
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2016.23.3.205 ISSN(Online) 2287-6081
Volume 23, Number 3 (August 2016), Pages 205–221

ALGEBRAIC ENTROPIES OF NATURAL NUMBERS
WITH ONE OR TWO PRIME FACTORS

Seungpil Jeong a, Kyong Hoon Kim b and Gwangil Kim c, ∗

Abstract. We formulate the additive entropy of a natural number in terms of
the additive partition function, and show that its multiplicative entropy is directly
related to the multiplicative partition function. We give a practical formula for
the multiplicative entropy of natural numbers with two prime factors. We use this
formula to analyze the comparative density of additive and multiplicative entropy,
prove that this density converges to zero as the number tends to infinity, and em-
pirically observe this asymptotic behavior.

1. Introduction

In statistical physics, entropy S is a measure of the size of all the possible mi-
crostates of a system, and S can be expressed as k · lnΩ, where k is Boltzmann’s
constant and Ω is the number of microstates [1]. In information theory, following
Shannon [2], entropy H(X) measures the amount of information in a message, and
H(X) can be expressed as −∑n

i=1 p(xi) · log p(xi), where p is the probability mass
function of a discrete random variable X [2]. It is well known that physical and
information entropy are equivalent.

In mathematics, the set of natural numbers, N, conceals information in the form
of arithmetic relations. Each natural number is endowed with such information by
the two fundamental algebraic operations on N, addition and multiplication. This
information can be extracted by using mathematical logic to elucidate the relations
between natural numbers. Can the concept of entropy be used to measure the
amount of mathematical information (or the number of microstates) inherent in
natural numbers? In this paper, we answer this question.
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Since Patrick Billingsley’s lectures in 1973 [3], there have been several efforts [4,
5, 6] to apply the idea of entropy, and other information-theoretic concepts, to num-
ber theory. Shannon’s entropy function H was recently applied [6] to N, yielding the
concept of the entropy of a natural number. However, this form of entropy does not
measure the amount of information inherent in natural numbers, but is rather an
aid to understanding effects such as the distribution of prime numbers. In this paper
we will consider natural numbers as repositories of quantitative information origi-
nating from algebraic operations, and explicitly measure the amount of quantitative
information stored in these numbers.

The mathematical properties of N primarily stand on two algebraic operations,
addition and multiplication. Addition gives N a structure of order, in the sense that
it arranges natural numbers as follows: for any a, b ∈ N, a < b ⇔ if ∃ k ∈ N
such that b = a + k. Multiplication provides a cladogram of numbers, in the sense
that factorization reveals how a natural number is made up of its most elementary
factors, which are prime numbers. Thus we can characterize each natural number n

in N in terms of the information incorporated in:

(i) the possible ways of generating n by adding elements of N, and
(ii) the possible ways of generating n by multiplying elements of N.

We call the amount of this information, the additive and multiplicative entropy re-
spectively. We will show that additive entropy is easily measured by the additive
partition function, and that multiplicative entropy is directly related to the mul-
tiplicative partition function. This project is strongly connected to previous work
on the additive partition function [7, 8] and on the multiplicative partition func-
tion [9, 10, 11, 12, 13]. In particular, our approach is closely related to previous
work [11, 12, 13] on the unordered factorization of natural numbers, in the sense
that the multiplicative entropy of a natural number has to be computed by such fac-
torization. In this paper we will present a computable formula for the multiplicative
entropy of natural numbers with two prime factors, and introduce the comparative
density of two algebraic entropies, and use this to analyze their asymptotic behavior.
Moreover, we will prove that this density asymptotically converges to zero as the
number approaches infinity, and empirically analyze the speed of this convergence.

The remainder of this paper is organized as follows: In Section 2, we intro-
duce the additive entropy and multiplicative entropy of a natural number and their
comparative density. In Section 3, we compute the multiplicative entropy and the
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comparative density of natural numbers with two prime factors. We also prove that
this density converges to zero as the number approaches infinity. We demonstrate
that additive and multiplicative entropy have a logarithmic relationship, and ob-
serve the asymptotic behavior of their comparative density. Finally in Section 4, we
summarize our results and propose some directions for further study.

