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QUADRATIC ρ-FUNCTIONAL INEQUALITIES

Sungsik Yun a, Jung Rye Lee b, ∗ and Jeong Pil Seo c

Abstract. In this paper, we solve the quadratic ρ-functional inequalities

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖(0.1)

≤
∥∥∥ρ

(
4f

(x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥ ,

where ρ is a fixed complex number with |ρ| < 1, and
∥∥∥4f

(x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥(0.2)

≤ ‖ρ(f(x + y) + f(x− y)− 2f(x)− 2f(y))‖,
where ρ is a fixed complex number with |ρ| < 1

2
.

Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional
inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[11] concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)
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is called the quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The stability of
quadratic functional equation was proved by Skof [10] for mappings f : E1 → E2,
where E1 is a normed space and E2 is a Banach space. Cholewa [3] noticed that
the theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian
group.

The functional equation

4f

(
x + y

2

)
+ (x− y) = 2f(x) + 2f(y)

is called a Jensen type quadratic equation. See [2, 4, 7, 9, 12] for more information
on the stability problems of functional equations.

In Section 2, we solve the quadratic ρ-functional inequality (0.1) and prove the
Hyers-Ulam stability of the quadratic ρ-functional inequality (0.1) in complex Ba-
nach spaces.

In Section 3, we solve the quadratic ρ-functional inequality (0.2) and prove the
Hyers-Ulam stability of the quadratic ρ-functional inequality (0.2) in complex Ba-
nach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is
a real or complex normed space with norm ‖ · ‖ and that Y is a complex Banach
space with norm ‖ · ‖.

2. Quadratic ρ-functional Inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we solve and investigate the quadratic ρ-functional inequality

(0.1) in complex Banach spaces.

Lemma 2.1. If a mapping f : G → Y satisfies

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖(2.1)

≤
∥∥∥∥ρ

(
4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥

for all x, y ∈ G, then f : G → Y is quadratic.

Proof. Assume that f : G → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
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Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all
x ∈ G. Thus

f
(x

2

)
=

1
4
f(x)(2.2)

for all x ∈ G.
It follows from (2.1) and (2.2) that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖
≤

∥∥∥∥ρ

(
4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥
= |ρ|‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖

and so

f(x + y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. ¤

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1)
in complex Banach spaces.

Theorem 2.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be
a mapping satisfying

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖(2.3)

≤
∥∥∥∥ρ

(
4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

)∥∥∥∥ + θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2r − 4
‖x‖r(2.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (2.3), we get ‖2f(0)‖ ≤ |ρ|‖f(0)‖. So f(0) = 0.
Letting y = x in (2.3), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r(2.5)

for all x ∈ X. So
∥∥∥f(x)− 4f

(x

2

)∥∥∥ ≤ 2
2r

θ‖x‖r
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for all x ∈ X. Hence

∥∥∥4lf
( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥

≤ 2
2r

m−1∑

j=l

4j

2rj
θ‖x‖r(2.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.6)
that the sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {4nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.6), we get
(2.4).

It follows from (2.3) that

‖h(x + y) + h(x− y)− 2h(x)− 2h(y)‖
= lim

n→∞ 4n

∥∥∥∥f

(
x + y

2n

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)
− 2f

( y

2n

)∥∥∥∥

≤ lim
n→∞ 4n|ρ|

∥∥∥∥4f

(
x + y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)
− 2f

( y

2n

)∥∥∥∥

+ lim
n→∞

4nθ

2nr
(‖x‖r + ‖y‖r)

= |ρ|
∥∥∥∥4h

(
x + y

2

)
+ h (x− y)− 2h(x)− 2h(y)

∥∥∥∥

for all x, y ∈ X. So

‖h(x+y)+h(x−y)−2h(x)−2h(y)‖ ≤
∥∥∥∥ρ

(
4h

(
x + y

2

)
+ h (x− y)− 2h(x)− 2h(y)

)∥∥∥∥

for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.
Now, let T : X → Y be another quadratic mapping satisfying (2.4). Then we

have

‖h(x)− T (x)‖ = 4n
∥∥∥h

( x

2n

)
− T

( x

2n

)∥∥∥

≤ 4n
(∥∥∥h

( x

2n

)
− f

( x

2n

)∥∥∥ +
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
)

≤ 4 · 4n

(2r − 4)2nr
θ‖x‖r,
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which tends to zero as n →∞ for all x ∈ X. So we can conclude that h(x) = T (x)
for all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a
unique quadratic mapping satisfying (2.4). ¤

Theorem 2.3. Let r < 2 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (2.3). Then there exists a unique quadratic mapping h : X → Y

such that

‖f(x)− h(x)‖ ≤ 2θ

4− 2r
‖x‖r(2.7)

for all x ∈ X.

Proof. It follows from (2.5) that∥∥∥∥f(x)− 1
4
f(2x)

∥∥∥∥ ≤
θ

2
‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
4l

f(2lx)− 1
4m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
4j

f(2jx)− 1
4j+1

f(2j+1x)
∥∥∥∥

≤
m−1∑

j=l

2rj

4j

θ

2
‖x‖r(2.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.8) that the sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
4n f(2nx)} converges. So one can define the mapping

h : X → Y by

h(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.8), we get
(2.7).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Remark 2.4. If ρ is a real number such that −1 < ρ < 1 and Y is a real Banach
space, then all the assertions in this section remain valid.

