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ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES
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Abstract. Let

M1f(x, y) : =
3

4
f(x + y)− 1

4
f(−x− y) +

1

4
f(x− y) +

1

4
f(y − x)− f(x)− f(y),

M2f(x, y) : = 2f
(x + y

2

)
+ f

(x− y

2

)
+ f

(y − x

2

)
− f(x)− f(y).

Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic
ρ-functional inequalities

N(M1f(x, y), t) ≥ N (ρM2f(x, y), t)(0.1)

where ρ is a fixed real number with |ρ| < 1, and

N (M2f(x, y), t) ≥ N (ρM1f(x, y), t)(0.2)

where ρ is a fixed real number with |ρ| < 1
2
.

1. Introduction and Preliminaries

Katsaras [14] defined a fuzzy norm on a vector space to construct a fuzzy vector
topological structure on the space. Some mathematicians have defined fuzzy norms
on a vector space from various points of view [11, 16, 38]. In particular, Bag and
Samanta [3], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [15].
They established a decomposition theorem of a fuzzy norm into a family of crisp
norms and investigated some properties of fuzzy normed spaces [4].

We use the definition of fuzzy normed spaces given in [3, 19, 20] to investigate the
Hyers-Ulam stability of additive ρ-functional inequalities in fuzzy Banach spaces.
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Definition 1.1 ([3, 19, 20, 21]). Let X be a real vector space. A function N :
X × R→ [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.
(N6) for x 6= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are

given in [15, 19].

Definition 1.2 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A
sequence {xn} in X is said to be convergent or converge if there exists an x ∈ X

such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of
the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.3 ([3, 19, 20, 21]). Let (X, N) be a fuzzy normed vector space. A
sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists
an n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be
complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and
Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X,
then the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each
x ∈ X, then f : X → Y is said to be continuous on X (see [4]).

The stability problem of functional equations originated from a question of
Ulam [37] concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [13] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Rassias [29] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [12] by replacing the
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unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the qua-
dratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. The stability of quadratic functional
equation was proved by Skof [36] for mappings f : E1 → E2, where E1 is a normed
space and E2 is a Banach space. Cholewa [9] noticed that the theorem of Skof is still
true if the relevant domain E1 is replaced by an Abelian group. The stability prob-
lems of various functional equations have been extensively investigated by a number
of authors (see [1, 5, 6, 7, 10, 17, 18, 22, 25, 26, 27, 30, 31, 32, 33, 34, 35, 39, 40]).

Park [23, 24] defined additive ρ-functional inequalities and proved the Hyers-
Ulam stability of the additive ρ-functional inequalities in Banach spaces and non-
Archimedean Banach spaces.

In Section 2, we prove the Hyers-Ulam stability of the additive-quadratic ρ-
functional inequality (0.1) in fuzzy Banach spaces by using the direct method.

In Section 3, we prove the Hyers-Ulam stability of the additive-quadratic ρ-
functional inequality (0.2) in fuzzy Banach spaces by using the direct method.

Throughout this paper, assume that X is a real vector space and (Y,N) is a fuzzy
Banach space.

2. Additive-quadratic ρ-functional Inequality (0.1)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-
functional inequality (0.1) in fuzzy Banach spaces. Let ρ be a real number with
|ρ| ≤ 1.

We need the following lemma to prove the main results.

Lemma 2.1.
(i) If an odd mapping f : X → Y satisfies

N(M1f(x, y), t) ≥ N(ρM2f(x, y), t)(2.1)

for all x, y ∈ X and all t > 0, then f is the Cauchy additive mapping.
(ii) If an even mapping f : X → Y satisfies f(0) = 0 and (2.1), then f is the
quadratic mapping.

