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BOUNDEDNESS IN THE NONLINEAR PERTURBED
DIFFERENTIAL SYSTEMS VIA {,-SIMILARITY

YooN HoE Goo

ABSTRACT. This paper shows that the solutions to the nonlinear perturbed differ-
ential system

v =1+ [ g5, y(), Try(s))ds + h(t,y(t), Toy (1)),

have the bounded property by imposing conditions on the perturbed part

[ ot 0(6), Tiy(s)) s, bt ), Ty,

to
and on the fundamental matrix of the unperturbed system y’ = f(¢,y) using the
notion of h-stability.

1. INTRODUCTION AND PRELIMINARIES

We are interested in the relations between the solutions of the unperturbed non-

linear nonautonomous differential system

(1.1) ?(t) = f(t, (1), x(to) = o,
and the solutions of the perturbed differential system of (1.1) including two operators

T1,T5 such that
t

(12) o = f(ty) + / o(s,9(s). Toy(s))ds + h(t y(t), Toy (1)), y(to) = v,

to
where f € C(R*T x R",R"), g,h € C(RT x R" x R",R"), Rt = [0,00) , f(¢,0) =0,
g(t,0,0) = h(t,0,0) = 0, and T1,Ty : C(RT,R") — C(RT,R") are a continuous
operator and R" is an n-dimensional Euclidean space. We always assume that the
Jacobian matrix f, = df/0x exists and is continuous on R x R™. The symbol | - |

will be used to denote any convenient vector norm in R™.
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Let z(t, to, xo) denote the unique solution of (1.1) with x(tg, to, zo) = xo, existing
on [tp,00). Then we can consider the associated variational systems around the zero

solution of (1.1) and around x(t), respectively,

(1.3) V' (t) = fo(t,0)v(t), v(to) = vo
and
(1.4) 2(t) = fo(t, z(t, to, m0))2(t), 2(to) = 20-

The fundamental matrix ®(¢,tg,zg) of (1.4) is given by
d
D(t,t = —ux(¢,t
( ) 07$0) 8.’1}0x( ) 07$0>a
and ®(t,10,0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].

Definition 1.1. The system (1.1) (the zero solution z = 0 of (1.1)) is called an
h-system if there exist a constant ¢ > 1 and a positive continuous function h on R
such that

|2(t)] < clwo| h(t) h(to) ™

for t > to > 0 and |zo| small enough (here h(t)~! = ﬁ)

Definition 1.2. The system (1.1) (the zero solution z = 0 of (1.1)) is called
(hS)h-stable if there exists 6 > 0 such that (1.1) is an h-system for |zo| < § and h

is bounded.

Pachpatte[14, 15] investigated the stability, boundedness, and the asymptotic be-
havior of the solutions of perturbed nonlinear systems under some suitable conditions
on the perturbation term g and on the operator T'. The purpose of this paper is to
investigate bounds for solutions of the nonlinear differential systems

The notion of h-stability (hS) was introduced by Pinto [16,17] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker than
those given exponential asymptotic stability) under some perturbations. That is,
Pinto extended the study of exponential asymptotic stability to a variety of reason-
able systems called h-systems. Choi, Ryu [5] and Choi, Koo, and Ryu [6] investigated
bounds of solutions for nonlinear perturbed systems. Also, Goo [8,9,10] and Goo et
al. [3,4] studied the boundedness of solutions for the perturbed differential systems.

Let M denote the set of all n x n continuous matrices A(t) defined on R* and

be the subset of M consisting of those nonsingular matrices S(t) that are of class C*
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with the property that S(¢) and S~!(t) are bounded. The notion of t..-similarity in
M was introduced by Conti [7].

Definition 1.3. A matrix A(t) € M is teo-similar to a matrix B(t) € M if there

exists an n x n matrix F(t) absolutely integrable over RY, i.e.,

/OO [F(8)]dt < oo
0

such that

(1.5) S(t)+ S(t)B(t) — A(t)S(t) = F(t)
for some S(t) € N.
The notion of t-similarity is an equivalence relation in the set of all n x n

continuous matrices on R™, and it preserves some stability concepts [7, 12].

We give some related properties that we need in the sequal.

