
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468/jksmeb.2017.24.2.53 ISSN(Online) 2287-6081
Volume 24, Number 2 (May 2017), Pages 53–68

ON GENERALIZED Z-RECURRENT MANIFOLDS

Uday Chand De a and Prajjwal Pal b, ∗

Abstract. The object of the present paper is to study generalized Z-recurrent
manifolds. Some geometric properties of generalized Z-recurrent manifolds have
been studied under certain curvature conditions. Finally, we give an example of a
generalized Z-recurrent manifold.

1. Introduction

As is well known, symmetric spaces play an important role in differential geom-
etry. The study of Riemannian symmetric spaces was initiated in the late twenties
by Cartan[3], who, in particular, obtained a classification of those spaces.
Let (Mn, g), (n = dimM) be a Riemannian manifold, that is, a manifold M with
the Riemannian metric g and let ∇ be the Levi-Civita connection of (Mn, g). A
Riemannian manifold is called locally symmetric [3] if ∇R = 0, where R is the Rie-
mannian curvature tensor of (Mn, g). This condition of local symmetry is equivalent
to the fact that at every point P ∈ M , the local geodesic symmetry F (P ) is an
isometry [21]. The class of Riemannian locally symmetric manifolds is very natural
generalization of the class of manifolds of constant curvature. During the last six
decades the notion of locally symmetric manifolds have been weakened by many au-
thors in several ways to a different extent such as conformally symmetric manifolds
by Chaki and Gupta [5], recurrent manifolds by Walker [30], conformally recurrent
manifolds by Adati and Miyazawa[1], conformally symmetric Ricci-recurrent spaces
by Roter[27], pseudo symmetric manifolds by Chaki[6] etc. The notion of recurrent
manifolds have been generalized by various authors such as Ricci-recurrent manifolds
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by Patterson [25], 2-recurrent manifolds by Lichnerowicz [15], projective 2-recurrent
manifolds by Ghosh [14] and others.

A tensor field T of type (0,q) is said to be recurrent [27] if the relation

(∇XT )(Y1, Y2, ..., Yq)T (Z1, Z2, ..., Zq)

− T (Y1, Y2, ..., Yq)(∇XT )(Z1, Z2, ..., Zq) = 0,

holds on (Mn, g). From the definition it follows that if at a point x ∈ M, T (x) 6= 0,

then on some neighbourhood of x, there exists a unique 1-form A satisfying

(∇XT )(Y1, Y2, ..., Yq) = A(X)T (Y1, Y2, ..., Yq).

In 1952, Patterson [25] introduced Ricci-recurrent manifolds. According to Patter-
son, a manifold (Mn, g) of dimension n, is called Ricci-recurrent if the Ricci tensor
S is satisfies the condition

(∇XS)(Y, Z) = A(X)S(Y, Z),

for some 1-form A. He denoted such a manifold by Rn. Ricci-recurrent manifolds have
been studied by several authors ([4], [26], [27], [31]) and many others. In a paper
De, Guha and Kamilya [12] introduced the notion of generalized Ricci recurrent
manifolds which is defined as follows:

A non-flat Riemannian manifold (Mn, g)(n > 2) is called generalized Ricci recur-
rent if the Ricci tensor S is non-zero and satisfies the condition

(1.1) (∇XS)(Y,Z) = A(X)S(Y, Z) + B(X)g(Y,Z),

where A and B are two non-zero 1-forms. Such a manifold is denoted by GRn. If
the associated 1-form B becomes zero, then the manifold GRn reduces to a Ricci-
recurrent manifold Rn. This justifies the name generalized Ricci-recurrent manifold
and the symbol GRn for it.

Generalized recurrent and generalized Ricci recurrent manifolds have been stud-
ied by several authors such as Özgür ([22], [23], [24] ), Mallick, De and De [16], Ar-
slan et al [2] and many others. Also Mantica and Suh [17] studied quasi-conformally
recurrent Riemannian manifolds. In [11] De and Gazi proved that a generalized
concircularly recurrent manifold with constant scalar curvature is a GRn.