2. Two Fundamental Entropies of a Natural Number

For a natural number n in N, we can introduce two algebraic entropies, additive
entropy and multiplicative entropy.

Let p(n) be the partition function representing the number of possible partitions
of a natural number n by addition, which is to say the number of distinct ways of
producing n by adding natural numbers. Then we can define additive entropy:

Definition 1. For a natural number n, A(n) is given by

A(n) = ka ln p(n), where ka is a constant.(1)

Let M(n) be the number of distinct ways of producing n by multiplying natural
numbers. Then we can define multiplicative entropy P (n) as follows:

Definition 2. For a natural number n, P (n) is given by

P (n) = km lnM(n), where km is a constant.(2)

The comparative density drc(n) of the algebraic entropies A(n) and P (n) can be
expressed as follows:

Definition 3. For a natural number n, drc(n) is given by

drc(n) =
P (n)

ln A(n)
=

km lnM(n)
ln(ka ln p(n))

.(3)

Remark 1. From now on, following Landau’s treatment of the constant k in the
definition of thermodynamic entropy k lnΩ, we will assume that ka = km = 1.

3. Entropies of Natural Numbers with Few Prime Factors

3.1. Entropies of natural numbers with one prime factor

Lemma 1. Let N = qm, where q is a prime number and m ∈ N. Then the multi-
plicative entropy of N is given by
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P (N) = ln p(m).(4)

Proof. N = N1 ·N2 = qk1 · qk2 , with k1 +k2 = m, which implies that M(N) = p(m).
Consequently, we obtain P (N) = ln p(m). ¤

Using Definition 1, it follows from Eq. (4) that P (N) = A(m), when N = qm.
Moreover, since m = ln N

ln q , we additionally obtain P (N) = A
(

1
ln q · lnN

)
. This

implies that, in the simplest case where N = qm, our two algebraic entropies are
logarithmically related.

Theorem 1. Let N = qm, where q is a prime number and m ∈ N. Then the
comparative density of N is given by

drc(N) =
ln p(m)

ln(ln p(qm))
=

ln p
(

1
ln q · ln N

)

ln(ln p(N))
.(5)

Proof. It is apparent from Lemma 1 and Definition 3. ¤

Theorem 2. Let N = qm, where q is a prime number and m ∈ N. Then

lim
N→∞

drc(N) = 0 for any prime number q, and

ln drc(N) ∼ −1
2

ln m + ln

(
2
√

2π√
3 ln q

)
for a sufficiently large m.(6)

Proof. From Eq. (5) we have

lim
N→∞

drc(N) = lim
N→∞

ln p
(

1
ln q · lnN

)

ln(ln p(N))
(7)

= lim
m→∞

ln p (m)
ln(ln p(qm))

.

Since p(s) ∼ 1
4s
√

3
exp

(
π
√

2s
3

)
for a sufficiently large s ∈ N, we can compute

lim
m→∞

ln p (m)
ln(ln p(qm))

= 0, which further implies that lim
m→∞ drc(N) = 0, and

ln drc(N) ∼ −1
2

lnm + ln
(

2
√

π√
3 ln q

)
for a sufficiently large m.

¤

Figure 1 shows the behavior of drc(N) and ln(drc(N)) when q = 2, which provides
numerical confirmation of Theorem 2.
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(a) (b)

Figure 1. Behavior of drc and ln(drc), when q = 2.

We can also deduce from Eq. (6) that, for a sufficiently large m,

A(N) ∼ exp

(
P (N) · exp

(
1
2

lnm− ln

(
2
√

2π√
3 ln q

)))

= exp

(
P (N) ·

(√
3 ln q

2
√

2π
· √m

))
,(8)

which relates the additive and multiplicative entropy for the class of natural numbers
given by N = qm.

3.2. Entropies of natural numbers with two prime factors

Now we consider the more complicated case of a natural number N = qm
1 · qn

2 ,
where q1, q2 are prime numbers and m, n ∈ N.