Lemma 1.4 ([17]). The linear system
(1.6) ¥ = A(t)x, x(ty) = wo,

where A(t) is an n X n continuous matriz, is an h-system (respectively h-stable) if
and only if there exist ¢ > 1 and a positive and continuous (respectively bounded)
function h defined on RY such that

(1.7) [6(t,t0)| < ch(t) h(to) ™"
fort >ty >0, where ¢(t,to) is a fundamental matriz of (1.6).

We need Alekseev formula to compare between the solutions of (1.1) and the

solutions of perturbed nonlinear system

(1.8) y = ft.y) + 9(t.y), y(to) = vo,
where g € C(RT x R",R") and ¢(¢,0) = 0. Let y(t) = y(¢, to, yo) denote the solution
of (1.8) passing through the point (¢g, o) in RT x R™.

The following is a generalization to nonlinear system of the variation of constants

formula due to Alekseev [1].

Lemma 1.5 ([2]). Let = and y be a solution of (1.1) and (1.8), respectively. If
yo € R™, then for all t > ty such that x(t,t0,y0) € R™, y(¢,t0,y0) € R™,

y(t to, y0) = (t, o, yo) + / B(t, 5, (s)) g(s.y(s)) ds.

to
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Theorem 1.6 ([5]). If the zero solution of (1.1) is hS, then the zero solution of
(1.3) is hS.

Theorem 1.7 ([6]). Suppose that f,(t,0) is teo-similar to f,(t,z(t,to,zq)) fort >
to > 0 and |xo| < § for some constant 6 > 0. If the solution v = 0 of (1.3) is hS,
then the solution z =0 of (1.4) is hS.

Lemma 1.8. (Bihari — type inequality) Let u,A € C(RT), w € C((0,00)) and

w(u) be nondecreasing in u. Suppose that, for some ¢ > 0,

u(t) <c+ /t A(s)w(u(s))ds, t >ty > 0.

to
Then
¢
u(t) < W1 [W(c) +/ A(S)d8]7 to <t < b,
to

where W(u) = [* -4 W= (u) is the inverse of W (u) and

up w(s)’

¢
by = sup {t >ty : W(e) + / A(s)ds € domWfl}.

to

Lemma 1.9 ([11]). Let u, A1, A2, A3, A, A5, Ag, A7, As € C(RT), w € C((0,00)), and

w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ >0 and 0 < ty < t,

wty et [ naspuds+ [ ratputunds + [ x5 [

to to to to

+As5(7) /T Ae(r)w(u(r))dr)drds —l—/ A7($) /S Ag(T)w(u(r))drds.

Then
u(t) < W W)+ /t t (M) + dals) + As(s) /t ") + A7) tT No(r)dr)dr
() /t ) )\g(T)dT)ds},

where tg <t < by, W, W™ are the same functions as in Lemma 1.8, and

S

by = sup {tztO:W(c)+/t ()\1(5)+)\2(8)—|—)\3(5)/ (A7)

to to

(1) / " Ae(r)dr)dr + A(s) / ) AS(T)dT> ds € domW’l}.

to to

For the proof we prepare the following lemma.
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Corollary 1.10. Let u, A1, A2, A3, A4, A5, A6, A7 € C(RT), w € C((0,0)), and w(u)

be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0 and 0 < ty < t,

u(t) < e+ / M (s)u(s)ds + / "o(s) / ) (Aa(ryu(r)

+A4(7) /tT )\5(7")w(u(r))dr) drds + /tt A6($) /ts M (T)w(u(T))drds.
Then

s

u(t) < w1 [W(c) + /t <)\1(3) + )\2(8)/ (A3(7) 4+ (1) /T A5 (r)dr)dT

to to to
S
+X6(s) )\7(7')d7') ds} ,
to
where tg <t < by, W, W™ are the same functions as in Lemma 1.8, and

by = sup {t > to: W(c) +/t ()\1(5) +)\2(s)/ (As(7) + Aa(7) /T s (r)dr)dr

to to to

S

+Aq(s) / ) )\7(7’)d7’> ds € domw—l}.

to
Lemma 1.11 ([3]). Let u, A1, A2, A3, A1, A5, A6 € C(RT), w € C((0,00)) and w(u)
be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0,

u(t) <c+ /t A1(s)u(s)ds + /t Ao (s)w(u(s))ds + /t As(s) /s A (T)u(T)drds

to to to to

+ / " (s) / (P w(u(r))drds, 0 <t <t.

to to
Then

t s s

u(®) < W Wi+ [ ()4 dals) + 2alo) [ Nalr)dr +25(5) [ Ao(rr )],
to to to

where tog <t < by, W, W are the same functions as in Lemma 1.8, and

b= sup {£ > 1o Wi(e) + /t (Ma(s) + dals) + As(s) / Aa(r)dr

to to
+Xs5(5) )\G(T)d7'> ds € domW_l}.
to

2. MAIN RESULTS

In this section, we investigate boundedness for solutions of perturbed functional
differential systems using the notion of f..-similarity.