On the other hand, quasi Einstein manifolds arose during the study of exact
solutions of the Einstein field equations as well as during considerations of quasi-
umbilical hypersurfaces of semi-Euclidean spaces. A non-flat Riemannian manifold
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(Mn, g)(n > 2) is defined to be a quasi Einstein manifold if its Ricci tensor S of type
(0,2) is not identically zero and satisfies the following condition:

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b ∈ R and η is a non-zero 1-form such that

g(X, ξ) = η(X),

for all vector fields X, η is the 1-form metrically equivalent to the vector field ξ.

In a recent paper [18] Mantica and Molinari introduced weakly-Z-symmetric man-
ifolds which is denoted by (WZS)n. It was a generalization of the notion of weakly
Ricci symmetric manifolds [29], pseudo Ricci symmetric manifolds [7], pseudo pro-
jective Ricci symmetric manifolds [8]. A (0,2) symmetric tensor is a generalized Z

tensor if

(1.2) Z(X, Y ) = S(X, Y ) + φg(X, Y ),

where φ is an arbitrary scalar function. The scalar Z is obtained by contracting
(1.2) over X and Y as follows:

(1.3) Z = r + nφ.

Also pseudo-Z-symmetric and recurrent Z forms on Riemannian manifolds have been
studied in [19] and [20] respectively.

Motivated by the above studies in the present paper we study a type of non-flat
connected Riemannian manifold which is called generalized Z-recurrent manifolds.

A manifold is called generalized Z-recurrent and denoted by GZn, if the general-
ized Z tensor is non-zero and satisfies the condition (1.1), that is,

(1.4) (∇XZ)(Y, W ) = A(X)Z(Y, W ) + B(X)g(Y, W ),

where Z is the generalized Z tensor. The classical Z tensor is obtained with the
choice φ = − 1

nr, where r is the scalar curvature. Hereafter we refer to the generalized
Z tensor simply as the Z tensor. Also we assume that

g(X, P ) = A(X) and g(X, Q) = B(X), for all X.(1.5)

Then P, Q are called the basic vector fields of the manifolds corresponding to the
associated 1-forms A and B respectively.

The paper is organized as follows:
After preliminaries in Section 2, we obtain a necessary and sufficient condition

for the scalar curvature of a GZn to be a constant. Next we study Ricci-recurrent
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GZn. In Section 5, we study conformally flat GZn(n > 3). Section 6 is devoted to
study a GZn satisfying C.S = 0. Section 7 deals with decomposable GZn. Finally,
we give an example of GZn.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature respec-
tively. Also let L denotes the symmetric tensor of type (1,1) corresponding to the
Ricci tensor S, that is ,

(2.1) g(LX, Y ) = S(X, Y ),

for any vector fields X, Y. Let Ā and B̄ are two 1-forms defined by

A(LX) = Ā(X), B(LX) = B̄(X).(2.2)

Then Ā and B̄ are called auxiliary 1-forms corresponding to the 1-forms A and B

respectively. We also have

(2.3) Z(X, Y ) = Z(Y, X).

We obtain from (1.4)

(∇XZ)(Y, W )− (∇W Z)(X,Y ) = A(X)Z(Y, W ) + B(X)g(Y, W )

−A(W )Z(X, Y )−B(W )g(X, Y ).(2.4)

A conformally flat Riemannian manifold (Mn, g)(n > 3) is said to be a manifold of
quasi constant curvature [9] if its curvature R̃ of type (0,4) satisfies the condition

R̃(X, Y, U,W ) = p[g(Y, U)g(X, W )− g(X,U)g(Y,W )]

+ q[g(X,W )H(Y )H(U) + g(Y, U)H(X)H(W )]

