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QUADRATIC p-FUNCTIONAL INEQUALITIES IN
NON-ARCHIMEDEAN NORMED SPACES

YiNHUA CUl?, YUNTAK HYUNP* AND SUNGSIK YUN ¢

ABSTRACT. In this paper, we solve the following quadratic p-functional inequalities
rTH+y+z T—Yy—z Yy—Tr—z z—xT—Yy
() () () ()
—f(@) = fly) = f(z)

0 <lp(fe+y+2)+fe—y—2)+f(—z—2)+f—z—y)
—4f(z) — 4f (W) — 47 )],

where p is a fixed non-Archimedean number with |p| < ﬁ, and
[fx+y+2)+flx—y—2)+fly—z—2)+flz—x—y)
(02) —4f(@) = 4f (y) = 41 )|

) o )
1)~ ) - 1)) H

where p is a fixed non-Archimedean number with |p| < |8].

Using the direct method, we prove the Hyers-Ulam stability of the quadratic
p-functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and
prove the Hyers-Ulam stability of quadratic p-functional equations associated with
the quadratic p-functional inequalities (0.1) and (0.2) in non-Archimedean Banach
spaces.

1. INTRODUCTION AND PRELIMINARIES

A wvaluation is a function | - | from a field K into [0, c0) such that 0 is the unique

element having the 0 valuation, |rs| = |r|-|s| and the triangle inequality holds, i.e.,

Ir+s| < |r| + s, Vr,s € K.
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A field K is called a valued field if K carries a valuation. The usual absolute values
of R and C are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle

inequality. If the triangle inequality is replaced by

|7 + s| < max{|r|,|s|}, Vr,s € K,
then the function | - | is called a non-Archimedean valuation, and the field is called
a non-Archimedean field. Clearly |1| =|—1| =1 and |n| <1 for all n € N. A trivial
example of a non-Archimedean valuation is the function | - | taking everything

except for 0 into 1 and |0 = 0.
Throughout this paper, we assume that the base field is a non-Archimedean field,
hence call it simply a field.

Definition 1.1 ([11]). Let X be a vector space over a field K with a non-Archimedean
valuation | - |. A function || - || : X — [0,00) is said to be a non-Archimedean
norm if it satisfies the following conditions:

(i) ||lz|| = 0 if and only if x = 0;

(i) ffrell = [rlllzl  (re Kz e X);

(iii) the strong triangle inequality
|z +yl| < max{[lz],[[yll}, Vz,yeX

holds. Then (X, || - ||) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {z,} be a sequence in a non-Archimedean normed space
X. Then the sequence {z,} is called Cauchy if for a given £ > 0 there is a positive
integer N such that

[zn —zm| <€
for all n,m > N.

(ii) Let {z,} be a sequence in a non-Archimedean normed space X. Then the
sequence {z, } is called convergent if for a given € > 0 there are a positive integer N
and an z € X such that

ln — x| < e
for all n > N. Then we call z € X a limit of the sequence {z,}, and denote by
lim, o0 T, = .
(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed

space X is called a non-Archimedean Banach space.
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The stability problem of functional equations originated from a question of Ulam
[16] concerning the stability of group homomorphisms.

The functional equation
fle+y) = f(@)+ f(y)

is called the Cauchy equation. In particular, every solution of the Cauchy equation
is said to be an additive mapping. Hyers [8] gave a first affirmative partial answer to
the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[1] for additive mappings and by Rassias [13] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Gavruta [5] by replacing the unbounded Cauchy difference by a general control
function in the spirit of Rassias’ approach.

The functional equation

(1.1) fle+y)+ flz—y) =2f(x) +2f(y)

is called the quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The stability of
quadratic functional equation was proved by Skof [15] for mappings f : By — Es,
where Ej is a normed space and Es is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain Fj is replaced by an Abelian
group. See [3, 9, 10] for more functional equations.

The functional equation
T+ r —
2f< 5 y) +2< . y) = f(2) + /()

is called a Jensen type quadratic equation.

In [6], Gilanyi showed that if f satisfies the functional inequality

(1.2) 12f(x) +2f(y) = flay I < [If(@y)ll

then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f(y) = flay) + flay™ ).

See also [14]. Gildnyi [7] and Fechner [4] proved the Hyers-Ulam stability of the
functional inequality (1.1). Park, Cho and Han [12] proved the Hyers-Ulam stability

of additive functional inequalities.
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In Section 3, we solve the quadratic p-functional inequality (0.1) and prove the
Hyers-Ulam stability of the quadratic p-functional inequality (0.1) in non-Archimedean
Banach spaces. We moreover prove the Hyers-Ulam stability of a quadratic p-
functional equation associated with the quadratic p-functional inequality (0.1) in
non-Archimedean Banach spaces.