Definition 4. Let N be a natural number given by N = qm
1 · qn

2 , where q1, q2 are
prime numbers and m,n ∈ N. A factor qi

1 · qj
2 of N , denoted by [qi

1, q
j
2], is said to be

hybrid if i 6= 0 and j 6= 0.

Definition 5. Consider the sets of natural numbers A = {a1, a2, · · · , am−1, am}
and B = {b1, b2, · · · , bn−1, bn}, and let k be a number. Then we define the product
k · (A×B) as follows:
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k · (A×B) = {k · as1 · bs2}, where 1 ≤ s1 ≤ m, 1 ≤ s2 ≤ n.

Lemma 2. Let N = qm
1 · qn

2 , where q1 and q2 are prime numbers and m, n ∈ N, and
let H0(N) be the number of distinct ways of producing N by multiplying non-hybrid
factors of N . Then

H0(N) = p(m) · p(n).(9)

Proof. Let Q1 and Q2 be sets of distinct ways of producing N1 = qm
1 and N2 = qn

2 by
multiplication. Then, by Lemma 1, we have M(N1) = |Q1| = p(m) and M(N2) =
|Q2| = p(n). Since there are Q1 × Q2 distinct ways of producing N = N1 · N2 by
multiplying non-hybrid factors of N , we obtain H0(N) = |Q1 ×Q2| = |Q1| · |Q2| =
p(m) · p(n). ¤

Theorem 3. For a natural number N = qm
1 · qn

2 , we define

d 0
rc(N) =

ln(H0(N))
ln(A(N))

.

Then, limN→∞ d 0
rc(N) = 0, and moreover

d 0
rc(N) ∼ π

√
2
3
· (

√
m +

√
n)(

m
2 · ln q1 + n

2 · ln q2

) for sufficiently large m and n.

Proof. Since

d 0
rc(N) =

ln(H0(N))
ln(A(N))

=
ln(p(m) · p(n))
ln(ln p(qm

1 · qn
2 ))

=
ln(p(m))

ln(ln p(qm
1 · qn

2 ))
+

ln(p(n))
ln(ln p(qm

1 · qn
2 ))

,

(10)

and using p(s) ∼ 1
4s
√

3
exp

(
π
√

2s
3

)
with a sufficiently large s, we obtain

lim
N→∞

d 0
rc(N) = 0.

In addition, for sufficiently large value of m and n, we can also write

ln(p(m))
ln(ln p(qm

1 · qn
2 ))

+
ln(p(n))

ln(ln p(qm
1 · qn

2 ))
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Figure 2. Behavior of d0
rc when q1 = 2 and q2 = 3. The black curve

is the graph of drc from Figure 1 (a).

∼
ln( 1

4m
√

3
exp

(
π
√

2m
3

)
)

ln
(
ln

(
1

4
√

3qm
1 ·qn

2

exp
(
π
√

2
3 · q

m
2

1 · q
n
2
2

)))

+
ln( 1

4n
√

3
exp

(
π
√

2n
3

)
)

ln
(
ln

(
1

4
√

3qm
1 ·qn

2

exp
(
π
√

2
3 · q

m
2

1 · q
n
2
2

)))

∼ π

√
2
3
·

√
m(

m
2 · ln q1 + n

2 · ln q2

) + π

√
2
3
·

√
n(

m
2 · ln q1 + n

2 · ln q2

) .

And hence, from Eq. (10), we finally obtain

d 0
rc(N) ∼ π

√
2
3
· (

√
m +

√
n)(

m
2 · ln q1 + n

2 · ln q2

) .(11)

¤

d0
rc(N) can be considered as a partial comparative density of algebraic entropies

of N , because d0
rc(N) is the ratio of the multiplicative entropy of a particular subset

of all the distinct ways of producing N by multiplication to the logarithm of the
additive entropy of N . Figure 2 illustrates that d0

rc(N) is a natural extension of
drc(N1 = qm

1 ), and we can formalize this:
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Remark 2. If the magnitude of m dominates that of n, then we can rewrite Eq. (11)
as follows:

ln(d 0
rc(N)) ∼ ln

(
2
√

2π√
3 ln q1

·m− 1
2

)

= −1
2

lnm + ln

(
2
√

2π√
3 ln q1

)
,

which is the result established by Theorem 2. (Conversely, when n dominates m,
we obtain ln(d 0

rc(N)) ∼ −1
2 lnn + ln

(
2
√

2π√
3 ln q2

)
.) Furthermore, Eq. (11) also implies

A(N) = exp

(
P (N) ·

( √
3

2
√

2π

)
·
(

m ln q1 + n ln q2√
m +

√
n

))
,

which is an extension of Eq. (8). These results signify that Eq. (11) is a natural
extension of Eq. (6).