− g(X,U)H(Y )H(W )− g(Y, W )H(X)H(U)],(2.5)

where R̃(X, Y, U,W ) = g(R(X,Y )U,W ) and R is the curvature tensor of type (1,3),
p and q are scalar functions of which q 6= 0 and H is a non-zero 1-form defined
by g(X, µ) = H(X) for all X, µ being a unit vector field. In such a case p and
q are called associated scalars, H is called the associated 1-form and µ is called
the generator of the manifold. In 1956, Chern [10] studied a type of Riemannian
manifold whose curvature tensor R̃ of type (0,4) satisfies the condition

(2.6) R̃(X, Y, U,W ) = F (Y, U)F (X,W )− F (X, U)F (Y, W ),
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where F is a symmetric tensor of type (0,2). Such an n-dimensional manifold was
called a special manifold with the associated symmetric tensor F and was denoted
by ψ(Fn). Such a manifold is important for the following reasons: Firstly for pos-
sesing some remarkable properties relating to curvature and characteristic classes
and secondly, for containing a manifold of quasi-constant curvature as a subclass.

3. Necessary and Sufficient Condition for the Scalar
Curvature of a GZn to be a Constant

Using (1.2) in (1.4) we get

(∇XS)(Y,W ) = A(X)S(Y, W ) + B(X)g(Y,W )

+ φA(X)g(Y, W )− (Xφ)g(Y,W ).(3.1)

Now contracting (3.1) over Y and W we obtain

(3.2) dr(X) = (r + nφ)A(X) + nB(X)− n(Xφ).

If possible, let the scalar curvature r is constant. Then from (3.2) we get

(3.3) (Xφ) = [
r + nφ

n
]A(X) + B(X).

Thus we have the following:

Theorem 3.1. In a GZn the scalar curvature r is constant if and only if (3.3)
holds.

Again if possible, let φ = − r
n , then from (3.3) we obtain

(3.4) (Xφ) = B(X),

which implies

(3.5) g(gradφ,X) = g(X, Q).

Hence grad φ = Q. Thus we have the following:

Theorem 3.2. In a GZn with constant scalar curvature, the associated vector field
Q = gradφ, provided φ = − r

n .

Now, if possible let φ = constant. Then from (3.3) we get

(3.6) k1A(X) + B(X) = 0,

where k1 = r+nφ
n = constant(6= 0). Hence we have the following:
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Theorem 3.3. If in a GZn with constant scalar curvature, φ = constant, then the
1-form A is closed if and only if the 1-form B is also closed.

4. Ricci-recurrent Generalized Z-recurrent Manifolds

In this section we assume that GZn is Ricci-recurrent, then we have

(4.1) (∇XS)(Y, W ) = E(X)S(Y, W ),

where E(X) is a non-zero 1-form. If the manifold is also GZn then using (1.2) and
(4.1) in (1.4) we get

E(X)S(Y,W ) + (Xφ)g(Y, W )

= A(X)S(Y, W ) + φA(X)g(Y,W ) + B(X)g(Y, W ),(4.2)

which implies

(4.3) S(Y, W ) =
[φA(X) + B(X)− (Xφ)]

E(X)−A(X)
g(Y, W ),

provided

(4.4) E(X) 6= A(X)

which can be written as

(4.5) S(Y, W ) = λg(Y, W ),

where λ = φA(X)+B(X)−(Xφ)
E(X)−A(X) . Hence we have the following:

Theorem 4.1. A Ricci-recurrent GZn is an Einstein manifold, provided (4.4) holds.

