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LIE ALGEBRA AND OPERATIONAL TECHNIQUES
ON THREE-VARIABLE HERMITE POLYNOMIALS

M.J.S. Shahwan a and Maged G. Bin-Saad b, ∗

Abstract. The present paper aims at harnessing the technique of Lie Algebra
and operational methods to derive and interpret generating relations for the three-
variable Hermite Polynomials Hn(x, y, z) introduced recently in [2]. Certain gener-
ating relations for the polynomials related to Hn(x, y, z) are also obtained as special
cases.

1. Introduction

Dattoli et. al. ([2]-[4]) introduced and discussed the three variable Hermite
polynomials:

(1.1) Hn(x, y, z) = n!
[n
2 ]∑

r=0

zrHn−2r(x, y)
(n− 2r)!r!

,

satisfy the following differential equations

(1.2)
(

x + 2(y + z)
∂

∂x

)
Zn(x, y, z) = Zn+1(x, y, z),

(
∂

∂x

)
Zn(x, y, z) = nZn−1(x, y, z),

(
x

∂

∂x
+ 2(y + z)

∂2

∂x2
− n

)
Zn(x, y, z) = 0, n = 0, 1, 2, ..

where (see [7])

(1.3) Hn(x, y) = n!
[n
2 ]∑

k=0

xn−2kyk

(n− 2k)!k!
,
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and hence

(1.4) Hn(x, y, z) = n!
[n
2 ]∑

r=0

[n−2r
2 ]∑

k=0

zrxn−2r−2kyk

(n− 2r − 2k)!r!k!
.

Hermite polynomials arise in the study of classical boundary value problems in par-
abolic regions, through the use of parabolic coordinates, or in quantum mechanics
as well as in other application areas. Indeed, due to the noticeable important of Her-
mite polynomials for application, it deserve some interest to get, in addition to the
results obtained in [2, 3, 4, 7], further generating functions for these polynomials by
group theoretic and operational methods. Recently, Pathan et al. [10] derived some
implicit summation formulae and general symmetry identities for class of generalized
polynomials associated with Hermite polynomials. Babusci et al. [1] have shown the
combined use of generating function method and the theory of multivariable Her-
mite polynomials is naturally suited to evaluate integrals of Gaussian functions and
of multiple products of Hermite polynomials. On other hand, the theory of special
functions from the group-theoretic point of view, provides a unifying formalism to
deal with the immense aggregate of the special functions and a collection of formu-
lae such as the relevant differential equations, integral representations, recurrence
formulae, composition theorems, etc., see for example [13, 14]. The first significant
advance in the direction of obtaining generating relations by Lie-theoretic method is
made by Miller [8,9], Rehana [12] and Weisner [15]- [17]. In this paper, we consider
the three variable Hermite polynomials Hn(x, y, z) and derive generating relations
involving these polynomials and the associated Laguerre Polynomials Ln

l (x) [11] by
using representation ↑ω,µ of Lie algebra and operational representations.

2. Representation ↑ω,µ of G(0, 1) and Generating Relations

We note that the following isomorphism [8]

ζ(0, 1) ∼= L [G(0, 1)] ,

where L [G(0, 1)] is the Lie algebra of a complex four-dimensional Lie group G(0, 1),
a multiplicative matrix group with elements ([8], p. 9)

(2.1) g(a, b, c, τ) =




1 ceτ a τ
0 eτ b 0
0 0 1 0
0 0 0 1


 , (a, b, c, τ) ∈ C.
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The group G(0, 1) is called the complex harmonic oscillator group (see [9],Chapter
10). A basis for L [G(0, 1)] is provided by the matrices (see [8],p.9)

(2.2) j+ =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , j− =




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0




j3 =




0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0


 , ε =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




with commutation relations

(2.3) [j3, j±] = ±j±, [j+, j−] = −ε, [ε, j±] = [ε, j3] = Θ.