Lemma 3. For a natural number N = qm
1 ·qn

2 , let H(i,j)
1 (N) be the number of distinct

ways of producing N by multiplication with only one hybrid factor [qi
1, q

j
2]of N . Then

H(i,j)
1 (N) is given by

H(i,j)
1 (N) = p(m− i) · p(n− j).(12)

Proof. Let Qi
1 and Qj

2 be sets of distinct ways of producing N i
1 = qm−i

1 and N j
2 =

qn−j
2 by multiplication. Then we have M(N i

1) = |Qi
1| = p(m − i) and M(N j

2 ) =
|Qj

2| = p(n − j). Note that the set of distinct ways of producing N by multiplying
non-hybrid factors of N i

1 and N j
2 together with the hybrid factor [qi

1, q
j
2] is given

by [qi
1, q

j
2] · (Qi

1 × Qj
2). Thus, we obtain H(i,j)

1 (N) = |Qi
1 × Qj

2| = |Qi
1| · |Qj

2| =
p(m− i) · p(n− j). ¤

Theorem 4. For a natural number N = qm
1 ·qn

2 , let H∗1(N) be the number of possible
ways of producing N distinctly by multiplication with only one hybrid factor of N .
Then H∗1(N) is given by

H∗1(N) =
m∑

i=1

p(m− i) ·
n∑

j=1

p(n− j).(13)
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Proof. Since H∗1(N) =
∑m

i=1

∑n
j=1H(i,j)

1 (N), by the previous lemma, we have

H∗1(N) =
m∑

i=1

n∑

j=1

H(i,j)
1 (N)

=
m∑

i=1

n∑

j=1

p(m− i) · p(n− j)

=
m∑

i=1

p(m− i) ·
n∑

j=1

p(n− j).

¤

We will now introduce some necessary new notation.

Definition 6. Given two sets of indices I = {i1, i2, · · · , il} and J = {j1, j2, · · · , jl},
we define the operator ¯l such that

I ¯l J = {(i1, j1; i2, j2; · · · ; il, jl)}.
In addition, consider λ1, λ2 ∈ I ¯l J given by λ1 = (i1, j1; i2, j2; · · · ; il, jl) and
λ2 = (i∗1, j

∗
1 ; i∗2, j

∗
2 ; · · · ; i∗l , j

∗
l ). Then λ1 = λ2 if and only if ii = i∗i and ji = j∗i for

all i = 1, 2, · · · , l.

Lemma 4. Let λ = (i1, j1; i2, j2) ∈ I ¯2 J . Then, the number of distinct ways of
producing N = qm

1 · qn
2 by multiplication, with no hybrid factor other than [qi1

1 , qj1
2 ]

and [qi2
1 , qj2

2 ], Hλ
2 (N), is given by

Hλ
2 (N) = p(m− i1 − i2) · p(n− j1 − j2).(14)

Proof. Let Qi1,i2
1 and Qj1,j2

2 be sets of distinct ways of producing N il,i2
1 = qm−il−i2

1

and N j1,j2
2 = qn−j1−j2

2 by multiplication. Then we haveM(N i1,i2
1 ) = |Qi1,i2

1 | = p(m−
i1− i2) and M(N j1,j2

2 ) = |Qj1,j2
2 | = p(n− j1− j2). Note that the set of distinct ways

of producing N by multiplying non-hybrid factors of N i1,i2
1 and N j1,j2

2 together with
the hybrid factors [qi1

1 , qj1
2 ] and [qi2

1 , qj2
2 ] is given by [qi1

1 , qj1
2 ]·[qi2

1 , qj2
2 ]·(Qi1,i2

1 ×Qj1,j2
2 ).

