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ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL
POLYNOMIALS WITH REAL COEFFICIENTS

SEUNGWOO HAN?, SEON-HONG KiM»* AND JEONGHUN PARK ©

ABSTRACT. If ¢(z) is a polynomial of degree n with all zeros in the unit circle, then
the self-reciprocal polynomial g(z) + z"¢(1/z) has all its zeros on the unit circle.
One might naturally ask: where are the zeros of q(z) + 2"¢(1/z) located if ¢(z) has
different zero distribution from the unit circle? In this paper, we study this question
when

2)=GE-1D)" z-1-c) - z-1—c)+GE+1)" z+1+ca) - (z+1+e),

where ¢; > 0 for each j, and ¢(z) is a ‘zeros dragged’ polynomial from (z — 1) +
(z+ 1)™ whose all zeros lie on the imaginary axis.

1. INTRODUCTION

It what follows, U denotes the unit circle and n is a positive integer. There
is an extensive literature concerning zeros of sums of polynomials. Many papers
and books([5], [6], [7]) have been written about these polynomials. An immediate
question of sums of polynomials, A+ B = C, is “given zeros of A and B, what zeros

can be given for C?”. For example, all (conjugate) zeros of the polynomial

n

(1) [+ 1]+,

=1 =1
where 0 < 71 <79 < --- < 1y, lie on the imaginary axis. For the proof and more,

see [3]. Perhaps the most basic form of the polynomial (1) is
(2) (z+D"+(z-1)",
where, by Fell [2], if all zeros of A and B lie in [—1, 1] with A, B monic and deg A =

deg B = n, then no zero of C can have modulus exceeding cot (7/2n), the largest

zero of (2).
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All polynomials in this paper will be assumed to have real coefficients. A polyno-
mial P(z) of degree n is said to be self-inversive if it satisfies P(z) = +P*(z), where
P*(z) = 2"P(1/z). In particular, if P(z) = P*(z), P(z) is called self-reciprocal.
Many questions about the zeros of a family of self-reciprocal polynomials arise natu-
rally in several areas of mathematics -number theory, coding theory, algebraic curves
over finite fields, knot theory, but are also of independent interest. The zeros of a
self-reciprocal polynomial either lie on U or occur in pairs conjugate to U. Since
the class of self-inversive polynomials of degree n includes polynomials of degree n
which have all their zeros on U, it is interesting to mention the condition for a self-
reciprocal polynomial having all its zeros on U. For example, in [1], Chen proved
a following sufficient and necessary condition for a self-inversive polynomial to have

all its zeros on U.

Theorem 1. A necessary and sufficient condition for all the zeros of fn(z) =
S r_g axz® with complex coefficients to lie on U is that there is a polynomial g,,—;(2)

with all its zeros in or on U such that

fa(2) = 2lan_i(2) + ;i (2)

for some nonnegative integer I and real 6.

If g(z) is a polynomial of degree n with all zeros in U, then it follows from

Theorem 1 that the self-reciprocal polynomial

() +q"(2)
has all its zeros on U. One might naturally ask: where are the zeros of ¢(z) + ¢*(z)
located if ¢(z) has different zero distribution from U? For example, if ¢(z) is the
polynomial (2) whose all zeros are on the imaginary axis, then
n e
e+ = { ST

In this case, for n even, all zeros of ¢(z) + ¢*(z) lie on the imaginary axis, and for n
odd, they lie on U.

Suppose we drag the zero —1, 1 of each summand of ¢(z) in (2) to the outward in

the same distance, respectively. More specifically, we consider the polynomial
q(z) = (z—l)”_k(z—l—cl)---(z— l—ck)—l—(2+1)”_k(z+1—|—01)---(2+1+ck),

where ¢; > 0 for each j. Our interests in this paper are zero distributions of ¢(z) +

q*(z), and we will have some results about these. First, we start to study the
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polynomial pi(z) + pi(z), where
p(2)=E-1D)"1z-1-c)+(E+1)" Y z+1+¢)

is a ‘one zero dragged’ polynomial from (z — 1)" + (z + 1)". In fact, this polynomial
was studied in [4], and very similar results to Theorem 2 below were given there.
But our proof here is different from that in [4], and moreover, we describe in detail
what the circle is. The theorem below is interesting in that it does not seem obvious
how to construct self-reciprocal polynomials with integer coefficients whose zeros all

lie on one circle that is not the unit circle.