Proof. (i) Letting y = x in (2.1), we get N(f(2x)− 2f(x), t) = 1 for all t > 0 and so



250 Sungsik Yun, Jung Rye Lee & Dong Yun Shin

f(2x) = 2f(x) for all x ∈ X. Thus

f
(x

2

)
=

1
2
f(x)(2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

N(f(x + y)− f(x)− f(y), t) = N(ρ
(

2f

(
x + y

2

)
− f(x)− f(y)

)
, t)

= N(ρ(f(x + y)− f(x)− f(y)), t)

for all t > 0 and so

f(x + y) = f(x) + f(y)

for all x, y ∈ X by (N5).
(ii) Letting y = x in (2.1), we get N

(
1
2f(2x)− 2f(x), t

)
= 1 for all t > 0 and so

f(2x) = 4f(x) for all x ∈ X. Thus

f
(x

2

)
=

1
4
f(x)(2.3)

for all x ∈ X.
It follows from (2.1) and (2.3) that

N

(
1
2
f(x + y) +

1
2
f(x− y)− f(x)− f(y), t

)

= N

(
ρ

(
2f

(
x + y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
, t

)

= N

(
ρ

(
1
2
f(x + y) +

1
2
f(x− y)− f(x)− f(y)

)
, t

)

for all t > 0 and so

f(x + y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X by (N5). ¤

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that
∞∑

j=1

4jϕ
( x

2j
,

y

2j

)
< ∞(2.4)

for all x, y ∈ X.
(i) Let f : X → Y be an odd mapping satisfying

N (M1f(x, y), t) ≥ min
{

N (ρM2f(x, y), t) ,
t

t + ϕ(x, y)

}
(2.5)
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for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t + 1
2Ψ(x, x)

(2.6)

for all x ∈ X and all t > 0, where Ψ(x, y) :=
∑∞

j=1 2jϕ
(

x
2j , y

2j

)
.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then
Q(x) := N -limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a quadratic mapping

Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t + 1
2Φ(x, x)

(2.7)

for all x ∈ X and all t > 0, where Φ(x, y) :=
∑∞

j=1 4jϕ
(

x
2j , y

2j

)
for all x, y ∈ X.

Proof. (i) Letting y = x in (2.5), we get

N (f (2x)− 2f(x), t) ≥ t

t + ϕ(x, x)
(2.8)

and so

N
(
f (x)− 2f

(x

2

)
, t

)
≥ t

t + ϕ
(

x
2 , x

2

)

for all x ∈ X. Hence

N
(
2lf

( x

2l

)
− 2mf

( x

2m

)
, t

)
(2.9)

≥ min
{

N
(
2lf

( x

2l

)
− 2l+1f

( x

2l+1

)
, t

)
, · · ·

· · · , N
(
2m−1f

( x

2m−1

)
− 2mf

( x

2m

)
, t

)}

= min
{

N

(
f

( x

2l

)
− 2f

( x

2l+1

)
,

t

2l

)
, · · · , N

(
f

( x

2m−1

)
− 2f

( x

2m

)
,

t

2m−1

)}

≥ min

{
t
2l

t
2l + ϕ

(
x

2l+1 , x
2l+1

) , · · · ,
t

2m−1

t
2m−1 + ϕ

(
x

2m , x
2m

)
}

= min

{
t

t + 2lϕ
(

x
2l+1 , x

2l+1

) , · · · ,
t

t + 2m−1ϕ
(

x
2m , x

2m

)
}

≥ t

t + 1
2

∑m
j=l+1 2jϕ

(
x
2j , x

2j

)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It
follows from (2.4) and (2.9) that the sequence {2nf( x

2n )} is a Cauchy sequence for all
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x ∈ X. Since Y is complete, the sequence {2nf( x
2n )} converges. So one can define

the mapping A : X → Y by

A(x) := N - lim
n→∞ 2nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.9), we get
(2.6).