Thus we can write

Hλ
2 (N) = |Qi1,i2

1 ×Qj1,j2
2 |

= |Qi1,i2
1 | · |Qj1,j2

2 |
= p(m− i1 − i2) · p(n− j1 − j2).

¤
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From now on, we will assume that the elements of the set [qi1
1 , qj1

2 ] · [qi2
1 , qj2

2 ] ·
(Qi1,i2

1 × Qj1,j2
2 ) are well ordered through constraint by the inequality i1 < i2, or

by j1 ≤ j2 if i1 = i2. Then, we will describe two sets Aλ1 = [qi1
1 , qj1

2 ] · [qi2
1 , qj2

2 ] ·
(Qi1,i2

1 × Qj1,j2
2 ) and Aλ2 = [qĩ1

1 , qj̃1
2 ] · [qĩ2

1 , qj̃2
2 ] · (Qĩ1,ĩ2

1 × Qj̃1,j̃2
2 ), with ĩ1 ≤ ĩ2 and

j̃1 ≤ j̃2, as mutually disjoint, if λ1 = (il, i2; j1, j2) 6= λ2 = (ĩ1, ĩ2; j̃1, j̃2). We will
use

∑
I¯2J |Aλl

| to denote
∑

λl
|Aλl

| when any two sets Aλl
and Aλ′l

are mutually
disjoint for λl, λ

′
l ∈ I ¯2 J .

Theorem 5. Let H∗2(N) be the number of possible ways of producing a natural
number N = qm

1 · qn
2 by the multiplication of just two hybrid factors. Then H∗2(N)

is given as follows;

H∗2(N) =
bm

2
c∑

i1=1

p(m− i1 − i2)|i2=i1 ·
bn

2
c∑

j1=1

n−j1∑

j2=j1

p(n− j1 − j2)(15)

+
bm

2
c∑

i1=1

m−i1∑

i2=i1+1

p(m− i1 − i2) ·
n−1∑

j1=1

n−j1∑

j2=1

p(n− j1 − j2).(16)

Proof. Since H∗2(N) =
∑

I¯2J Hλ
2 (N), by the previous lemma, we have

H∗2(N) =
∑

I¯2J

Hλ
2 (N)

=
∑

I¯2J

p(m− i1 − i2) · p(n− j1 − j2).(17)

In addition, since the factors in the disjoint sets are well-ordered, we can rewrite
Eq. (17) as follows:

∑

I¯2J

p(m− i1 − i2) · p(n− j1 − j2)

=
bm

2
c∑

i1=1

p(m− i1 − i2)|i2=i1 ·
bm

2
c∑

j1=1

n−j1∑

j2=j1

p(n− j1 − j2)

+
bm

2
c∑

i1=1

m−i1∑

i2=i1+1

p(m− i1 − i2) ·
n−1∑

j1=1

n−j1∑

j2=1

p(n− j1 − j2).(18)

Note that the first and second terms of Eq. (18) denote the number of all the elements
in the mutually disjoint sets, when i1 = i2 and i1 < i2 respectively. This completes
the proof. ¤
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Lemma 5. For a natural number N = qm
1 · qn

2 , let λ = (i1, j1; i2, j2; · · · ; ik, jk) ∈
I¯k J . Then, the number of distinct ways of producing N by multiplication only the
hybrid factors [qi1

1 , qj1
2 ], · · · , and [qik

1 , qjk
2 ], Hλ

k(N), is given by

Hλ
k(N) = p(m− i1 − i2 − · · · − ik) · p(n− j1 − j2 − · · · − jk).(19)

Proof. Let Qi1,··· ,ik
1 and Qj1,··· ,jk

2 be sets of distinct ways of producing N i1,··· ,ik
1 =

qm−i1−···−ik
1 and N j1,··· ,jk

2 = qn−j1−···−jk
2 by multiplication. Then we haveM(N i1,··· ,ik

1 ) =
|Qi1,··· ,ik

1 | = p(m− i1− · · ·− ik) and M(N j1,··· ,jk
2 ) = |Qj1,··· ,jk

2 | = p(n− j1− · · ·− jk).
Note that the set of distinct ways of producing N by multiplying non-hybrid factors
of N i1,··· ,ik

