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ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL
POLYNOMIALS WITH REAL COEFFICIENTS

Seungwoo Han a, Seon-Hong Kim b, ∗ and Jeonghun Park c

Abstract. If q(z) is a polynomial of degree n with all zeros in the unit circle, then
the self-reciprocal polynomial q(z) + xnq(1/z) has all its zeros on the unit circle.
One might naturally ask: where are the zeros of q(z) + xnq(1/z) located if q(z) has
different zero distribution from the unit circle? In this paper, we study this question
when

q(z) = (z− 1)n−k(z− 1− c1) · · · (z− 1− ck) + (z + 1)n−k(z + 1 + c1) · · · (z + 1 + ck),

where cj > 0 for each j, and q(z) is a ‘zeros dragged’ polynomial from (z − 1)n +
(z + 1)n whose all zeros lie on the imaginary axis.

1. Introduction

It what follows, U denotes the unit circle and n is a positive integer. There
is an extensive literature concerning zeros of sums of polynomials. Many papers
and books([5], [6], [7]) have been written about these polynomials. An immediate
question of sums of polynomials, A+B = C, is “given zeros of A and B, what zeros
can be given for C?”. For example, all (conjugate) zeros of the polynomial

n∏

l=1

(z − rl) +
n∏

l=1

(z + rl),(1)

where 0 < r1 ≤ r2 ≤ · · · ≤ rn, lie on the imaginary axis. For the proof and more,
see [3]. Perhaps the most basic form of the polynomial (1) is

(2) (z + 1)n + (z − 1)n,

where, by Fell [2], if all zeros of A and B lie in [−1, 1] with A, B monic and deg A =
deg B = n, then no zero of C can have modulus exceeding cot (π/2n), the largest
zero of (2).
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All polynomials in this paper will be assumed to have real coefficients. A polyno-
mial P (z) of degree n is said to be self-inversive if it satisfies P (z) = ±P ∗(z), where
P ∗(z) = znP (1/z). In particular, if P (z) = P ∗(z), P (z) is called self-reciprocal.
Many questions about the zeros of a family of self-reciprocal polynomials arise natu-
rally in several areas of mathematics -number theory, coding theory, algebraic curves
over finite fields, knot theory, but are also of independent interest. The zeros of a
self-reciprocal polynomial either lie on U or occur in pairs conjugate to U . Since
the class of self-inversive polynomials of degree n includes polynomials of degree n

which have all their zeros on U , it is interesting to mention the condition for a self-
reciprocal polynomial having all its zeros on U . For example, in [1], Chen proved
a following sufficient and necessary condition for a self-inversive polynomial to have
all its zeros on U .

Theorem 1. A necessary and sufficient condition for all the zeros of fn(z) =∑n
k=0 akz

k with complex coefficients to lie on U is that there is a polynomial qn−l(z)
with all its zeros in or on U such that

fn(z) = zlqn−l(z) + eiθq∗n−l(z)

for some nonnegative integer l and real θ.

If q(z) is a polynomial of degree n with all zeros in U , then it follows from
Theorem 1 that the self-reciprocal polynomial

q(z) + q∗(z)

has all its zeros on U . One might naturally ask: where are the zeros of q(z) + q∗(z)
located if q(z) has different zero distribution from U? For example, if q(z) is the
polynomial (2) whose all zeros are on the imaginary axis, then

q(z) + q∗(z) =
{

2 ((z + 1)n + (z − 1)n) if n is even,
2(z + 1)n if n is odd.