By (2.5),

N

(
2n

(
f

(
x + y

2n

)
− f

( x

2n

)
− f

( y

2n

))

−ρ

(
2n+1f

(
x + y

2n+1

)
− 2nf

( x

2n

)
− 2nf

( y

2n

))
, 2nt

)
≥ t

t + ϕ
(

x
2n , y

2n

)

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n

(
f

(
x + y

2n

)
− f

( x

2n

)
− f

( y

2n

))

−ρ

(
2n+1f

(
x + y

2n+1

)
− 2nf

( x

2n

)
− 2nf

( y

2n

))
, t

)

≥
t

2n

t
2n + ϕ

(
x
2n , y

2n

) =
t

t + 2nϕ
(

x
2n , y

2n

)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞ t
t+2nϕ( x

2n , y
2n ) = 1 for all

x, y ∈ X and all t > 0,

A(x + y)−A(x)−A(y) = ρ

(
2A

(
x + y

2

)
−A(x)−A(y)

)

for all x, y ∈ X. By Lemma 2.1, the mapping A : X → Y is Cauchy additive.
(ii) Letting y = x in (2.5), we get

N

(
1
2
f (2x)− 2f(x), t

)
≥ t

t + ϕ(x, x)
(2.10)

and so

N
(
f (x)− 4f

(x

2

)
, t

)
≥

t
2

t
2 + ϕ

(
x
2 , x

2

) =
t

t + 2ϕ
(

x
2 , x

2

)

for all x ∈ X. Hence
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N
(
4lf

( x

2l

)
− 4mf

( x

2m

)
, t

)
(2.11)

≥ min
{

N
(
4lf

( x

2l

)
− 4l+1f

( x

2l+1

)
, t

)
, · · ·

· · · , N
(
4m−1f

( x

2m−1

)
− 4mf

( x

2m

)
, t

)}

= min
{

N

(
f

( x

2l

)
− 4f

( x

2l+1

)
,

t

4l

)
, · · · , N

(
f

( x

2m−1

)
− 4f

( x

2m

)
,

t

4m−1

)}

≥ min

{
t
4l

t
4l + 2ϕ

(
x

2l+1 , x
2l+1

) , · · · ,
t

4m−1

t
4m−1 + 2ϕ

(
x

2m , x
2m

)
}

= min

{
t

t + 2 · 4lϕ
(

x
2l+1 , x

2l+1

) , · · · ,
t

t + 2 · 4m−1ϕ
(

x
2m , x

2m

)
}

≥ t

t + 1
2

∑m
j=l+1 4jϕ

(
x
2j , x

2j

)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It
follows from (2.4) and (2.11) that the sequence {4nf( x

2n )} is a Cauchy sequence for
all x ∈ X. Since Y is complete, the sequence {4nf( x

2n )} converges. So one can
define the mapping Q : X → Y by

Q(x) := N - lim
n→∞ 4nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.11), we
get (2.7).

The rest of the proof is similar to the above additive case. ¤

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying

N (M1f(x, y), t) ≥ min
{

N (ρM2f(x, y), t) ,
t

t + θ(‖x‖p + ‖y‖p)

}
(2.12)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each

x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t
(2p − 2)t + 2θ‖x‖p

for all x ∈ X and all t > 0.
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(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.12). Then
Q(x) := N -limn→∞ 4nf( x

2n ) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ (2p − 4)t
(2p − 4)t + 4θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X, as desired. ¤

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that
∞∑

j=0

1
2j

ϕ
(
2jx, 2jy

)
< ∞

for all x, y ∈ X.
(i) Let f : X → Y be an odd mapping satisfying (2.5). Then

A(x) := N − lim
n→∞

1
2n

f (2nx)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t + 1
2Φ(x, x)

for all x ∈ X and all t > 0, where Φ(x, y) :=
∑∞

j=0
1
2j ϕ

(
2jx, 2jy

)
for all x, y ∈ X.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then
Q(x) := N -limn→∞ 1

4n f (2nx) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t + 1
2Ψ(x, x)

for all x ∈ X and all t > 0, where Ψ(x, y) :=
∑∞

j=0
1
4j ϕ

(
2jx, 2jy

)
for all x, y ∈ X.