We need the lemma to prove the following theorem.
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Lemma 2.1. Let u, A1, A2, A3, Ay, A5, A6, A7, As € C(R), w € C((0,0)), and w(u)

be nondecreasing in u, u < w(u). Suppose that for some ¢ >0 and 0 < ty < t,

u(t) <ec —l—/ A1(s)u(s)ds —l—/ Aa2($) /s()\g(T)u(T) + A (m)w(u(r))

to to to

(21) T t s

() /t No(r)u(r)dr)drds + /t M(s) /t As(F)w(u(r))drds.
Then
(2.2)

s

u(t) < Wt [W(c) + /t </\1(s) + )\g(s)/ (A3(7) 4+ Aa(7) + As(7) /T Xe(r)dr)dT

to to to
+ )\7(8)/ Ag(T)dT)dS},
to

where tg <t < by, W, W= are the same functions as in Lemma 1.8, and

s

b1 = sup {t >to: W(e) + /t()\l(s) + )\g(s)/ (A3(7) 4+ (1)

to to

+5(7) X6 (r)dr)dT + A7 (s) Ag(T)dT)ds € domW_l}.
to to
Proof. Define a function v(t) by the right member of (2.1) and let us differentiate
v(t) to obtain

V(1) = M (t)u(t) + )\g(t)/t (Ag(s)u(s) + Aa(s)w(u(s))

Fas(s) / ) Na(r)u(r)dr )ds + (1) / As(s)w(u(s))ds.

to to
This reduces to

V() < ()\1(75) + Aa(t) /t()\g(s) + Aa(s) + As(s) /S X¢(T)dT)ds

to to

2000 [ M) wlol),

to

t > to, since v(t) is nondecreasing, u < w(u), and u(t) < v(t). Now, by integrating
the above inequality on [tg,t] and v(ty) = ¢, we have

T

v(t) <c+ t A1(s) + Aa(s) S()\g(T) + (1) + As(7) Xe(r)dr)dT
e s i

+ A7(s) /S )xg(T)dT)U)(U(s))ds.

to
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By view of Lemma 1.8, (2.3) yields the estimate (2.2). O

To obtain the bounded result, the following assumptions are needed:

(H1) fz(¢,0) is too-similar to f(t,x(t,t0,z0)) for t > to > 0 and |zg| < § for
some constant 6 > 0.

(H2) The solution z = 0 of (1.1) is hS with the increasing function h.

(H3) w(u) be nondecreasing in u such that v < w(u) and 1w (u) < w(%) for some
v > 0.

Theorem 2.2. Let a,b,c,k,q € C(RT). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies
(2.4)

t
l9(t,y, Try)| < a(®)]y(t)| + bB)w(ly@)]) + [Try @), [Ty (B)] < b(t)/t k(s)ly(s)lds

and

t
25) Ih(t.y(6). Tay@))] < o) (O] + 1Z2)]), 172000 < [ alo)ullat)ds,

0
where a,b,c,k,q,w € LY(RY), w € C((0,00)), T1,T» are a continuous operator.
Then, any solution y(t) = y(t,to,yo) of (1.2) is bounded on [tg,00) and it satisfies

ol < hOW Wi+ e [ (et + [ (0 + 00

to to

+b(7) /T k(r)dr)dr + c(s) /T q(7)d7> ds} ,

to to

where tg <t < by, W, W= are the same functions as in Lemma 1.8, and

by = sup {t > to: W(e) + e /tt (c(s) + /ts(a(T) + b(T)

+b(r) / " k() dr)dr + e(s) /

to to

q(T)dT) ds € domW ™1 }

Proof. Let z(t) = x(t,to,y0) and y(t) = y(t,to,yo) be solutions of (1.1) and (1.2),
respectively. By Theorem 1.6, since the solution x = 0 of (1.1) is hS, the solution
v = 0 of (1.3) is hS. Therefore, from (H1), by Theorem 1.7, the solution z = 0

of (1.4) is hS. Applying the nonlinear variation of constants formula Lemmma 1.5,
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together with (2.4) and (2.5), we have

t s

)1 o)+ [ 120 5,56)I( [ Lol (), Tryls))ldr + (s, y(s), Tey(s))] ) ds

to to

< cilwl®h(t0) "+ [ ea@h(s) ([ a(rly(r)] + bryuutr))

to

) [yl + (o) v)+ [ atruduldn)ds.