3. Quadratic ρ-functional Inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1
2 .

In this section, we solve and investigate the quadratic ρ-functional inequality
(0.2) in complex Banach spaces.
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Lemma 3.1. If a mapping f : G → Y satisfies∥∥∥∥4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥(3.1)

≤ ‖ρ(f(x + y) + f(x− y)− 2f(x)− 2f(y))‖
for all x, y ∈ G, then f : G → Y is quadratic.

Proof. Assume that f : G → Y satisfies (3.1).
Letting x = y = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.1), we get

∥∥4f
(

x
2

)− f(x)
∥∥ ≤ 0 and so

4f
(x

2

)
= f(x)(3.2)

for all x ∈ G.
It follows from (3.1) and (3.2) that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖
=

∥∥∥∥4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)

∥∥∥∥
≤ |ρ|‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖

and so

f(x + y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ G. ¤

We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (3.1)
in complex Banach spaces.

Theorem 3.2. Let r > 2 and θ be nonnegative real numbers, and let f : X → Y be
a mapping such that

‖4f

(
x + y

2

)
+ f (x− y)− 2f(x)− 2f(y)‖(3.3)

≤ ‖ρ(f(x + y) + f(x− y)− 2f(x)− 2f(y))‖+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2rθ

2r − 4
‖x‖r(3.4)

for all x ∈ X.

Proof. Letting x = y = 0 in (3.3), we get ‖f(0)‖ ≤ |ρ|‖2f(0)‖. So f(0) = 0.
Letting y = 0 in (3.3), we get
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∥∥∥4f
(x

2

)
− f(x)

∥∥∥ ≤ θ‖x‖r(3.5)

for all x ∈ X. So
∥∥∥4lf

( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥

≤
m−1∑

j=l

4j

2rj
θ‖x‖r(3.6)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.6)
that the sequence {4nf( x

2n )} is a Cauchy sequence for all x ∈ X. Since Y is complete,
the sequence {4nf( x

2n )} converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞ 4nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.6), we get
(3.4).

It follows from (3.3) that
∥∥∥∥4h

(
x + y

2

)
+ h (x− y)− 2h(x)− 2h(y)

∥∥∥∥

= lim
n→∞ 4n

∥∥∥∥4f

(
x + y

2n+1

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)
− 2f

( y

2n

)∥∥∥∥

≤ lim
n→∞ 4n

∥∥∥∥ρ

(
f

(
x + y

2n

)
+ f

(
x− y

2n

)
− 2f

( x

2n

)
− 2f

( y

2n

))∥∥∥∥

+ lim
n→∞

4nθ

2nr
(‖x‖r + ‖y‖r)

= ‖ρ(h(x + y) + h(x− y)− 2h(x)− 2h(y))‖
for all x, y ∈ X. So∥∥∥∥4h

(
x + y

2

)
+ h (x− y)− 2h(x)− 2h(y)

∥∥∥∥ ≤ ‖ρ(h(x+y)+h(x−y)−2h(x)−2h(y))‖

for all x, y ∈ X. By Lemma 3.1, the mapping h : X → Y is quadratic.
Now, let T : X → Y be another quadratic mapping satisfying (3.4). Then we

have

‖h(x)− T (x)‖ = 4n
∥∥∥h

( x

2n

)
− T

( x

2n

)∥∥∥

≤ 4n
(∥∥∥h

( x

2n

)
− f

( x

2n

)∥∥∥ +
∥∥∥T

( x

2n

)
− f

( x

2n

)∥∥∥
)

≤ 2 · 4n · 2r

(2r − 4)2nr
θ‖x‖r,
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which tends to zero as n →∞ for all x ∈ X. So we can conclude that h(x) = T (x)
for all x ∈ X. This proves the uniqueness of h. Thus the mapping h : X → Y is a
unique quadratic mapping satisfying (3.4). ¤

Theorem 3.3. Let r < 2 and θ be positive real numbers, and let f : X → Y be a
mapping satisfying (3.3). Then there exists a unique quadratic mapping h : X → Y

such that

‖f(x)− h(x)‖ ≤ 2rθ

4− 2r
‖x‖r(3.7)

for all x ∈ X.

Proof. It follows from (3.5) that
∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤
2rθ

4
‖x‖r

for all x ∈ X. Hence
∥∥∥∥

1
4l

f(2lx)− 1
4m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
4j

f(2jx)− 1
4j+1

f(2j+1x)
∥∥∥∥

≤ 2rθ

4

m−1∑

j=l

2rj

4j
‖x‖r(3.8)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(3.8) that the sequence { 1

4n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
4n f(2nx)} converges. So one can define the mapping

h : X → Y by

h(x) := lim
n→∞

1
4n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.8), we get
(3.7).

The rest of the proof is similar to the proof of Theorem 3.2. ¤

Remark 3.4. If ρ is a real number such that −1
2 < ρ < 1

2 and Y is a real Banach
space, then all the assertions in this section remain valid.
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