The machinery constructed in ( [8]; Chapters 1,2 and 4) will be applied to find a
realization of the irreducible representation ↑ω,µ of ζ(0, 1), where ω, µ ∈ C such that
µ 6= 0. The spectrum S of ↑ω,µ is the set S = {−ω + k, k − a nonnegative integer}.
In particular, we are looking for the function fn(x, y, z; t) = Zn(x, y, z)tn such that

(2.4) J3fn = nfn, Efn = µfn,

J+fn = µfn+1, J−fn = (n + ω)fn−1,

C0,1fn = (J+J− −EJ3)fn = µωfn,

for all n ∈ S. The commutation relations satisfied by the operators j±, j3, E are

(2.5) [J3, J±] = ±J±, [J+, J−] = −E, [J±, E] = [J3, E] = 0.

The number of possible solutions of Eq. (2.5) is tremendous. We assume that these
operators take the form

(2.6) J+ = t

[
x + 2(y + z)

∂

∂x

]
, J− =

1
t

∂

∂t
, J3 = t

∂

∂t
, E = 1,

and note that these operators satisfy the commutation relations (2.5). We can
assume ω = 0 and µ = 1 without any loss of generality for the theory of special
functions. In terms of the functions Zn(x, y, z) relations (2.4) become

(2.7)
(

x + 2(y + z)
∂

∂x

)
Zn(x, y, z) = Zn+1(x, y, z),

(
∂

∂x

)
Zn(x, y, z) = nZn−1(x, y, z),

(
x

∂

∂x
+ 2(y + z)

∂2

∂x2
− n

)
Zn(x, y, z) = 0, n = 0, 1, 2, ..
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We see from (2.7) that Zn(x, y, z) = Hn(x, y, z) where Hn(x, y, z) is given by (1.1).
The functions fn(x, y, z; t) = Hn(x, y, z)tn, n ∈ S, form a basis for a realization
of the representation ↑1,0 of ζ(0, 1). This realization of ζ(0, 1) can be extended to
a local multiplier representation T (g), g ∈ G(0, 1), defined on F the space of all
functions analytic in a neighborhood of the point (x0, y0, z0; t0) = (1, 1, 1; 1). Using
operators (2.6), the local multiplier representation ([8], p. 17) takes the form

(2.8) [T (exp(aε))f ] (x, y, z; t) = exp(a)f(x, y, z; t),
[
T (exp(bj+))f

]
(x, y, z; t) = exp(btx)f(x + 2bt(y + z), y, z; t),

[
T (exp(cj−))f

]
(x, y, z; t) = f(x +

c

t
, y, z; t),

[
T (exp(λj3))f

]
(x, y, z; t) = f(x, y, z; teλ),

for f ∈ F . If g ∈ G(0, 1) has parameters (a, b, c, λ), then

T (g) = T (exp(aε))T (exp(bj+))T (exp(cj−))T (exp(λj3)),

and therefore we obtain

(2.9) [T (g)f ] (x, y, p, s; τ) = exp(a + btx)× f
(
x + 2bt(y + z) +

c

t
, y, z; teλ

)
.

The matrix elements of T (g) with respect to the analytic basis

fn(x, y, z; t) = Hn(x, y, z)tn

are the functions Alk(g) uniquely determined by ↑ω,µ of ζ(0, 1) and we obtain rela-
tions

[T (g)fk] (x, y, p, s; τ) =
∞∑

l=0

Alk(g)fl(x, y, p, s; τ), k = 0, 1, 2, ...,

which simplify to the identity

exp(a + λk + btx)Hk

(
x + 2bt(y + z) +

c

t
, y, z

)
(2.10)

=
∞∑

l=0

Alk(g)Hl(x, y, z)tl−k, k = 0, 1, 2, ...,

and the matrix element Alk(g) are given by [[8]; p. 87, Eq. (4.26)]

(2.11) Alk(g) = exp(a + kλ)ck−lL
(k−l)
l (−bc), {k, l} >≥ 0.

Substituting (2.11) into (2.10), we obtain the following desired generating relation

(2.12) exp(btx)Hk

(
x + 2bt(y + z) +

c

t
, y, z

)
=

∞∑

l=0

ck−lL
(k−l)
l (−bc)Hl(x, y, z)tl−k,

{b, c, t} ∈ C, (l, k = 0, 1, 2, ...).
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Now, we consider some applications of generating relation (2.12). Taking b 7→ 0 in
generating relation (2.12) and using the limit [[8], p. 88(4.29)]:

(2.13) cnLn
l (bc)|b=0

{(
n+l
n

)
cn if n ≥ 0,

0 if n < 0,

the generating relation(2.12) reduces to the result:

(2.14) Hk

(
x + ct−1, y, z

)
=

k∑

l=0

(
k

k − l

)
ck−lHl(x, y, z)tl−k.