1 and N j1,··· ,jk
2 together with the hybrid factors [qi1

1 , qj1
2 ], · · · , [qik

1 , qjk
2 ] is

given by
∏k

l=1[q
il
1 , qjl

2 ] · (Qi1,··· ,ik
1 ×Qj1,··· ,jk

2 ). Thus we obtain

Hλ
k(N) = |Qi1,··· ,ik

1 ×Qj1,··· ,jk
2 |

= |Qi1,··· ,ik
1 | · |Qj1,··· ,jk

2 |
= p(m− i1 − · · · − ik) · p(n− j1 − · · · − jk).

¤

Theorem 6. For a natural number N = qm
1 ·qn

2 , let H∗k(N) be the number of possible
ways of producing N by multiplication with no hybrid factor other than the k hybrid
factors of N . Then H∗k(N) is given as follows:

H∗k(N) =





bm
2
c∑

i1=1

bm−i1
2

c∑

i2=i1

· · ·
bm−∑k−2

l=1
il

2
c∑

ik−1=ik−2

p(m−
k∑

l=1

il)|ik=ik−1





×





bn
2
c∑

j1=1

bn−j1
2
c∑

j2=j1

· · ·
bn−∑k−2

l=1
jl

2
c∑

jk−1=jk−2

n−∑k−1
l=1 jl∑

jk=jk−1

p(n−
k∑

l=1

jl)





+





bm
2
c∑

i1=1

bm−i1
2

c∑

i2=i1

· · ·
bm−∑k−2

l=1
il

2
c∑

ik−1=ik−2

m−∑k−1
l=1 il∑

ik=ik−1+1

p(m−
k∑

l=1

il)





×




n−1∑

j1=1

n−j1∑

j2=j1

· · ·
n−∑k−2

l=1 jl∑

jk−1=jk−2

n−∑k−1
l=1 jl∑

jk=1

p(n−
k∑

l=1

jl)



 .
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Proof. Since H∗k(N) =
∑

I¯kJ Hλ
k(N), by the previous lemma, we have

H∗k(N) =
∑

I¯kJ

Hλ
k(N)

=
∑

I¯kJ

p(m− i1 − · · · − ik) · p(n− j1 − · · · − jk),(20)

where λ = (i1, j1; i2, j2; · · · ; ik, jk) ∈ I ¯k J . In addition, since the factors in the
disjoint sets are well-ordered, according to the cases whether ik = ik−1 or ik > ik−1,
we can rewrite Eq. (20) as follows:

∑

I¯kJ

p(m− i1 − i2) · p(n− j1 − j2)

=





bm
2
c∑

i1=1

bm−i1
2

c∑

i2=i1

· · ·
bm−∑k−2

l=1
il

2
c∑

ik−1=ik−2

p(m−
k∑

l=1

il)|ik=ik−1





×





bn
2
c∑

j1=1

bn−j1
2
c∑

j2=j1

· · ·
bn−∑k−2

l=1
jl

2
c∑

jk−1=jk−2

n−∑k−1
l=1 jl∑

jk=jk−1

p(n−
k∑

l=1

jl)





+





bm
2
c∑

i1=1

bm−i1
2

c∑

i2=i1

· · ·
bm−∑k−2

l=1
il

2
c∑

ik−1=ik−2

m−∑k−1
l=1 il∑

ik=ik−1+1

p(m−
k∑

l=1

il)





×




n−1∑

j1=1

n−j1∑

j2=j1

· · ·
n−∑k−2

l=1 jl∑

jk−1=jk−2

n−∑k−1
l=1 jl∑

jk=1

p(n−
k∑

l=1

jl)



 .(21)

This completes the proof. ¤

Theorem 7. The multiplicative entropy P (N) of a natural number N = qm
1 · qn

2 , is
given by

P (N) = lnM(N) = ln

(∑

k=0

H∗k(N)