Proof. (i) It follows from (2.8) that

N

(
f(x)− 1

2
f(2x),

1
2
t

)
≥ t

t + ϕ(x, x)

and so

N

(
f(x)− 1

2
f(2x), t

)
≥ 2t

2t + ϕ(x, x)
=

t

t + 1
2ϕ(x, x)

for all x ∈ X and all t > 0.
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(ii) It follows from (2.10) that

N

(
f(x)− 1

4
f(2x),

1
2
t

)
≥ t

t + ϕ(x, x)
and so

N

(
f(x)− 1

4
f(2x), t

)
≥ 2t

2t + ϕ(x, x)
=

t

t + 1
2ϕ(x, x)

for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 2.2. ¤

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying (2.12). Then A(x) := N -
limn→∞ 1

2n f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y

such that

N (f(x)−A(x), t) ≥ (2− 2p)t
(2− 2p)t + 2θ‖x‖p

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.12). Then
Q(x) := N -limn→∞ 1

4n f(2nx) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ (4− 2p)t
(4− 2p)t + 4θ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.4 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X, as desired. ¤

3. Additive-quadratic ρ-functional Inequality (0.2)

In this section, we prove the Hyers-Ulam stability of the additive-quadratic ρ-
functional inequality (0.2) in fuzzy Banach spaces. Let ρ be a real number with
|ρ| ≤ 1

2 .

Lemma 3.1.
(i) If an odd mapping f : X → Y satisfies

N(M2f(x, y), t) ≥ N(ρM1f(x, y), t)(3.1)

for all x, y ∈ X and all t > 0, then f is the Cauchy additive mapping.
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(ii) If an even mapping f : X → Y satisfies f(0) = 0 and (3.1), then f is the
quadratic mapping.

Proof. (i) Letting y = 0 in (3.1), we get N
(
2f

(
x
2

)− f(x), t
)

= 1 for all t > 0. So

f
(x

2

)
=

1
2
f(x)(3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

N(f(x + y)− f(x)− f(y), t) = N

(
2f

(
x + y

2

)
− f(x)− f(y), t

)

= N(ρ(f(x + y)− f(x)− f(y)), t)

for all t > 0 and so

f(x + y) = f(x) + f(y)

for all x, y ∈ X by (N5).
(ii) Letting y = 0 in (3.1), we get N

(
4f

(
x
2

)− f(x), t
)

for all t > 0. So

f
(x

2

)
=

1
4
f(x)(3.3)

for all x ∈ X.
It follows from (3.1) and (3.3) that

N

(
1
2
f(x + y) +

1
2
f(x− y)− f(x)− f(y), t

)

= N

(
2f

(
x + y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y), t

)

= N

(
ρ

(
1
2
f(x + y) +

1
2
f(x− y)− f(x)− f(y)

)
, t

)

for all t > 0 and so

f(x + y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X by (N5). ¤

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that
∞∑

j=0

4jϕ
( x

2j
,

y

2j

)
< ∞(3.4)

for all x, y ∈ X.
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(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y), t) ≥ min
{

N (ρM1f(x, y), t) ,
t

t + ϕ(x, y)

}
(3.5)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf
(

x
2n

)
exists for each

x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t + Φ(x, 0)
(3.6)

for all x ∈ X and all t > 0, where Φ(x, y) :=
∑∞

j=0 2jϕ
(

x
2j , y

2j

)
for all x, y ∈ X.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then
Q(x) := N -limn→∞ 4nf

(
x
2n

)
exists for each x ∈ X and defines a quadratic mapping

Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t + Ψ(x, 0)
(3.7)

for all x ∈ X and all t > 0, where Ψ(x, y) :=
∑∞

j=0 4jϕ
(

x
2j , y

2j

)
for all x, y ∈ X.