5. Conformally Flat GZn(n > 3)

Suppose (Mn, g) is a Riemannian manifold of dimension n > 3 and X is any
vector field on M. Then the divergence of the vector field X, denoted by divX

and is defined as divX = Σn
i=1g(∇eiX, ei), where {ei} is an orthonormal basis of the

tangent space TpM at any point p ∈ M. Again, if K is a tensor field of type (1,3), then
its divergence divK is a tensor field of type (0,3) defined as (divK)(X1, ..., X3) =
Σn

i=1g((∇eiK)(X1, ..., X3), ei).
In this section we assume that the manifold GZn(n > 3) is conformally flat. Then

divC = 0, where C denotes the Weyl’s conformal curvature tensor and ′div′ denotes
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divergence. Hence we have [13]

(∇XS)(Y,W )− (∇W S)(X, Y )

=
1

2(n− 1)
[g(Y, W )dr(X)− g(X,Y )dr(W )].(5.1)

Now using (1.2) in (2.4) we obtain

(∇XS)(Y, W ) + (Xφ)g(Y, W )− (∇W S)(X, Y )− (Wφ)g(X, Y )

= A(X)[S(Y, W ) + φg(Y,W )] + B(X)g(Y, W )

−A(W )[S(X,Y ) + φg(X,Y )]−B(W )g(X,Y ).(5.2)

Contracting (5.2) over Y and W we get

dr(X) = 2[r + (n− 1)φ]A(X)− 2Ā(X)

+ 2(n− 1)B(X)− 2(n− 1)(Xφ).(5.3)

Using (5.2) and (5.3) in (5.1), yields

A(X)[S(Y,W ) + φg(Y, W )]−A(W )[S(X,Y ) + φg(X, Y )]

=
1

2(n− 1)
[g(Y,W ){2(r + (n− 1)φ)A(X)− 2Ā(X)}

− g(X, Y ){2(r + (n− 1)φ)A(W )− 2Ā(W )}].(5.4)

Now putting Y = P in (5.4) we obtain

(5.5) A(X)Ā(W ) = Ā(X)A(W ).

Again putting X = P in (5.5) we get

Ā(W ) =
Ā(P )A(W )

A(P )
,

which can be written as

(5.6) Ā(W ) = sA(W ), for all W,

where

(5.7) s =
Ā(P )
A(P )

.

Since A 6= 0, putting X = P in (5.4) we obtain

A(P )[S(Y, W ) + φg(Y, W )]−A(W )[Ā(Y ) + φA(Y )]

=
1

2(n− 1)
[g(Y, W ){2(r + (n− 1)φ)A(P )− 2Ā(P )}

−A(Y ){2(r + (n− 1)φ)A(W )− 2Ā(W )}].(5.8)
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Using (5.6) in (5.8) we get

(5.9) S(Y, W ) =
(r − s)
(n− 1)

g(Y, W ) +
(ns− r)
(n− 1)

A(Y )A(W )
A(P )

,

which can be written as

(5.10) S(Y,W ) = ag(Y, W ) + bT (Y )T (W ),

where

a =
(r − s)
(n− 1)

and b =
(ns− r)
(n− 1)

are scalars

and T (X) =
A(X)√
A(P )

.(5.11)

A Riemannian manifold is said to be a quasi Einstein manifold if its Ricci tensor is
of the form (5.10). Hence we have the following theorem:

Theorem 5.1. A conformally flat GZn(n > 3) is a quasi Einstein manifold.

Now from (5.9) it follows that

(5.12) S(Y, W ) =
(r − s)
(n− 1)

g(Y, W ) +
(ns− r)
(n− 1)

A(Y )A(W )
A(P )

.

Putting W = P in (5.12) we get

(5.13) S(Y, P ) = Ā(Y ) = sA(Y ) = sg(Y, P ).

Thus we have the following:

Corollary 5.1. The vector field P corresponding to the 1-form A is an eigen vector
of the Ricci tensor S corresponding to the eigen value s.

