all x € X. Thus

(22) 7 (%)= 55@)

for all z € X.
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It follows from (2.1) and (2.2) that

St - 1@ =16 = (20 (52 - 10 - 1))

and so
f@+y) =f@)+ f(y)

for all z,y € X.

(i) Letting y = z in (2.1), we get 1 f(22) — 2f(z) = 0 and so f(2z) = 4f(z) for
all x € X. Thus
(2.3) (%) =15
for all z € X.

It follows from (2.1) and (2.3) that

St ) + 5@ —y) ~ (@)~ )

=p<2f (x;ry> +2f <x;y> — f(z) —f(y))

= (340 + 37 -0~ ) - 1)

and so
flz+y)+ flz—y) =2f(z) + 2f(y)
for all z,y € X. g

Theorem 2.2. Let ¢ : X? — [0,00) be a function such that

[e.9]
io (2 E)
(2.4) Z4g0(2j,2j < 00
j=1
forall x,y € X.
(i) Let f: X — Y be an odd mapping satisfying

(25) N (le(:n,y) - Psz(fan)at) > m

for all x,y € X and all t > 0. Then A(x) := N-lim,_,o 2" f (2%) exists for each
x € X and defines an additive mapping A : X — Y such that

t
(2.6) N (f(z) — A(z),t) > W

for all x € X and allt > 0, where V(z,y) := Z;’il 27 (2%7 2%)
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(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (2.5). Then
Q(z) := N-limy, 4" f (2%) exists for each x € X and defines a quadratic mapping
Q: X —Y such that

(2.7) N (F() - Q(a), 1) > —

t+ 1®(z,z)
for all x € X and all t > 0, where ®(x,y) := Z‘;’;l 4 (2%, 2%) forall z,y € X.
Proof. (i) Letting y = x in (2.5), we get

t

(2.8) N (f (2z) —2f(z),t) > m

and so
w(r@-2 (5)1) 2 ey

for all x € X. Hence
(2.9)

x (25 (3) -2 (35) 1)
N (25 (3) =274 () ) -

N () -2 (3) )}
o (1) 21 () ) oo (1 ) 2 () )

t

ogm—1
> min 7 x)""’ L (x x)
7 Ql+17 U1 om—1 ‘2 omy gm

t
‘mm{wzso(wgm’ ’t+2m—1so<;m;n>}
t

z 1 m ¥ r
t+32 20 (5 55)
for all nonnegative integers m and [ with m > [ and all z € X and all t > 0. It
follows from (2.4) and (2.9) that the sequence {2" f(57%)} is a Cauchy sequence for all

r € X. Since Y is complete, the sequence {2" f(57)} converges. So one can define

the mapping A: X — Y by

A(z) := N- lim 2"f( —)

n—oo
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for all x € X. Moreover, letting | = 0 and passing the limit m — oo in (2.9), we get
(2.6).
By (2.5),

v (e () 1 (5 -1 (50)
A () 1) #1E) )
for all z,y € X, all t > 0 and all n € N. So
v (155 -1 (3) -7 ()
o (5) 202 - ()

t
o+ t

> =
T te(amon)  t+ 2% (g on)

for all z,y € X, all t > 0 and all n € N. Since lim,, . m = 1 for all
PICRPI
z,y € X and all t > 0,

Ale+3) - AGa) - 40) = (24 (252 - 40 - Aw))

for all z,y € X. By Lemma 2.1, the mapping A : X — Y is Cauchy additive.
(ii) Letting y = = in (2.5), we get

(2.10) N (;f (22) — 2f(ac),t> > tﬂ;(xx)
and so

t
tte(35) t+20(%%)

Y
PO

¥(r-11(3).
for all x € X. Hence
e ¥ (#5(5) - (5).9
i (89 () - (55) 1)
¥ () - ()9
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o (12 ) ) ¥ (1 (5 0 () )

v
=
=
Bl

t
4m-T
T2 (g ) ’4nf_1+2so<;m;n>}
t+2-dlp (G, 55r)" T2 Amlp (& )
t

2 1 m j T T
t+32 e (5 5)
for all nonnegative integers m and [ with m > [ and all z € X and all t > 0. It
follows from (2.4) and (2.11) that the sequence {4" f(5x)} is a Cauchy sequence for
all z € X. Since Y is complete, the sequence {4" f(5%)} converges. So one can
define the mapping Q : X — Y by
Qx) := N- lim 4"f(5;)

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.11), we
get (2.7).