Proof. (i) Letting y = 0 in (3.5), we get

N
(
f(x)− 2f

(x

2

)
, t

)
= N

(
2f

(x

2

)
− f(x), t

)
≥ t

t + ϕ(x, 0)
(3.8)

for all x ∈ X. Hence

N
(
2lf

( x

2l

)
− 2mf

( x

2m

)
, t

)
(3.9)

≥ min
{

N
(
2lf

( x

2l

)
− 2l+1f

( x

2l+1

)
, t

)
, · · ·

· · · , N
(
2m−1f

( x

2m−1

)
− 2mf

( x

2m

)
, t

)}

= min
{

N

(
f

( x

2l

)
− 2f

( x

2l+1

)
,

t

2l

)
, · · · , N

(
f

( x

2m−1

)
− 2f

( x

2m

)
,

t

2m−1

)}

≥ min

{
t
2l

t
2l + ϕ

(
x
2l , 0

) , · · · ,
t

2m−1

t
2m−1 + ϕ

(
x

2m−1 , 0
)
}

= min

{
t

t + 2lϕ
(

x
2l , 0

) , · · · ,
t

t + 2m−1ϕ
(

x
2m−1 , 0

)
}

≥ t

t +
∑m−1

j=l 2jϕ
(

x
2j , 0

)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It
follows from (3.4) and (3.9) that the sequence {2nf( x

2n )} is a Cauchy sequence for all
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x ∈ X. Since Y is complete, the sequence {2nf( x
2n )} converges. So one can define

the mapping A : X → Y by

A(x) := N - lim
n→∞ 2nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (3.9), we get
(3.6).

By (3.5),

N

(
2n+1f

(
x + y

2n+1

)
− 2nf

( x

2n

)
− 2nf

( y

2n

)

− ρ

(
2n

(
f

(
x + y

2n

)
− f

( x

2n

)
− f

( y

2n

)))
, 2nt

)
≥ t

t + ϕ
(

x
2n , y

2n

)

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N

(
2n+1f

(
x + y

2n+1

)
− 2nf

( x

2n

)
− 2nf

( y

2n

)

− ρ

(
2n

(
f

(
x + y

2n

)
− f

( x

2n

)
− f

( y

2n

)))
, t

)

≥
t

2n

t
2n + ϕ

(
x
2n , y

2n

) =
t

t + 2nϕ
(

x
2n , y

2n

)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞ t
t+2nϕ( x

2n , y
2n ) = 1 for all

x, y ∈ X and all t > 0,

2A

(
x + y

2

)
−A(x)−A(y) = ρ (A(x + y)−A(x)−A(y))

for all x, y ∈ X. By Lemma 3.1, the mapping A : X → Y is Cauchy additive.
(ii) Letting y = 0 in (3.5), we get

N
(
f(x)− 4f

(x

2

)
, t

)
= N

(
4f

(x

2

)
− f(x), t

)
≥ t

t + ϕ(x, 0)
(3.10)

for all x ∈ X. Hence

N
(
4lf

( x

2l

)
− 4mf

( x

2m

)
, t

)
(3.11)
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≥ min
{

N
(
4lf

( x

2l

)
− 4l+1f

( x

2l+1

)
, t

)
, · · ·

· · · , N
(
4m−1f

( x

2m−1

)
− 4mf

( x

2m

)
, t

)}

= min
{

N

(
f

( x

2l

)
− 4f

( x

2l+1

)
,

t

4l

)
, · · · , N

(
f

( x

2m−1

)
− 4f

( x

2m

)
,

t

4m−1

)}

≥ min

{
t
4l

t
4l + ϕ

(
x
2l , 0

) , · · · ,
t

4m−1

t
4m−1 + ϕ

(
x

2m−1 , 0
)
}

= min

{
t

t + 4lϕ
(

x
2l , 0

) , · · · ,
t

t + 4m−1ϕ
(

x
2m−1 , 0

)
}

≥ t

t +
∑m−1

j=l 4jϕ
(

x
2j , 0

)

for all nonnegative integers m and l with m > l and all x ∈ X and all t > 0. It
follows from (3.4) and (3.11) that the sequence {4nf( x

2n )} is a Cauchy sequence for
all x ∈ X. Since Y is complete, the sequence {4nf( x

2n )} converges. So one can
define the mapping Q : X → Y by

Q(x) := N - lim
n→∞ 4nf(

x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.11), we
get (3.7).