Theorem 2. Let for an odd integer n,
() =c-1)"tz-1-c)+=+1)" Y z2+1+0),
where cj > 0, ¢ # 0,—1, =2 for each j. Then all zeros of the self-reciprocal polynomial

p1(2) + pi(2)
z+1
lie on a circle that is not the unit circle. This circle has the center

2
1 -
C( +Ik!2—1’0>

|21
~ e

and the radius

Y
1

e \n-1
where k = (cﬁ) > 0.

In the next theorem, we consider a generalized form of the polynomial p;(z) in

Theorem 2.

Theorem 3. Let for even integers n and k,
() =G-1D" z-1-¢) - (z—1—¢)
++D)"Fetlte) (2 + 1+ ),
where c¢; > 0 for each j. If

k

[ 5 eta) (2t

3) 2+c1) - (2+ck) > Ciy " Ci,. ,

r=2 | 1<i1<ip<<ip<k 2+en)2+a)
reven

then the self-reciprocal polynomial pi(z) + pj(2) has all its zeros on the imaginary

axis.
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In the case of ¢; = ca = -+ = ¢ = ¢, (3) becomes

k

2+ > > Yo detor

r=2 1<in < <ir <k
reven

This is equivalent to

k
TP LN o S S G

2
r=2 1<iy1 << <k
reven

that is,
u(c) :=4(c+2)F — (2c+2)F -2 > 0,
which is true since u(0) > 0 and for k = 2,
u'(c) = dk(c+2)F1 = 2k(2c +2)F" 1 =8 > 0.

This implies the following Corollary 4 that is the special case of k = 2 of Theorem 3.

Corollary 4. Let for an even integer n and ¢ > 0,
p(2)=(z=1)"2(z=1—-c)?+(z+1)"2(2+14¢)%

Then the self-reciprocal polynomial pa(2) + p3(2) has all its zeros on the imaginary

axis.

We recall the polynomial in Theorem 2 was
p(2)=CE-1D" z=1-c)++1)"Hz+1+0),
where n is an odd integer, and the polynomial in Corollary 4 was
p(2)=(z-1)"2(z-1-c)?+(=+1)"2(z+1+c)?

where n is an even integer. By Theorem 2, the self-reciprocal polynomial p; (z)+p7(2)
has all its zeros other than —1 lies on a circle that is not the unit circle. Corollary 4
is unexpectedly surprising in that the self-reciprocal polynomial pa(z) + p3(z) with

one more dragging has all its zeros on the imaginary axis.

2. PROOFS

In this section, we provide the proofs of our results.
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Figure 1. Apollonius circle with k = 2

Proof of Theorem 2. With notations of the theorem, the roots of p1(2)/(z+1) satisfy

z+1 "_1_ c
z—1 e+ 2

%’ = |k| whose locus is a circle of

P be a real number. Then

Apollonius that is the set of points with ratio of distances |k| to two points (—1,0)
and (1,0) in Figure 1. Let A and B denote the points that the Apollonius circle

crosses the real axis.
Then
|k| — 1 |k| +1
A 9 0 9 B T1.1 1 0 ]
(!k\ +1 k| —1
and the center and the radius of the circle

2 2k|
Cl1+——0 S et b
(ﬂk\?—l’)’ " ER -1

Let k = <L) ey

)

respectively.

For the proof of Theorem 3, we will need the following two theorems.

Theorem 5. (Cohn) Let P(z) = Y p_,arz® € Clz], (an #0). Then all zeros of P
lie on |z| = 1 if and only if

(i) P is self-inversive,

(ii) all zeros of P’ lie in |z| < 1.
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Moreover, if P is self-inversive and
T = the number of zeros on |z| = 1 (counted with multiplicity),
v = the number of critical points in |z| < 1 (counted with multiplicity).

Then
T=2v+1)—n.

Theorem 6. (Cauchy) All zeros of P'(z) = na,z" '+ (n — a,_12" 2+ --- +
2a9z + aq lie in
2l <,

where r is the positive root of the equation

nlan|2" = (n = Dan_1]2" 2 — -+ = 2|ag|z — |a1| = 0.
For the proofs of above two theorems, see [7, p. 230] and [6, p. 244].