By the assumptions (H2) and (H3), we obtain

ly(s)
h(s)

(0] < ealiol(®) h(t0) ™+ [ an(t)(<t)
|

SN e RN 1Co RPN AN 105
[ (a5 eI b [ ke land

+c(s) /ts q(T)u}(M)dT) ds.

Define u(t) = |y(t)||h(t)|~!. Then, by Lemma 2.1, we have
()] < AOW W) + e /t (c(s) + /t (a(r) + b(r) + b(r) /t " k(r)dr)dr
+c(s) /tT q(T)dT) ds],

where ¢ = ¢1]yo| h(tp)~!. The above estimation yields the desired result since the

function h is bounded, and so the proof is complete. U

Remark 2.3. Letting ¢(t) = 0 in Theorem 2.2, we obtain the same result as that
of Theorem 3.1 in [10].

Theorem 2.4. Let a,b,c,d,k,q € C(RT). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies

(2.6) t 19(s,5(5), Try(s))lds < a(B)[y(D)] + b(E)w(ly(B)]) + [Try(D)], [Try(D)]

t
swq[M@MM$ws

and

(2.7) |h(t,y(t), Tay(1))| < (C(t)w(ly(t)l) + |T2y(7f)\>, Toy(t)] < d(t)/t q(s)ly(s)|ds
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where a,b,c,d, k,q,w € L*(RY), w € C((0,00)), Th,T> are a continuous operator.
Then, any solution y(t) = y(t,to,yo) of (1.2) is bounded on [tg,00) and it satisfies

t

O] < W W0+ / (als)+b(s) +e(s)+(s) / k(r)drd(s) / q(r)dr)ds).

to to to

where tg <t < by, W, W= are the same functions as in Lemma 1.8, and

by = sup {t >to: Wie)+ c /t (a(s) +b(s) + c(s)

to

S S

+b(s) | k(r)dr + d(s)/ q(T)dT) ds € domW_l}.
to to

Proof. Let z(t) = x(t,t0,y0) and y(t) = y(t,to,yo) be solutions of (1.1) and (1.2),

respectively. By the same argument as in the proof in Theorem 2.2, the solution

z =0 of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5,

together with (2.6) and (2.7), we have

t
[y()] < calyolAlt) h(to) ™" +/t C2h(t)h(8)_1(a(8)ly(8)| + (b(s) + c(s))w(ly(s)])

+s) [ Kyully(r)dr + ds) [

to to

a(r)ly(r)ldr ) ds.

It follows from (H2) and (H3) that

(0] < xlul@) i)+ [ exne) (a) 20+ 05) + ot 22
PR Co) o (o)l
eb(s) [ we ¥ ) [ o Dar)as

Set u(t) = |y(t)||h(t)|~!. Then, by Lemma 1.11, we have

S

WO < BOW [0+ [ (ale) 4060 +ots) 4 6) [ Ky

+d(s) /ts q(T)dT) ds},

1

where ¢ = c1|yo| h(to)~". Thus, any solution y(t) = y(t,to,yo) of (1.2) is bounded

on [tg,00), and so the proof is complete. O

Remark 2.5. Letting ¢(¢t) = d(t) = 0 in Theorem 2.4, we obtain the same result as
that of Theorem 3.7 in [10].
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Theorem 2.6. Let a,b,c,d, k € C(R"). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies
(2.8)

9y, Try)| < a(®)]y()] + b(B)w(ly(®)]) + [Try @), I Tiy(1)] < b(t)/ k(s)w(ly(s))ds

and
(29)  |n(t,y(t), Toy(e))] < ( / e(s)w(ly(s))ds + [Ty (D)), | Tay()] < d(B)y(2)]

where a,b,c,d,k,w € L*RY), w € C((0,00)), T1,To are a continuous operator.
Then, any solution y(t) = y(t,to,y0) of (1.2) is bounded on [tg,o0) and it satisfies