Taking c 7→ 0 in generating relation (2.12) and using the limit [[8],p.88(4.29)]:

(2.15) cnLn
l (bc)|c=0

{
(−b)−n

(−n)! if n ≤ 0,

0 if n > 0,

we get

(2.16) exp(btx)Hk (x + 2bt(y + z), y, z) =
k∑

l=0

bk−l

(l − k)!
Hl(x, y, z)tl−k.

3. Operational Identities and Generating Functions

First of all, since

D̂2k
x

xn−2r

(n− 2r)!
=

xn−2r−2k

(n− 2r − 2k)!
, D̂x =

∂

∂x
,

we infer from the series representation (1.4) and the definition of the classical Hermite
polynomials Hn(x) [11] the identity

(3.1) Hn(x, y, z) = ey ∂2

∂x2

{
(−z)

n
2 Hn

(
x

2
√

(−z)

)}
.

Secondly, according to the identity

(3.2) D̂2r
x

xn−2k

(n− 2k)!
=

xn−2r−2k

(n− 2r − 2k)!
,

we find from (1.4) and (1.3) that

(3.3) Hn(x, y, z) = ez ∂2

∂x2 Hn (x, y) ,

or equivalently

(3.4) Hn(x, y, z) = ey ∂2

∂x2 Hn (x, z) .
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Again, According to the identity

(3.5) D̂2r+2k
x xn =

n!xn−2r−2k

(n− 2r − 2k)!
,

we get from (1.4) that

(3.6) Hn(x, y, z) = ey ∂2

∂x2 +z ∂2

∂x2 {xn} .

Further, according to the identity

(3.7) D̂r+k
x

xn−r−k

(n− r − k)!
=

xn−2r−2k

(n− 2r − 2k)!
,

we find from (1.4) that

(3.8) Hn(x, y, z) = n!
n∑

r=0

[n−r
2 ]∑

k=0

(−1)r+k(−n)r+kz
ryk

r!k!
D̂r+k

x {xn−r−k},

which further can be handled to get the symbolic relation:

(3.9) Hn(x, y, z) =
(
1− zD̂xx−1 − yD̂xx−1

)n
{xn} ,

or equivalently, in the more compact form

(3.10) Hn(x, y, z) =
(
x− zD̂x − yD̂x

)n
.

First, in this section we show how readily new generating functions for the polyno-
mials Hn(x, y, z) can be derived from the corresponding known generating functions
of polynomials having direct operational relations with the polynomials Hn(x, y, z).
In this regard the operational formulas in (3.1), (3.3) and (3.4) play the key role
in obtaining such generating functions for the polynomials Hn(x, y, z). First, let us
consider the well-known generating function [11]

(3.11) exp[2xt− t2] =
∞∑

n=0

Hn(x)
tn

n!
.

Upon replacing x by x

2
√

(−z)
in (3.11) and applying the first equation in (3.1), one

obtain by routine calculations the following generating function

(3.12) exp

[
y

∂2

∂x2
+

xt√
(−z)

− t2

]
=

(
1
−z

)n
2
∞∑

n=0

Hn(x, y, z)
tn

n!
.

Similarly , from the divergent generating function of Bateman [[11], p. 198(3)]

(3.13) (1− 2xt)λ
2F0

[
1
2
λ,

1
2
λ +

1
2
;−−;−4t2/(1− 2xt)2

]
∼=

∞∑

n=0

Hn(x)
tn

n!
.
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we get the generating function

(3.14) ey ∂2

∂x2

(
1− x√

(−z)

)−a

2F0


1

2
a,

1
2
a +

1
2
;−−;−4t2/

(
1− x√

(−z)

)2



∼=
∞∑

n=0

(a)nHn(x, y, z)
tn

n!
.

