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QUADRATIC p-FUNCTIONAL INEQUALITIES

SUNGSIK YUN?, JUNG RYE LEE"* AND JEONG PIL SEO ¢

ABSTRACT. In this paper, we solve the quadratic p-functional inequalities

(0.1) 1f(@+y) + flz—y) —2f(z) = 2f (W)l

<o (1 (F52) + F@-w) —2f@) - 2fw) |
where p is a fixed complex number with |p| < 1, and
(0.2) |4 (F52) + £ @ =) - 27(@) — 27|

Sle(fx+y) + flx—y) —2f(x) = 2f W),

where p is a fixed complex number with |p| < 1.
Furthermore, we prove the Hyers-Ulam stability of the quadratic p-functional
inequalities (0.1) and (0.2) in complex Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The stability problem of functional equations originated from a question of Ulam
[11] concerning the stability of group homomorphisms.

The functional equation f(z+y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Gavruta [5] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The functional equation

flx+y)+ flx—y)=2f(z) +2f(y)

Received by the editors March 21, 2016. Accepted April 07, 2016.

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52.

Key words and phrases. Hyers-Ulam stability, quadratic p-functional inequality.
*Corresponding author.

(© 2016 Korean Soc. Math. Educ.
145



146 SUNGSIK YUN, JUuNG RYE LEE & JEONG PIL SEO

is called the quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The stability of
quadratic functional equation was proved by Skof [10] for mappings f : E3 — FE»,
where E; is a normed space and Es is a Banach space. Cholewa [3] noticed that
the theorem of Skof is still true if the relevant domain FE is replaced by an Abelian
group.

The functional equation

11 (T32) + - = 240) + 210

is called a Jensen type quadratic equation. See [2, 4, 7, 9, 12] for more information
on the stability problems of functional equations.

In Section 2, we solve the quadratic p-functional inequality (0.1) and prove the
Hyers-Ulam stability of the quadratic p-functional inequality (0.1) in complex Ba-
nach spaces.

In Section 3, we solve the quadratic p-functional inequality (0.2) and prove the
Hyers-Ulam stability of the quadratic p-functional inequality (0.2) in complex Ba-
nach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is
a real or complex normed space with norm || - || and that Y is a complex Banach

space with norm || - [|.

2. QUADRATIC p-FUNCTIONAL INEQUALITY (0.1)

Throughout this section, assume that p is a fixed complex number with |p| < 1.
In this section, we solve and investigate the quadratic p-functional inequality

(0.1) in complex Banach spaces.
Lemma 2.1. If a mapping f : G — Y satisfies
(2.1) If(z+y) + flz—y) —2f(z) = 2f (vl
<o (4 (552) + £lo - - 200 - 210))|

for all x,y € G, then f : G — Y is quadratic.

Proof. Assume that f: G — Y satisfies (2.1).
Letting z =y = 0 in (2.1), we get [|2f(0)|| < |p|||f(0)]]. So f(0) = 0.
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Letting y = = in (2.1), we get || f(2z) —4f(x)|| <0 and so f(2z) = 4f(x) for all
x € G. Thus

(2:2) 1(5)=7/@

for all z € G.
It follows from (2.1) and (2.2) that

1f(@+y)+ flz—y) —2f(z) = 2f(v)l|
<o (ar (552) + 1@ =0 - 25 - 26|
= pllf(z+y) + f(z —y) = 2f(z) = 2f ()]

and so
flx+y)+ flz—y)=2f(z) +2f(y)
for all z,y € G. O

We prove the Hyers-Ulam stability of the quadratic p-functional inequality (2.1)

in complex Banach spaces.

Theorem 2.2. Let r > 2 and 6 be nonnegative real numbers, and let f : X — Y be
a mapping satisfying

28) IS+ 9) + F—9) — 26 @)~ 26 )
<o (a7 (552 + £ e =) - 20600 = 200 ) | + 00l + 1)

forall x,y € X. Then there exists a unique quadratic mapping h : X — 'Y such that

26

(2.4) 1£ (@) = h(2)| < 57—

forallz e X.

)"

Proof. Letting z =y = 0 in (2.3), we get |2£(0)|| < |pl|lf(0)]|. So f(0) = 0.
Letting y = x in (2.3), we get

(2.5) 1f(22) — 4f (@) < 20|

for all x € X. So

T

l#@) =7 (3)] < 2ol
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for all x € X. Hence

m—1
[4r(z) -1 ()] = ;HW () -+ (5=l
26) < jmzz”‘ ol

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (2.6)
that the sequence {4" f (57 )} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence {4" f(57)} converges. So one can define the mapping h: X — Y by

h(z) := lim 4”f( o)

n—oo

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.6), we get
(2.4).
It follows from (2.3) that

Ih(z +y) + h(z — y) — 2h(z) — 2h
r+y x

(7)o (

< Tim 47| H4f (5et) + 1 (5

(™ =+ lylI")

)l
) (3) - (L)
) (2) - (2)

= lim 4"
n—oo

4"
+ hm D o

— |l H4h <“y> h(z—y) —2h(z) — 2h(y)H

for all z,y € X. So
Tty

(et +(a=5) 20 -200)] < o (40 (52 ) 41w = ) = 20) — 2000) )|

for all x,y € X. By Lemma 2.1, the mapping h : X — Y is quadratic.
Now, let T': X — Y be another quadratic mapping satisfying (2.4). Then we

Ih(z) = T(z)] = 4" h(%)*(%)”

(I (55) =4 ()7 (7) =+ ()]

4 - 4"
< mmlwll’}

have

IN
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which tends to zero as n — oo for all z € X. So we can conclude that h(x) = T'(x)
for all z € X. This proves the uniqueness of h. Thus the mapping h: X — Y is a
unique quadratic mapping satisfying (2.4). O