Let us suppose that the associated vector field P corresponding to the 1-form A

is a unit vector field. Therefore from (5.11) it follows that

(5.14) T (X) = A(X),

since A(P ) = 1. In a conformally flat Riemannian manifold the curvature tensor R̃

of type (0,4) satisfies the following condition

R̃(X,Y, U,W ) =
1

(n− 2)
[S(Y, U)g(X,W )− S(X, U)g(Y, W )

+ S(X,W )g(Y, U)− S(Y, W )g(X, U)]

− r

(n− 1)(n− 2)
[g(Y, U)g(X, W )− g(X, U)g(Y, W )],(5.15)
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where R̃(X, Y, U,W ) = g(R(X,Y )U,W ) and R is the Riemannian curvature tensor
of type (1,3) and r is the scalar curvature. Now using (5.10) and (5.14) in (5.15) we
get

R̃(X, Y, U,W ) =
[

2a

(n− 2)
− r

(n− 1)(n− 2)

]
[g(Y, U)g(X, W )− g(X, U)g(Y, W )]

+
b

n− 2
[g(X, W )A(Y )A(U) + g(Y, U)A(X)A(W )

− g(X, U)A(Y )A(W )− g(Y,W )A(X)A(U)],(5.16)

which can be written as

R̃(X, Y, U,W ) = p[g(Y, U)g(X, W )− g(X,U)g(Y,W )]

+ q[g(X, W )A(Y )A(U) + g(Y, U)A(X)A(W )

− g(X,U)A(Y )A(W )− g(Y, W )A(X)A(U)],(5.17)

where p = r−2s
(n−1)(n−2) , q = ns−r

(n−1)(n−2) . This implies that the manifold is of quasi-
constant curvature. Thus we can state the following theorem:

Theorem 5.2. A conformally flat GZn(n > 3) is a manifold of quasi-constant
curvature provided the vector field metrically equivalent to the 1-form A is a unit
vector field.

Now, we suppose that in a manifold of quasi-constant curvature

(5.18) F (X, Y ) =
√

pg(X, Y ) +
q√
p
H(X)H(Y ).

It is obvious that

(5.19) F (X, Y ) = F (Y,X).

Thus F is a symmetric tensor of type (0,2). Now (2.6) can be written as

R̃(X, Y, U,W ) = F (Y, U)F (X,W )− F (X, U)F (Y, W ).

Thus a manifold of quasi-constant curvature is a ψ(F )n. Hence ψ(F )n contains a
manifold of quasi-constant curvature as a subclass. So we have the following:

Proposition 5.1. A manifold of quasi-constant curvature is a ψ(F )n.

From this Proposition 5.1 and Theorem 5.2 we can conclude that

Corollary 5.2. A conformally flat GZn(n > 3) is a ψ(F )n.
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6. GZn satisfying the Curvature Condition C.S = 0

In this section we consider a GZn satisfying

(6.1) C.S = 0,

where C(X, Y ) is considered as a derivation of the tensor algebra at each point of
the manifold for all tangent vectors X, Y and S is the Ricci tensor. that is,

(6.2) (C(X, Y ).S)(U, V ) = −S(C(X, Y )U, V )− S(U,C(X, Y )V ),

From (6.1) and (6.2) it follows that

(6.3) S(C(X,Y )U, V ) + S(U,C(X,Y )V ) = 0.

Using (1.2) in (6.3) we get

Z(C(X,Y )U, V )− φg(C(X, Y )U, V )

+ Z(U,C(X, Y )V )− φg(U,C(X, Y )V ) = 0.

This can be written as

Z(C(X, Y )U, V ) + Z(U,C(X, Y )V )

− φC̃(X,Y, U, V )− φC̃(X, Y, V, U) = 0,(6.4)

where C̃(X, Y, U, V ) = g(C(X, Y )U, V ) and C is the Weyl conformal curvature ten-
sor of type (1,3). Since C̃ is skew-symmetric, (6.4) yields

(6.5) Z(C(X,Y )U, V ) + Z(U,C(X,Y )V ) = 0,

which implies that

(6.6) (C(X, Y ).Z)(U, V ) = 0.