The rest of the proof is similar to the above additive case. O

Corollary 2.3. Let 0 > 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm || - ||.
(i) Let f: X =Y be an odd mapping satisfying
S t
—t+0(]z]]P + [lylIP)
for all z,y € X and all t > 0. Then A(x) := N-lim, . 2" f(57) ewists for each
x € X and defines an additive mapping A : X — Y such that
(2P — 2)t
(2P — 2)t + 20||z||P

(2.12) N (M f(z,y) — pMaf(z,y),t)

N (f(z) = A(x),t) =

forallx € X and all t > 0.

(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (2.12). Then
Q(z) := N-lim, .o 4" f(5%) exists for each x € X and defines a quadratic mapping
Q: X —Y such that

(2P — 4)t

N(f(x) - Q(x)vt) > (2P — 4)t + 40| z||P

forallx € X and all t > 0.
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Proof. The proof follows from Theorem 2.2 by taking p(z,y) := 6(||z|” + |ly||?) for
all z,y € X, as desired. ]

Theorem 2.4. Let ¢ : X2 — [0,00) be a function such that
> 1 . .
5% (23x,23y) < 00
§=0
forall x,y € X.
(i) Let f : X — Y be an odd mapping satisfying (2.5). Then A(z) := N-lim, o0 5= f (2"2)
exists for each x € X and defines an additive mapping A : X — 'Y such that
t
N —Alz),t) > —————
(1) =40 2 s
for all x € X and all t > 0, where ®(x,y) := Z;io %g@ (2jx, ij) forall x,y € X.
(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (2.5). Then
Q(z) := N-lim, %nf (2™x) ezists for each x € X and defines a quadratic mapping
Q: X —Y such that
t
N - >
(@) =@ 2 g
forallx € X and all t > 0, where ¥(z,y) := Z;’;O %tp (272,27y) for all z,y € X.
Proof. (i) It follows from (2.8) that
1 1 t
N e O N [ —
(00 - 3@ 5t) = o 2asy

and so
2t t

> =
T2+ p(z,a)  t+ te(x,a)

N (10 - jrC2a).t)

for all z € X and all ¢t > 0.
(ii) It follows from (2.10) that
1 1 t
— —f(2 —tl> —
N (1) - e 5t) 2 s

and so
2t t

> =—

N (10 - J1C2o).t)

for all z € X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2. O

Corollary 2.5. Let 6 > 0 and let p be a real number with 0 < p < 1. Let X be a

normed vector space with norm || - ||.
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(i) Let f : X — Y be an odd mapping satisfying (2.12). Then A(x) := N-
lim,, 00 2%]“(2”33) exists for each x € X and defines an additive mapping A: X —Y
such that

(2 —2P)t

N (@) = A=) 2 5oy opiale

forallx € X and all t > 0.
(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (2.12). Then
Q(x) := N-lim, 4%f(2”1:) exists for each x € X and defines a quadratic mapping
Q: X —Y such that

N (f(z) = Q(x),t) =

forallx € X and all t > 0.

(4 — 2v)t
(4 —20)t + 40| =[P

Proof. The proof follows from Theorem 2.4 by taking p(z,y) := 6(||z||” + ||y||) for
all z,y € X, as desired. O]

3. ADDITIVE-QUADRATIC p-FUNCTIONAL INEQUALITY (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic p-

functional inequality (0.2) in fuzzy Banach spaces.