)
.(22)

Proof. It is apparent from the definition M(N) =
∑

k=0H∗k(N). ¤

Tables 1 and 2 show the multiplicative entropies of N = 2m · 3n for 1 ≤ m ≤ 20
and 1 ≤ n ≤ 20, obtained from Eq. (22). Note that P (2m · 3n) = P (3m · 2n), and
the symmetric entries are omitted.
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n
1 2 3 4 5 6 7 8 9 10

m

1 0.693

2 1.386 2.197

3 1.946 2.773 3.434

4 2.485 3.367 4.043 4.691

5 2.944 3.850 4.575 5.236 5.811

6 3.401 4.344 5.088 5.768 6.354 6.915

7 3.807 4.771 5.549 6.242 6.846 7.415 7.932

8 4.205 5.198 5.994 6.702 7.315 7.893 8.416 8.914

9 4.575 5.587 6.410 7.127 7.752 8.338 8.869 9.371 9.842

10 4.934 5.971 6.810 7.538 8.171 8.764 9.300 9.808 10.283 10.735

11 5.273 6.328 7.189 7.926 8.568 9.166 9.708 10.220 10.699 11.155

12 5.606 6.681 7.557 8.302 8.951 9.554 10.101 10.617 11.099 11.558

13 5.922 7.013 7.908 8.660 9.317 9.925 10.476 10.995 11.481 11.943

14 6.230 7.340 8.249 9.009 9.671 10.284 10.839 11.361 11.850 12.314

15 6.528 7.653 8.578 9.344 10.013 10.629 11.188 11.713 12.204 12.671

16 6.819 7.960 8.898 9.671 10.344 10.964 11.526 12.054 12.548 13.016

17 7.100 8.255 9.208 9.986 10.665 11.288 11.854 12.384 12.880 13.351

18 7.376 8.545 9.510 10.295 10.978 11.605 12.172 12.705 13.203 13.676

19 7.643 8.826 9.804 10.594 11.282 11.911 12.482 13.017 13.517 13.991

20 7.906 9.102 10.091 10.886 11.578 12.211 12.784 13.321 13.823 14.299

Table 1. Multiplicative entropies of N = qm
1 · qn

2 , when q1 = 2 and
q2 = 3, for 1 ≤ m ≤ 20 and 1 ≤ n ≤ 10.

n
11 12 13 14 15 16 17 18 19 20

m

10

11 11.588

12 11.993 12.412

13 12.381 12.801 13.203

14 12.754 13.177 13.580 13.971

15 13.113 13.537 13.943 14.335 14.712

16 13.460 13.887 14.294 14.687 15.066 15.434

17 13.796 14.225 14.633 15.028 15.408 15.777 16.134

18 14.123 14.553 14.963 15.359 15.740 16.110 16.468 16.816

19 14.440 14.871 15.283 15.680 16.063 16.434 16.792 17.141 17.481

20 14.749 15.175 15.594 15.993 16.377 16.749 17.108 17.458 17.736 18.130

Table 2. Multiplicative entropies of N = qm
1 · qn

2 , when q1 = 2 and
q2 = 3, for 11 ≤ m ≤ 20 and 11 ≤ n ≤ 20.

From Tables 1 and 2, we observe that multiplicative entropy increases very slowly
with m and n, whereas the additive entropy ln p(N) increases quickly with N . This
suggests that d∗rc(N) → 0 as N tends to ∞, a conjecture supported by Figure 3.
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Figure 3. Behavior of d∗rc, when q1 = 2 and q2 = 3, for 1 ≤ m ≤ 20
and 1 ≤ n ≤ 20: each row of dots of the same color shows the
behavior of d∗rc when m is fixed.

Next, we compute the comparative density d∗rc(N) of algebraic entropies of N ,
and show that this density converges to zero as m, n approach ∞.