In this case, for n even, all zeros of q(z) + q∗(z) lie on the imaginary axis, and for n

odd, they lie on U .
Suppose we drag the zero −1, 1 of each summand of q(z) in (2) to the outward in
the same distance, respectively. More specifically, we consider the polynomial

q(z) = (z− 1)n−k(z− 1− c1) · · · (z− 1− ck) + (z + 1)n−k(z + 1 + c1) · · · (z + 1 + ck),

where cj > 0 for each j. Our interests in this paper are zero distributions of q(z) +
q∗(z), and we will have some results about these. First, we start to study the
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polynomial p1(z) + p∗1(z), where

p1(z) = (z − 1)n−1(z − 1− c) + (z + 1)n−1(z + 1 + c)

is a ‘one zero dragged’ polynomial from (z− 1)n + (z + 1)n. In fact, this polynomial
was studied in [4], and very similar results to Theorem 2 below were given there.
But our proof here is different from that in [4], and moreover, we describe in detail
what the circle is. The theorem below is interesting in that it does not seem obvious
how to construct self-reciprocal polynomials with integer coefficients whose zeros all
lie on one circle that is not the unit circle.

Theorem 2. Let for an odd integer n,

p1(z) = (z − 1)n−1(z − 1− c) + (z + 1)n−1(z + 1 + c),

where cj > 0, c 6= 0,−1,−2 for each j. Then all zeros of the self-reciprocal polynomial

p1(z) + p∗1(z)
z + 1

lie on a circle that is not the unit circle. This circle has the center

C

(
1 +

2
|k|2 − 1

, 0
)

and the radius

r =
∣∣∣∣

2|k|
|k|2 − 1

∣∣∣∣ ,

where k =
(

c
c+2

) 1
n−1

> 0.

In the next theorem, we consider a generalized form of the polynomial p1(z) in
Theorem 2.

Theorem 3. Let for even integers n and k,

pk(z) = (z − 1)n−k(z − 1− c1) · · · (z − 1− ck)

+ (z + 1)n−k(z + 1 + c1) · · · (z + 1 + ck),

where cj > 0 for each j. If

(3) (2 + c1) · · · (2 + ck) >
k∑

r=2
reven





∑

1≤i1≤i2≤···≤ir≤k

ci1 · · · cir

(2 + c1) · · · (2 + ck)
(2 + ci1) · · · (2 + cir)



 ,

then the self-reciprocal polynomial pk(z) + p∗k(z) has all its zeros on the imaginary
axis.
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In the case of c1 = c2 = · · · = ck = c, (3) becomes

(2 + c)k >
k∑

r=2
reven





∑

1≤i1<···<ir≤k

cr(2 + c)k−r



 .

This is equivalent to

2(2 + c)k > (2 + c)k +
k∑

r=2
reven





∑

1≤i1<···<ir≤k

cr(2 + c)k−r



 =

(2c + 2)k + 2k

2
,

that is,

u(c) := 4(c + 2)k − (2c + 2)k − 2k > 0,

which is true since u(0) > 0 and for k = 2,

u′(c) = 4k(c + 2)k−1 − 2k(2c + 2)k−1 = 8 > 0.

This implies the following Corollary 4 that is the special case of k = 2 of Theorem 3.

Corollary 4. Let for an even integer n and c > 0,

p2(z) = (z − 1)n−2(z − 1− c)2 + (z + 1)n−2(z + 1 + c)2.

Then the self-reciprocal polynomial p2(z) + p∗2(z) has all its zeros on the imaginary
axis.

We recall the polynomial in Theorem 2 was

p1(z) = (z − 1)n−1(z − 1− c) + (z + 1)n−1(z + 1 + c),

where n is an odd integer, and the polynomial in Corollary 4 was

p2(z) = (z − 1)n−2(z − 1− c)2 + (z + 1)n−2(z + 1 + c)2,

where n is an even integer. By Theorem 2, the self-reciprocal polynomial p1(z)+p∗1(z)
has all its zeros other than −1 lies on a circle that is not the unit circle. Corollary 4
is unexpectedly surprising in that the self-reciprocal polynomial p2(z) + p∗2(z) with
one more dragging has all its zeros on the imaginary axis.

2. Proofs

In this section, we provide the proofs of our results.



ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS 73

A B-1 1 2 3
x

-1.5

-1.0

-0.5

0.5

1.0

y

Figure 1. Apollonius circle with k = 2

Proof of Theorem 2. With notations of the theorem, the roots of p1(z)/(z+1) satisfy

(
z + 1
z − 1

)n−1

=
c

c + 2
.

Let k =
(

c
c+2

)1/(n−1)
be a real number. Then

∣∣∣ z+1
z−1

∣∣∣ = |k| whose locus is a circle of
Apollonius that is the set of points with ratio of distances |k| to two points (−1, 0)
and (1, 0) in Figure 1. Let A and B denote the points that the Apollonius circle
crosses the real axis.

Then

A

( |k| − 1
|k|+ 1

, 0
)

, B

( |k|+ 1
|k| − 1

, 0
)

,

and the center and the radius of the circle

C

(
1 +

2
|k|2 − 1

, 0
)

, r =
∣∣∣∣

2|k|
|k|2 − 1

∣∣∣∣ ,

respectively.
For the proof of Theorem 3, we will need the following two theorems.

Theorem 5. (Cohn) Let P (z) =
∑n

k=0 akz
k ∈ C[z], (an 6= 0). Then all zeros of P

lie on |z| = 1 if and only if
(i) P is self-inversive,
(ii) all zeros of P ′ lie in |z| ≤ 1.
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Moreover, if P is self-inversive and

τ = the number of zeros on |z| = 1 (counted with multiplicity),

ν = the number of critical points in |z| ≤ 1 (counted with multiplicity).

Then

τ = 2(ν + 1)− n.

Theorem 6. (Cauchy) All zeros of P ′(z) = nanzn−1 + (n − 1)an−1z
n−2 + · · · +

2a2z + a1 lie in

|z| ≤ r,

where r is the positive root of the equation

n|an|zn−1 − (n− 1)|an−1|zn−2 − · · · − 2|a2|z − |a1| = 0.

For the proofs of above two theorems, see [7, p. 230] and [6, p. 244].

Proof of Theorem 3. Let n and k be positive even integers with n > k, and

Pk(z) = pk(z) + p∗k(z),

where

pk(z) = (z − 1)n−k(z − 1− c1) · · · (z − 1− ck)

+ (z + 1)n−k(z + 1 + c1) · · · (z + 1 + ck),

where cj > 0 for each j. Then

p∗k(z) = (z − 1)n−k (1− (1 + c1)z) · · · (1− (1 + ck)z)

+ (z + 1)n−k (1 + (1 + c1)z) · · · (1 + (1 + ck)z)

and

Pk(z) = {(z + 1)n−k + (z − 1)n−k}(A + C) + {(z + 1)n−k − (z − 1)n−k}(B + D),

where

A =
(z + 1 + c1) · · · (z + 1 + ck) + (z − 1− c1) · · · (z − 1− ck)

2
,

B =
(z + 1 + c1) · · · (z + 1 + ck)− (z − 1− c1) · · · (z − 1− ck)

2
,

C =
(1 + (1 + c1)z) · · · (1 + (1 + ck)z) + (1− (1 + c1)z) · · · (1− (1 + ck)z)

2
,

D =
(1 + (1 + c1)z) · · · (1 + (1 + ck)z)− (1− (1 + c1)z) · · · (1− (1 + ck)z)

2
.
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Then the zeros of Pk(z) satisfy

(z + 1)n−k + (z − 1)n−k

(z + 1)n−k − (z − 1)n−k
= −B + D

A + C
.

Write

l =
(z + 1)n−k + (z − 1)n−k

(z + 1)n−k − (z − 1)n−k
.

Then (
z + 1
z − 1

)n−k

=
l + 1
l − 1

and
z + 1
z − 1

=
(

l + 1
l − 1

) 1
n−k

=: L.

So

(4) z =
L + 1
L− 1

and l =
Ln−k + 1
Ln−k − 1

.