Theorem 2.3. Let r < 2 and 6 be positive real numbers, and let f : X — Y be a
mapping satisfying (2.3). Then there exists a unique quadratic mapping h: X —Y
such that

20 .
(2.7) 1f () = h(2)| < 7l
4—2
forallz e X.
Proof. 1t follows from (2.5) that
1 T
|10 - 10| < Gl
for all z € X. Hence
m—1
1 IR 1, 1
376 - s < | Baen - gt
j=l
m—1 ;
276, .
(2.8) < Ll
j=1

for all nonnegative integers m and [ with m > [ and all x € X. It follows from
(2.8) that the sequence {Z f(2"z)} is a Cauchy sequence for all z € X. Since Y
is complete, the sequence {z f(2"z)} converges. So one can define the mapping
h: X —Y by .
h(zx) := nan;O 4—nf(2”$)

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (2.8), we get
(2.7).

The rest of the proof is similar to the proof of Theorem 2.2. O

Remark 2.4. If p is a real number such that —1 < p < 1 and Y is a real Banach

space, then all the assertions in this section remain valid.

3. QUADRATIC p-FUNCTIONAL INEQUALITY (0.2)

Throughout this section, assume that p is a fixed complex number with |p| < %
In this section, we solve and investigate the quadratic p-functional inequality

(0.2) in complex Banach spaces.
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Lemma 3.1. If a mapping [ : G — Y satisfies

(3.) 17 (552) + 1@ =) =210 - 210)|
< llp(f (@ +y) + flz —y) —2f(x) = 2f(y))]l
for allx,y € G, then f : G — Y is quadratic.

Proof. Assume that f: G — Y satisfies (3.1).
Letting # = y = 0 in (3.1), we get Hf(O)H < Ipll2f ()] So £(0) =

Letting y = 0 in (3.1), we get H4f (%) H < 0 and so
(3.2) 1f (5) = fla)
for all x € G.

It follows from (3.1) and (3.2) that
If(z+y)+ flz—y) —2f(z) — 2f(v)]l
— o7 (%52) + £e -0 - 200 - 2100
<|plllf(z +y) + flz —y) —2f(x) — 2f (v)|

and so
fle+y)+ flz—y) =2f(z) +2f(y)
for all z,y € G. O

We prove the Hyers-Ulam stability of the quadratic p-functional inequality (3.1)

in complex Banach spaces.

Theorem 3.2. Let r > 2 and 6 be nonnegative real numbers, and let f : X — Y be
a mapping such that

(3.3) laf (”” i y) Cf e —y) - 20() — 21()]
<o+ 9) + Fla— ) — 20(2) — 2£ @) + 02l + o]

for all x,y € X. Then there exists a unique quadratic mapping h : X — Y such that

"o
(3.4) I1£@) ~ @) < 5o
forallx € X.

)"

Proof. Letting x =y = 0 in (3.3), we get || £(0)]] < |p|||2f(0)|. So f(0) =
Letting y = 0 in (3.3), we get
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(3.5) |47 (5) - 1@ < ollal”

for all x € X. So
m—1

45 (G) —s Gl = S s () -7 ()l
m—1

(3.6) < > 2rj9!\x||’"

j=l

IN

for all nonnegative integers m and | with m > [ and all z € X. It follows from (3.6)
that the sequence {4" f(5%)} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence {4" f(57%)} converges. So one can define the mapping h: X — Y by

R 3 n _
h(z) := lim 4 f(2n)
for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.6), we get

(3.4).
It follows from (3.3) that

4h <x ; y) +h(z—y) —2h(x) — 2h(y)H

(Gt <1 (P5) 2 () 2 (50)

= lim 4"
n—oo

< Jim & p(f () (50) -2 (5) - ()]
+ lim 2mq(llftrll“r (]
— Hp( (x +y) + h(z —y) — 2h(z) — 2h(y))||

for all z,y € X. So

‘4h <x2y> + h(x —y) — 2h(z) —2h(y)’

for all z,y € X. By Lemma 3.1, the mapping h : X — Y is quadratic.

< [lp(h(z+y)+h(z—y) —2h(z) = 2h(y))]

Now, let T': X — Y be another quadratic mapping satisfying (3.4). Then we

e () -7 ()]
(1) =4 () I () =+ ()]

2-4™.2"
< mmlwll’}

have

|7 (z) =T ()|

IN



152 SUNGSIK YUN, JUuNG RYE LEE & JEONG PIL SEO

which tends to zero as n — oo for all z € X. So we can conclude that h(x) = T'(x)
for all z € X. This proves the uniqueness of h. Thus the mapping h: X — Y is a
unique quadratic mapping satisfying (3.4). O

Theorem 3.3. Let v < 2 and 6 be positive real numbers, and let f : X — Y be a
mapping satisfying (3.3). Then there exists a unique quadratic mapping h: X —Y
such that

(3.7) 1f(z) = h(z)|| <
forallx € X.

e

Proof. 1t follows from (3.5) that

HOEFER

for all x € X. Hence

m—

< 5|3

HIEk) — () )~ g F)

m 'I"
7” I

(3.8)

for all nonnegative integers m and [ with m > [ and all x € X. It follows from
(3.8) that the sequence {z f(2"z)} is a Cauchy sequence for all z € X. Since Y
is complete, the sequence {ﬁ f(2"z)} converges. So one can define the mapping
h: X —Y by
h(z) := lim Zf@” x)

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.8), we get
(3.7).

The rest of the proof is similar to the proof of Theorem 3.2. O

Remark 3.4. If p is a real number such that —% <p< % and Y is a real Banach

space, then all the assertions in this section remain valid.
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