O] < ROW W) +ea [ (at)+ [ lalr) 40 +ef7)

to to

+b(7) /T k(r)dr)dT) ds}

to

where tog <t < by, W, W are the same functions as in Lemma 1.8, and

b= sup{t> 10 W(0) 4o / t (d(s) + / (a(r) + b(r) + e(7)

to to

+b(7) / k(r)dr)dT)ds € domvv*l}.
to

Proof. Let z(t) = x(t,to,y0) and y(t) = y(t,to,yo) be solutions of (1.1) and (1.2),

respectively. By the same argument as in the proof in Theorem 2.2, the solution

z =0 of (1.4) is hS. By Lemma 1.4, Lemma 1.5, together with (2.8) and (2.9), we

have

)] < erlyoltle) o) + [ ean®ils) ! ([ (@r)lyo)] + by

to to

#() [ kyulurir+ [ eyl + de)lus))ds

to

Using the assumptions (H2) and (H3), we obtain

(0] < calln@) eo) ™ + [ ea(t) (a9 22+ [ 1D

to

+(b(7) + e(7))uw( ‘Z@) +b(7) / " k() 'Z(’“)’ )dr)dT) ds.

to
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Let u(t) = |y(t)||h(t)]~1. Then, it follows from Corollary 1.10 that we have

O] < AOW W) +ea [ (at)+ [ lalr) 4000 +ef7)

to to
—l—b(T)/ k(r)dr)dT) ds],
to
where ¢ = c1|yo| h(to)~!. From the above estimation, we obtain the desired result.

Thus, the theorem is proved. O

Remark 2.7. Letting ¢(t) = d(t) = 0 in Theorem 2.6, we obtain the same result as
that of Theorem 3.5 in [10].

Theorem 2.8. Let a,b,c,k,q € C(RT). Suppose that (H1), (H2), (H3), and g in
(1.2) satisfies

(2.10) l9(s,y(5), Tay(s))lds < a(t)[y(O)] + bE)w(ly(®)]) + [Try @), [Try(D)]

<b@) [ k(s)w(ly(s)])ds

to
and
t
(211)  [h(ty(@), Tey®)] < et) (Jy(0)]) + [Toy(0)]), [Toy ()] < / a(s)ly(s)lds
0
where a,b,c,k,q,w € LYR"Y), w € C((0,00)), Ty, T» are a continuous operator.
Then, any solution y(t) = y(t,to,y0) of (1.2) is bounded on [tg,o0) and it satisfies

t

(O] < W W) + e / (als) +b(s) + e(s) + b(s) / Ck(r)dr

+c(s) /ts q(T)dT) ds],

where tg <t < by, W, W= are the same functions as in Lemma 1.8, and

by = sup {t >t : Wi(e) + 2 /tt <a(s) + b(s) + ¢(s)

+b(s) / T k(r)dr + e(s) /

q(T)dT) ds domW_l}.
to to
Proof. Let z(t) = x(t,to,y0) and y(t) = y(t,to,yo) be solutions of (1.1) and (1.2),
respectively. By the same argument as in the proof in Theorem 2.2, the solution

z =0 of (1.4) is hS. Using the nonlinear variation of constants formula Lemma 1.5,
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together with (2.10) and (2.11), we have

)] < alal®) hlto) "+ [ cah(h(s)™((as) + o)y + bo)u(ly())

to
S

+b(s) | K(T)w(ly(T))dr + ¢(s) /SQ(T)Iy(T)IdT

to to

ds.

N———

Using (H2) and (H3), we obtain

ly(t)| < c1lyo|h(t) h(to) ™" +/

to

exh?)((als) + c(s)) 21

+b(s) ts E(m)w( |z23 )dt + c(s) /ts q(7) ‘zg:y dT) ds.

Put u(t) = |y(¢)||h(t)| 1. Then, an application of Lemma 1.11 yields

()|
W)

+ b(s)w(

s

O] < HOW W)+ ex [ (als) +5) + cls) + bls) | K(r)ar

to to
—|—C(s)/ q(T)dT)dS},
to
where ¢ = c1]yo| h(to)~'. Then, any solution y(t) = y(t,t9,v0) of (1.2) is bounded

on [tg,00), and so the proof is complete. ]

Remark 2.9. Letting ¢(t) = 0 in Theorem 2.8, we obtain the same result as that
of Theorem 3.7 in [10].
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