Since

l =
Ln−k + 1
Ln−k − 1

= −B + D

A + C
,

we have

(A + B + C + D)Ln−k + (A + C −B −D) = 0.

Let

f(L) =
{

(A + B + C + D)Ln−k + (A + C −B −D)
}

(L− 1)k,

that is,

f(L) =
[ {(z + 1 + c1) · · · (z + 1 + ck) + (1 + (1 + c1)z) · · · (1 + (1 + ck)z)}Ln−k

+ (z − 1− c1) · · · (z − 1− ck) + (1− (1 + c1)z) · · · (1− (1 + ck)z)
]
(L− 1)k.

By (4), z = L+1
L−1 and put this into the right hand side of above equation so that we

have

f(L) =
{
((2 + c1)L− c1) · · · ((2 + ck)L− ck)

+ ((2 + c1)L + c1) · · · ((2 + ck)L + ck)
}
Ln−k

+ (c1L− (c1 + 2)) · · · (ckL− (ck + 2)) + (c1L + (c1 + 2)) · · · (ckL + (ck + 2)).

We observe that Lnf(1/L) = f(L) since k is even, that is, f(L) is self reciprocal.
We will use Theorem ?? to show that all zeros of f lie on |L| = 1. First, we may
express f(L) by the sum as follows:
(5)

f(L) = 2E(Ln+1)+2
k∑

r=2
reven





∑

1≤i1<···<ir≤k

ci1 · · · cir

E

(2 + ci1) · · · (2 + cir)
(Ln−r + Lr)



 ,
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where E = (2 + c1) · · · (2 + ck). Then

f ′(L) = 2nELn−1

+ 2
k∑

r=2
reven

{ ∑

1≤i1<···<ir≤k

ci1 · · · cir

E

(2 + ci1) · · · (2 + cir)
((n− r)Ln−r−1

+ rLr−1)

}
.

To use Theorem 5, we let

g(L) = 2nELn−1

− 2
k∑

r=2
reven

{ ∑

1≤i1<···<ir≤k

ci1 · · · cir

E

(2 + ci1) · · · (2 + cir)
((n− r)Ln−r−1

+ rLr−1)

}
.

Then

g′(L) = 2n(n− 1)ELn−2 − 2
k∑

r=2
reven

{ ∑

1≤i1<···<ir≤k

ci1 · · · cir

E

(2 + ci1) · · · (2 + cir)

((n− r)(n− r − 1)Ln−r−2 + r(r − 1)Lr−2)

}

and we have

(6) g(0) = 0, g′(0) = −4
∑

1≤i1<i2≤k

ci1ci2

E

(2 + ci1)(2 + ci2)
< 0.

But we observe that

g(1) = 2nE − 2
k∑

r=2
reven





∑

1≤i1<···<ir≤k

ci1 · · · cir

nE

(2 + ci1) · · · (2 + cir)



 > 0

is equivalent to

(7) (2 + c1) · · · (2 + ck) >
k∑

r=2
reven





∑

1≤i1<···<ir≤k

ci1 · · · cir

(2 + c1) · · · (2 + ck)
(2 + ci1) · · · (2 + cir)



 .

Hence if the inequlity (7) holds, g(1) > 0 and so by (6), g(L) = 0 has at least one
zero α in the open interval (0, 1). In fact, this zero α is unique in the open interval
(0, 1) by Theorem 6. It follows from Theorem 5 that all the zeros of f(L) = 0 lie
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on |L| ≤ α < 1, where α is the positive zero of the equation g(L) = 0. Hence by
Theorem 5, all zeros of f lie on |L| = 1. But by (4),

|L| =
∣∣∣∣
z + 1
z − 1

∣∣∣∣ = 1,

where z was the zero of Pk(z). One gets that the distances of z from the point −1
equals the distances of z from the point 1. Thus, if z is to the left or to the right of
the imaginary axis, one of these distances is bigger. This implies that z lies on the
imaginary axis, which completes the proof.
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