Lemma 3.1.
(i) If an odd mapping f : X — 'Y satisfies

(3.1) My f(z,y) = pMif(z,y)

for all x,y € X, then f is the Cauchy additive mapping.
(ii) If an even mapping f : X — Y satisfies f(0) = 0 and (3.1), then f is the

quadratic mapping.
Proof. (i) Letting y = 0 in (3.1), we get

(32) 7 (%)= 55@)

for all x € X.
It follows from (3.1) and (3.2) that

o) — o) = fly) = 2f(
= p(fz+y) — flz)— fly))
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and so

fl@+y)=flz)+ fy)
for all z,y € X.
(ii) Letting y = 0 in (3.1), we get

(3.3) 1(5)=7/@
for all x € X.
It follows from (3.1) and (3.3) that

%f(x+y)+%f(x—y)—f(w)—f(y)
2 (S50 2t (U51) - 1) - 1)

= (340 + 31 -0 - ) - 1))

and so
fl@+y)+ flz—y) =2f(z) +2f(y)
for all z,y € X. g
Theorem 3.2. Let ¢ : X2 — [0,00) be a function such that
(T Y
(3.4) ZO4¢(2j,2j)<oo
]:

forall xz,y € X.
(i) Let f: X — Y be an odd mapping satisfying
t

(3.5) N (M f(z,y) — pMyf(z,y),t) > T oy

for all x,y € X and all t > 0. Then A(x) := N-lim,_,o, 2" f (2%) exists for each
x € X and defines an additive mapping A : X — Y such that

t
(3.6) N(f@) =A@ 2 7500

for all x € X and all t > 0, where ®(x,y) := Z;io 2 (2%, 2%) forall z,y € X.
(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (3.5). Then
Q(z) := N-lim, 4" f (2%) exists for each x € X and defines a quadratic mapping
Q: X —Y such that

t

(3.7) N (f(z) — Q(z),t) > T U(,0)

for all x € X and allt > 0, where V(z,y) := Z?io 4 o (2%7 2%) forall x,y € X.
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Proof. (i) Letting y = 0 in (3.5), we get

38 N(f@ 27 (5).0) =¥ (27 (5) ~F@1) 2

for all x € X. Hence
(3.9)

N (21 () =21 (57) 1)
i (21 (2) 27 (52).0)

N (s (i) —271 () ) |
o 3 (1 () 21 () ) () 20 () )
me{W(;,O)’”.’wﬂl—l—w(wﬂ,O)}

. t t
_mln{t_{_ngp(;Z’O)’ 7t+2m180(2m$_1’0)}

z m—1 T
t+ 30 29 (55,0)
for all nonnegative integers m and [ with m > [ and all z € X and all t > 0. It
follows from (3.4) and (3.9) that the sequence {2" f(57)} is a Cauchy sequence for all

r € X. Since Y is complete, the sequence {2" f(57)} converges. So one can define
the mapping A: X — Y by

A(z) := N- lim 2"f( —)

n—oo

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.9), we get
(3.6).
By (3.5),

V() o ()o@
e (52) 12 1(2) )

¢
>—
Tt (&, E)
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for all x,y € X, allt > 0 and all n € N. So
+1 T+y €z Y
N (2" / <2n+1) =2'f (5) =21 (57)

() () @) )

t
o7 t

> =
T te(amon)  t+ 2% (g on)

for all z,y € X, all t > 0 and all n € N. Since lim;, oo ———F=—~ = 1 for all
t+2"¢( 53w

x,y € X and all t > 0,

24(5Y) - Alw) — ) = p(Alx +9) - Alo) - AG)

for all x,y € X. By Lemma 3.1, the mapping A : X — Y is Cauchy additive.
(ii) Letting y = 0 in (3.5), we get
(310) N (f@)~4f (3).1) =N (a5 (5) - f@).t) > _
2 2 t+ ¢(x,0)
for all x € X. Hence
(3.11)

¥ (1 (3) -1 () )
i (11 (3) 441 () )