Let Φ(n) =
∑n−1

i=0 p(i), n ∈ N; and we now introduce aTb to denote the number of
distinct ways of producing a natural number a by adding b natural numbers. Then
we have the following lemma:

Lemma 6. For a natural number N = qm
1 · qn

2 ,

H∗k(N) ≤ mTk · Φ(m)× nTk · Φ(n), 0 ≤ k ≤ n.(23)

Proof. We can rewrite Eq. (21) as follows:

H∗k(N) =

(
m∑

t=k

λ1(t) p(m− t)

)
·
(

n∑

t=k

δ1(t) p(n− t)

)

+

(
m∑

t=k

λ2(t) p(m− t)

)
·
(

n∑

t=k

δ2(t) p(n− t)

)

=
m∑

t1=k

n∑

t2=k

λ∗(t1) δ∗(t2) · p(m− t1) p(n− t2).

Let Λk = maxt1=k,··· ,m {λ∗(t1)} and ∆k = maxt2=k,··· ,n {δ∗(t2)}. Then we can write
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H∗k(N) ≤ Λk ∆k ·
(

m−k∑

l=0

p(l)

)
·
(

n−k∑

l=0

p(l)

)

≤ Λk ∆k ·
(

m−1∑

l=0

p(l)

)
·
(

n−1∑

l=0

p(l)

)

= Λk ∆k · Φ(m) · Φ(n).

Moreover, since Λk ≤ mTk and ∆k ≤ nTk, we obtain

H∗k(N) ≤ mTk · Φ(m)× nTk · Φ(n).

¤

Theorem 8. For a natural number N = qm
1 · qn

2 ,

lim
m, n→∞ d∗rc(N) = lim

m, n→∞
ln (

∑
k=0H∗k(N))

ln(ln p(N))
= 0.(24)

Proof. From Eq. (23) we obtain

∑

k=0

H∗k(N) ≤
(

m∑

k=0

mTk

)
×

(
n∑

k=0

nTk

)
Φ(m)Φ(n).(25)

In addition, since

p(n) =
1
n

n∑

k=1

σ(k)p(n− k),

where σ(k) is the sum of the divisors of k, and so

n p(n) ≥
n−1∑

k=0

p(k) = Φ(n).(26)

Note that
m∑

k=0

mTk = p(m) and
n∑

k=0

nTk = p(n).(27)

Combining Eqs. (25) , (26) and (27), we can write:

H∗k(N) ≤ m np(m)2 p(n)2.

Consequently we obtain

d∗rc(N) =
ln (

∑
k=0H∗k(N))

ln(ln p(N))
≤ ln(mnp(m)2 p(n)2)

ln(ln p(N))
.
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For sufficiently large s, we can write p(s) ∼ 1
4s
√

3
exp

(
π
√

2s
3

)
, and hence

lim
m, n→∞ d∗rc(N) = lim

m, n→∞
ln (

∑
k=0H∗k(N))

ln(ln p(N))
= 0.

¤

4. Concluding Remarks and Suggestions for Further Study

We have introduced the additive and multiplicative entropy of a natural number,
and defined their comparative density. We have showed that, for natural numbers
with one prime factor, the additive and multiplicative entropy are logarithmically
related, by computing the relative density of the algebraic entropies of these numbers
and analyzing its asymptotic behavior. We have also presented a practical formula
for computing the relative density of natural numbers with two prime factors. We
observed that the logarithmic relation between additive and multiplicative entropy
applies to larger numbers in a special subclass of natural numbers which have no hy-
brid factor in any of the possible multiplicative partitions. We also proved that their
relative density converges to zero as the number tends to infinity. In addition, we
empirically showed that the asymptotic behavior of the relative density of numbers
with two prime factors is more complicated and quite different from the behavior of
numbers with a single prime factor, as shown in Figures 1 and 3. We proved that
this relative density also converges to zero as the number tends to infinity.

We propose two avenues for further study: firstly, to complete the analysis of
the asymptotic behavior of the relative density for natural numbers with two prime
factors, and explore this behavior empirically in more detail; and, secondly, to extend
our work to natural numbers with more than two prime factors. In particular, a
fuller understanding of the multiplicative entropy of an arbitrary natural number
might provide useful information on the distribution of prime numbers, which must
be related to the distribution of the multiplicative entropies of natural numbers.

References
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