The rest of the prrof is similar to the above additive case. ¤

Corollary 3.3. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed
vector space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying

N (M2f(x, y), t) ≥ min
{

N (ρM1f(x, y), t) ,
t

t + θ(‖x‖p + ‖y‖p)

}
(3.12)

for all x, y ∈ X and all t > 0. Then A(x) := N -limn→∞ 2nf( x
2n ) exists for each

x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ (2p − 2)t
(2p − 2)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.12). Then
Q(x) := N -limn→∞ 4nf( x

2n ) exists for each x ∈ X and defines a quadratic mapping
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Q : X → Y such that

N (f(x)−Q(x), t) ≥ (2p − 4)t
(2p − 4)t + 2pθ‖x‖p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X, as desired. ¤

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that
∞∑

j=1

1
2j

ϕ
(
2jx, 2jy

)
< ∞

for all x, y ∈ X.
(i) Let f : X → Y be an odd mapping satisfying (3.5). Then A(x) := N -limn→∞ 1

2n f (2nx)
exists for each x ∈ X and defines an additive mapping A : X → Y such that

N (f(x)−A(x), t) ≥ t

t + Φ(x, 0)

for all x ∈ X and all t > 0, where Φ(x, y) :=
∑∞

j=1
1
2j ϕ

(
2jx, 2jy

)
for all x, y ∈ X.

(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then
Q(x) := N -limn→∞ 1

4n f (2nx) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ t

t + Ψ(x, 0)

for all x ∈ X and all t > 0, where Ψ(x, y) :=
∑∞

j=1
1
4j ϕ

(
2jx, 2jy

)
for all x, y ∈ X.

Proof. (i) It follows from (3.8) that

N

(
f(x)− 1

2
f(2x),

t

2

)
≥ t

t + ϕ(2x, 0)
and so

N

(
f(x)− 1

2
f(2x), t

)
≥ 2t

2t + ϕ(2x, 0)
=

t

t + 1
2ϕ(2x, 0)

for all x ∈ X and all t > 0.
(ii) It follows from (3.10) that

N

(
f(x)− 1

4
f(2x),

t

4

)
≥ t

t + ϕ(2x, 0)
and so

N

(
f(x)− 1

4
f(2x), t

)
≥ 4t

4t + ϕ(2x, 0)
=

t

t + 1
4ϕ(2x, 0)
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for all x ∈ X and all t > 0.
The rest of the proof is similar to the proof of Theorem 3.2. ¤

Corollary 3.5. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a
normed vector space with norm ‖ · ‖.
(i) Let f : X → Y be an odd mapping satisfying (3.12). Then A(x) := N -
limn→∞ 1

2n f(2nx) exists for each x ∈ X and defines an additive mapping A : X → Y

such that

N (f(x)−A(x), t) ≥ (2− 2p)t
(2− 2p)t + 2pθ‖x‖p

for all x ∈ X.
(ii) Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.12). Then
Q(x) := N -limn→∞ 1

4n f(2nx) exists for each x ∈ X and defines a quadratic mapping
Q : X → Y such that

N (f(x)−Q(x), t) ≥ (4− 2p)t
(4− 2p)t + 2pθ‖x‖p

for all x ∈ X.

Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y) := θ(‖x‖p + ‖y‖p) for
all x, y ∈ X, as desired. ¤
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