Thus

(6.7) C.Z = 0.

holds, where C(X, Y ) is a derivation operating on the Z tensor. Again let us suppose
that C.Z = 0 holds in GZn. Then using (1.2) in (6.6) and using skew-symmetric
properties of C̃ we get after some simple calculations that C.S = 0. Hence we have
the following:

Theorem 6.1. A GZn satisfies the curvature condition C.S = 0 if and only if
C.Z = 0.
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7. Decomposable GZn

A Riemannian manifold (Mn, g) is said to be decomposable or a product manifold
[28] if it can be expressed as Mp

1 × Mn−p
2 for 2 ≤ p ≤ (n − 2), that is, in some

coordinate neighbourhood of the Riemannian manifold (Mn, g), the metric can be
expressed as

(7.1) ds2 = gijdxidxj = ḡabdxadxb + g∗αβdxαdxβ,

where ḡab are functions of x1, x2, ..., xp denoted by x̄ and g∗αβ are functions of
xp+1, xp+2, ..., xn denoted by x∗; a, b, c, ... run from 1 to p and α, β, γ, ... run from
p+1 to n.

The two parts of (7.1) are the metrics of Mp
1 (p ≥ 2) and Mn−p

2 (n− p ≥ 2) which
are called the components of the decomposable manifold Mn = Mp

1 × Mn−p
2 (2 ≤

p ≤ n− 2).
Let Mn be a decomposable manifold such that Mp

1 (p ≥ 2) and Mn−p
2 (n− p ≥ 2)

are components of this manifold.
Here throughout this section each object denoted by a ‘bar’ is assumed to be

from M1 and each object denoted by ‘star’ is assumed to be from M2.

Let X̄, Ȳ , W̄ , Ū , V̄ ∈ χ(M1) and X∗, Y ∗, Z∗, U∗, V ∗ ∈ χ(M2). Then in a decom-
posable Riemannian manifold Mn = Mp

1 × Mn−p
2 (2 ≤ p ≤ n − 2), the following

relations hold [32]:
S(X̄, Ȳ ) = S̄(X̄, Ȳ );S(X∗, Y ∗) = S∗(X∗, Y ∗),
(∇X̄S)(Ȳ , W̄ ) = (∇̄X̄ S̄)(Ȳ , W̄ ); (∇X∗S)(Y ∗, Z∗) = (∇∗X∗S∗)(Y ∗, Z∗), where the

meaning of X̄, Ȳ and W̄ is different on each side, similarly for X∗, Y ∗ and Z∗, and
r = r̄ + r∗, where r, r̄ and r∗ are scalar curvatures of M, M1 and M2 respectively.

Let us consider a Riemannian manifold (Mn, g), which is a decomposable GZn.

Then Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).
Now using (1.2) in (1.4), we get

(∇XS)(Y,W ) = A(X)S(Y, W ) + B(X)g(Y,W )

+ φA(X)g(Y, W )− (Xφ)g(Y,W ).(7.2)

Thus from (7.2) we obtain

(∇X̄S)(Ȳ , W̄ ) = A(X̄)S(Ȳ , W̄ ) + B(X̄)g(Ȳ , W̄ )

+ [φA(X̄)− (X̄φ)]g(Ȳ , W̄ ).(7.3)
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This can be written as

(∇X∗S)(Y ∗,W ∗) = A(X∗)S(Y ∗,W ∗) + B(X∗)g(Y ∗,W ∗)

+ [φA(X∗)− (X∗φ)]g(Y ∗,W ∗).(7.4)

From (7.3) it follows that M1 is GRn if

(7.5) φA(X̄) = (X̄φ).

The converse is also true. Similarly we can conclude from (7.5) that M2 is GRn if
and only if

(7.6) φA(X∗) = (X∗φ).

Thus we have the following theorem:

Theorem 7.1. Let Mn be a Riemannian manifold of dimension n such that M =
Mp

1 × Mn−p
2 (2 ≤ p ≤ n − 2). If Mn be a GZn, then M1(respectively M2) is a

generalized Ricci recurrent manifold of dimension p, that is, GRp (respectively M2

is generalized Ricci recurrent manifold of dimension n − p, that is, GRn−p)if and
only if (7.5) holds in M1(respectively (7.6) holds in M2).