¥ (1 () - 1 ()0 )
o {8 (3 (3) 41 (552) ) (1 () -1 () )

t t
> min —E A 4m—1
- {iﬂr@(;uo) Mf1+<p(wwl,o)}

. t t
=min{ ——, -,
{t—|—4lcp (%,0) t+4m 1o (555,0) }
t
> P R
t+ 270 Yy (37:0)

for all nonnegative integers m and [ with m > [ and all z € X and all t > 0. It
follows from (3.4) and (3.11) that the sequence {4" f(5%)} is a Cauchy sequence for

all z € X. Since Y is complete, the sequence {4"f(5%)} converges. So one can
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define the mapping Q : X — Y by
Q(z) := N- lim 4" f(—)
n—00 AL
for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.11), we

get (3.7).

The rest of the prrof is similar to the above additive case. O

Corollary 3.3. Let 6 > 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm || - ||.
(i) Let f: X =Y be an odd mapping satisfying

t
(3.12) N (Maf(z,y) — pMif(2,y),t) = P TR
for all x,y € X and all t > 0. Then A(x) := N-lim, .o 2" f(57%) exists for each
x € X and defines an additive mapping A : X — Y such that

N (f(e) - A(a),t) > =2

(2P — 2)t + 2P0||z||P
forallz € X and ollt > 0.
(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (3.12). Then
Q(z) := N-lim,, .o 4" f(5) exists for each x € X and defines a quadratic mapping
Q: X —Y such that
N (f(z) - Q(z),t) =

for all x € X and all t > 0.

(20 — 4)t
(20 — 4)t + 200]z]P

Proof. The proof follows from Theorem 3.2 by taking p(z,y) := 0(||z|” + |ly||) for
all z,y € X, as desired. ]

Theorem 3.4. Let ¢ : X% — [0,00) be a function such that

1
E:i I OJ
2 2x2)<oo

forallxz,y € X.
(i) Let f : X — Y be an odd mapping satisfying (3.5). Then A(z) := N-lim, .o 5 f (2"2)
exists for each x € X and defines an additive mapping A : X — Y such that

t
N —Alz),t) > ————
forall x € X and allt > 0, where ®(z,y) := Z]OOI 57 (2JSU 2J )for all z,y € X.
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(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (3.5). Then
Q(z) := N-lim, %nf (2™x) ezists for each x € X and defines a quadratic mapping
Q: X —Y such that

t
N (f(x) = Q(z),t) > m

forallx € X and allt > 0, where ¥(z,y) := Z;; %g@ (272,27y) for all z,y € X.

Proof. (i) It follows from (3.8) that

1 t L
N () - g0 ) 2 s

N (f0) - yreza.c)

for all x € X and all ¢t > 0.
(ii) It follows from (3.10) that

and so
2t t

> =
T2t +¢(22,0)  t+ Sp(2,0)

1 t t
N <f(m) - 4f(2x)74> > W

N (1(0) - 1201

for all x € X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.2. O

and so
4t t

> p—
T At+¢(22,0)  t+ Lo(22,0)

Corollary 3.5. Let 6 > 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm | - ||.
(i) Let f : X — Y be an odd mapping satisfying (3.12). Then A(x) := N-
lim,, o0 2%]‘"(2”:1:) exists for each x € X and defines an additive mapping A : X — Y
such that

(2 — 27t
(2 — 2P)t + 2P0 x||P

N (f(z) = A(z), 1)

Y

forallz e X.

(ii) Let f : X — Y be an even mapping satisfying f(0) = 0 and (3.12). Then
Q(x) := N-lim, 4%f(2”x) exists for each x € X and defines a quadratic mapping
Q: X —Y such that

(4—2P)t

N (@) = Qa)0) 2 (g

forallz e X.
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Proof. The proof follows from Theorem 3.4 by taking p(z,y) := 6(||z|” + |ly||?) for
all z,y € X, as desired. ]

10.

11.

12.

13.

14.

15.

16.

17.
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