Proof of Theorem 3. Let n and k be positive even integers with n > k, and
Pi(z) = pr(2) + pi(2),
where
() =C-1)"F z-1-¢) - (z-1—¢)
+ G+ erl14ca) - (z+14q),

where ¢; > 0 for each j. Then

pi(z) = (z =" (1= (L4 e)z)-- (1= (1+cx)2)

+EFD)"PA+ A+ e)z) (T4 (1 +ep)2)

and

P(2)={z+ D" "+ z-1)"MA+O)+{z+1D)"* - (z - 1) B+ D),

where
= (z4+1+c) - (z+14c)+(z—1-c1) (2 —1—cx)
5 )
B (z+1+4+c) - (z4+14+c)—(z=1—c1) - (z2—1—cp)
2 )
_ I+(Q+c)z)-A1+14+c)z)+ Q1 —=(14c1)z)--- (1 — (1 +cx)2)
5 ;
D (1+(1+cl)z)"-(1+(1+ck)z)—(1—(1+cl)z)-'-(1—(1+ck)z).

2
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Then the zeros of Py(z) satisfy

(z+1)"*+(z-1)"*  B+D
(z4+ 1)k —(z -1k A4+ C’

Write
l_(z—i—l)"_k-i-(z—l)”_k
(2R — (2 = 1)k
Then )
21\ 141 241 [4+1\n*
= — and = —_— :L
z—1 -1 z—1 -1
So
L+1 L k41
(4) Z—ﬁ and l—m
Since
j_Lf+1  B+D
Lk —1 0 A4 C
we have
(A+B+C+D)L"*+(A+C—-B-D)=0.
Let
f(L):{(A+B+C+D)LH+(A+C—B—D)}(L_1)'2
that is,

fL)=[{(z+1+c1) - (z+1+ec)+ 1+ 1 +c)z) - (1+ 1 +eg)2) L"F
+(z—1—cl)~-(z—1—ck)+(1—(1+cl)z)~-(1—(1+ck)z)](L—1)k.
L+1

By (4), z = 757 and put this into the right hand side of above equation so that we

have

fIL)={(2+e)L—c1) - ((2+ k)L —cx)

+(2+ce)L+er) - ((2+ )L+ ) }L"F

+(@aL—(c1+2) (kL —(cx +2)+ (1L + (c1 +2)) - (g L + (cx + 2)).
We observe that L"f(1/L) = f(L) since k is even, that is, f(L) is self reciprocal.

We will use Theorem ?? to show that all zeros of f lie on |L| = 1. First, we may

express f(L) by the sum as follows:

(5)

k
E
F(L) =2B(L"+1)+2 " Y o, L+ 1)\
r=2 | 1<i1<---<i,<k (2 =+ Cil) e (2 + Cir)

reven
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where E = (2+¢1)--- (24 ¢k). Then
f'(L) =2nEL™ !

k
E o
+2Tz:2{ Z Cil”.Cir(2+ci1)'~-(2+Cir)((n_r)L 1

1<y <-<ir <k
+ rLr_l)}.
To use Theorem 5, we let
g(L) = 2nEL™!

2 : . . E Ln—r—l
— Z Z CZI..‘CZT(2+CZ-1)---(2+C,L'T)((n_,r)

r=2 1<ii<-<i-<k
+ rLT_l) } .
Then

k
E
(L) =2n(n —1)EL" 2 -2 i G
g (L) =2n(n—1) Z{ > e Rt 2ra)

r=2 \ 1<ij<-<ip<k
reven

reven

(n=r)(n—r— L2 4 r(r— l)L’"_z)}

and we have

E
(6) 9(0) =0, ¢'(0)=—4 Ciy Ci < 0.
1§ilz<z:2§k P2 )2+ )

But we observe that

k
nk
1) =2nFE — 2 Ciy " C >0
o ; 2, e 2+e)---2+a,)

= 1<ig <+ <ir <k
reven

is equivalent to

k

. . N (24c1)-(2+ )
M @ra)-@ra)>d 8 2w ()

reven
Hence if the inequlity (7) holds, g(1) > 0 and so by (6), g(L) = 0 has at least one
zero « in the open interval (0,1). In fact, this zero « is unique in the open interval
(0,1) by Theorem 6. It follows from Theorem 5 that all the zeros of f(L) = 0 lie




ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS 7

on |L| < a < 1, where « is the positive zero of the equation g(L) = 0. Hence by
Theorem 5, all zeros of f lie on |L| = 1. But by (4),

z+1
z—1

L] =

-

where z was the zero of Pg(z). One gets that the distances of z from the point —1
equals the distances of z from the point 1. Thus, if z is to the left or to the right of
the imaginary axis, one of these distances is bigger. This implies that z lies on the

imaginary axis, which completes the proof.
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