8. Example of GZn

This section deals with an example of GZn.

Example 8.1. We define a Riemannian metric on the 4-dimensional real number
space R4 − {x1 = 0, x3 = 0, x1 = x3} by the formula

(8.1) ds2 = gijdxidxj = x1[(dx1)2 + (dx2)2] + x3[(dx3)2 + (dx4)2],

where i, j = 1, 2, ..., 4.

Then the non-vanishing components of the Christoffel symbols, the curvature
tensor and the Ricci tensor are respectively:

Γ1
11 = −Γ1

22 = Γ2
12 =

1
2x1

, Γ3
33 = −Γ3

44 = Γ4
34 =

1
2x3

,

R1221 = − 1
2x1

, R3443 = − 1
2x3

, R11 = R22 = − 1
2(x1)2

,

R33 = R44 = − 1
2(x3)2
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and the components which can be obtained from these by the symmetric properties.
The non-zero covariant derivative of Rij are:

R11,1 = R22,1 =
3

2(x1)3
, R33,3 = R44,3 =

3
2(x3)3

,

and the components which can be obtained from these by the symmetric properties,
where ‘,’ denotes the covariant derivative with respect to the metric tensor. Using
the above relations, it can be easily shown that the scalar curvature of the manifold
is − (x1)3+(x3)3

(x1x3)3
. Therefore R4 with the considered metric is a Riemannian manifold

M4 whose scalar curvature is non-zero and non-constant.
Let us choose an arbitrary scalar function φ as φ = 1

x1 . Hence the non-vanishing
components of the Z tensor and their covariant derivatives are respectively:

Z11 = Z22 = − 1
2(x1)2

+ 1, Z33 = Z44 = − 1
2(x3)2

+
x3

x1
,

Z11,1 = Z22,1 =
3

2(x1)3
− 1

x1
, Z33,1 = Z44,1 = − x3

(x1)2
, Z33,3 = Z44,3 =

3
2(x3)3

.

We shall now show that R4 is an GZn. Let us choose the associated 1-forms as
follows:

(8.2) Ai(x) =





3(x3)3

x1{(x1)3−(x3)3} for i=1

− 3(x1)3

x3{(x1)3−(x3)3} for i=3
0 otherwise,

(8.3) Bi(x) =





3x1−2(x1)3−4(x3)3

2(x1)2{(x1)3−(x3)3} for i=1

− 3{2(x1)2−1}
2x3{(x1)3−(x3)3} for i=3

0 otherwise,

at any point x ∈ R4. Now the equation (1.4) reduces to the equations

(8.4) Z11,1 = A1Z11 + B1g11,

(8.5) Z22,1 = A1Z22 + B1g22,

(8.6) Z33,1 = A1Z33 + B1g33,

(8.7) Z33,3 = A3Z33 + B3g33,

(8.8) Z44,1 = A1Z44 + B1g44,

(8.9) Z44,3 = A3Z44 + B3g44,
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since, for the other cases (1.4) holds trivially. By (8.2) and (8.3) we get the following
relation for the right hand side(R.H.S.) and the left hand side(L.H.S.) of (8.4)

R.H.S. of (8.4) = A1Z11 + B1g11

=
3(x3)3

x1{(x1)3 − (x3)3}{−
1

2(x1)2
+ 1}+

{3x1 − 2(x1)3 − 4(x3)3}
2(x1)2{(x1)3 − (x3)3} x1

=
{3− 2(x1)2}

2(x1)3

= Z11,1

= L.H.S. of (8.4).

By similar argument it can be shown that the relations from (8.5) to (8.9) are
true. So, R4 is an GZn whose scalar curvature is non-zero and non-constant.
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23. C. Özgür: On generalized recurrent contact metric manifolds Indian J. Math. 50 (2008),

11-19.
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