Next , we will show that starting from the operational representations of the poly-
nomials Hn(x, y, z) in the previous section , we can establish other new generat-
ing functions for the polynomials Hn(x, y, z) [5]. In the identity of (3.3) multiply
throughout by tn

n! , sum and then employ the generating relation [7]

(3.15) exp[xt− yt2] =
∞∑

n=0

Hn(x, y)
tn

n!
,

to get

(3.16) exp

[
z

∂2

∂x2
+ xt− yt2

]
=

∞∑

n=0

Hn(x, y, z)
tn

n!
.

In the same manner, from the operational identity in (3.4) one can derive the fol-
lowing generating functions

(3.17) exp

[
y

∂2

∂x2
+ xt + zt2

]
=

∞∑

n=0

Hn(x, y, z)
tn

n!
.

Similarly, from identity (3.4), we get

(3.18) exp

[
y

∂2

∂x2
+ xt− yt2

]
=

∞∑

n=0

Hn(x, y, z)
tn

n!
.

Again, from the operational identity in (3.6) and (3.10) one can derive the following
generating functions

(3.19) exp

(
y

∂2

∂x2
+ z

∂2

∂x2
+ xt

)
=

∞∑

n=0

Hn(x, y, z)
tn

n!
.

and

(3.20) exp
([

x− zD̂x − yD̂x

]
t
)

=
∞∑

n=0

Hn(x, y, z)
tn

n!
.

respectively. Again , by starting from equation (3.6) and (3.10) multiplying through-
out by tn and exploiting the previous outlined method, we can show that

(3.21) e

(
y ∂2

∂x2 +z ∂2

∂x2

)
(1− xt)−1 =

∞∑

n=0

Hn(x, y, z)tn,
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and

(3.22)
(
1−

[
x− zD̂x − yD̂x

]
t
)

=
∞∑

n=0

Hn(x, y, z)tn,

respectively. The previously outlined procedure offers a useful tool for the derivation
of other families of generating functions for the polynomials Hn(x, y, z), for example,
bilinear and bilateral generating functions. Next, let us consider the generating
function

(3.23) f(x, y, w, u, z, v|t) =
∞∑

n=0

Hn(x, y, z)×Hn(w, u, v)
tn

n!
,

which according to Equation (3.6) yields the following bilinear generating function

(3.24) exp

(
y

∂2

∂x2
+ z

∂2

∂x2
+ u

∂2

∂w2
+ v

∂2

∂w2
+ xwt

)

=
∞∑

n=0

Hn(x, y, z)×Hn(w, u, v)
tn

n!
.

Also, we can apply an analogous procedure to get the further bilinear generating
function

(3.25) (1− xwt)−1exp

(
y

∂2

∂x2
+ z

∂2

∂x2
+ u

∂2

∂w2
+ v

∂2

∂w2

)

=
∞∑

n=0

Hn(x, y, z)×Hn(w, u, v)tn.

In [6] the following operational identity for the associated Laguerre polynomials
Lm

n (x, y) have been introduced

(3.26) (1− yD̂x)n(y − D̂−1
x )m = Lm

n (x, y).

Let us consider the generating relation

(3.27) f(x, y, z, u, v|t, w) =
∞∑

n=0

∞∑

m=0

Lm
n (u, v)×Hn(x, y, z)

tnwm

n!m!
,

Now, directly from (3.10) and (3.26) by employing the previously outlined method
leading to the bilinear generating functions, we obtain from (3.27) the following
bilateral generating function

(3.28) exp
[(

x− zD̂x − yD̂x

) (
1− yD̂x

)
t +

(
y − D̂−1

x

)
w

]

=
∞∑

n=0

∞∑

m=0

Lm
n (u, v)×Hn(x, y, z)

tnwm

n!m!
.
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Conclusion

We have considered the problem of framing the three-variable Hermite polynomi-
als Hn(x, y, z) into the context of the representation ↑ω,µ of the Lie algebra ζ(0, 1)
of the complex harmonic group G(0, 1) and the representations of operational iden-
tities. Generating relations involving Hn(x, y, z) are obtained by using Millerś and
operational technique. The study of Hn(x, y, z) for applications as well as for its
connections with various Lie algebras is an interesting problem for further research.
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