In Section 4, we solve the quadratic p-functional inequality (0.2) and prove the
Hyers-Ulam stability of the quadratic p-functional inequality (0.2) in non-Archimedean
Banach spaces. We moreover prove the Hyers-Ulam stability of a quadratic p-
functional equation associated with the quadratic p-functional inequality (0.2) in
non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and
that Y is a non-Archimedean Banach space. Let |2| # 1.

2. QUADRATIC FUNCTIONAL EQUATIONS

Theorem 2.1. Let X and Y be vector spaces. A mapping f : X — Y satisfies

(2.1) f<33—|—y—|-z+:1:—y—z y—x—z+z—z—y>

2 2 T2 2
= f(@)+fly) + f(2)

if and only if the mapping f : X — Y is a quadratic mapping.

Proof. Sufficiency. Assume that f: X — Y satisfies (2.1).
Letting z =y = z = 0 in (2.1), we have 4f(0) = 3f(0). So f(0) = 0.
Letting y = z =0 in (2.1), we get

(2.2) 2f (g) +2f (—g) = f(z),

21 () 21 (5) - -0

for all x € X, which imply that f(x) = f(—=z) for all x € X.
From this and (2.2), we obtain 4f (£) = f(z) or f(2z) = 4f(x) for all z € X.
Putting z = 0 in (2.1), we obtain

%f($+y)+%f(a:—y)=f(90)+f(y)

for all x,y € X, which means that f: X — Y is a quadratic mapping.
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Necessity. Assume that f: X — Y is quadratic.
By f(z+y)+f(z—y) = 2f(x)+2f(y), one can easily get f(0) =0, f(z) = f(—=)

and f(2z) =4f(z) for all zx € X. So

(=) (=) () ()

@) () (- 3) + 2 (5]

(5) /(R (150

= f(@)+ fly) + f(2)

for all z,y,z € X, which is the functional equation (2.1) and the proof is complete.
O

Corollary 2.2. Let X and Y be vector spaces. An even mapping f : X — Y satisfies

(2.3) fetyt+2)+fle—y—2)+fly—2-2)+flz-2—-y)
= 4f(x) +4f(y) + 41 (2)

for all x,y,z € X. Then the mapping f : X — Y is a quadratic mapping.

Proof. Assume that f: X — Y satisfies (2.3).
Letting z =y = z = 0 in (2.3), we have 4f(0) = 12f(0). So f(0) = 0.
Letting z = 0 in (2.3), we get

2f(x +y) +2f(x —y) =4f(x) +4f(y)

and so f(z+y)+ f(xr —y) =2f(x) + 2f(y) for all z,y € X. O

3. QUADRATIC p-FUNCTIONAL INEQUALITY (0.1)

Throughout this section, assume that p is a fixed non-Archimedean number with
1
ol < 17-
In this section, we solve and investigate the quadratic p-functional inequality

(0.1) in non-Archimedean normed spaces.

Lemma 3.1. An even mapping [ : X — Y satisfies
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o o) o) () o ()
—f(@) = fly) = [(2)
<lp(fla+y+2)+ fla—y—2)+fly—z-2)+ flz-2-y)
—4f(x) —4f(y) —4f(2))|l
for all x,y,z € X if and only if f : X — Y is quadratic.

Proof. Assume that f: X — Y satisfies (3.1).
Letting z =y = 2z =01in (3.1), we get

LA O < [ollI8F(0)]-

So f(0) = 0.
Letting y = z = 0 in (3.1), we get ||4f (£) — f(z)|| <0 and so
z 1
(3.2) 1(3)=3/@
for all z € X.

It follows from (3.1) and (3.2) that

) ) () (5
—f(x) = f(y) = f(2)

<lo(fle+y+2)+fle—y—2)+fly—z—2)+ flz—2—y)
—4f(x) —4f(y) =4/ )

_ rT+y+=z T—Yy—2z Yy—r—2=z Z—x—Yy
Sl () () () e ()

—4f(x) —4f(y) —4f(2)

() () o) ()

—f(x) = fy) = f(z)

and so
() () () () @ sw o)

for all z,y,z € X.
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The converse is obviously true. O

Corollary 3.2. An even mapping f : X — Y satisfies

o () () () o (5)
—f(x) = fly) = f(2)
=p(flr+y+2)+flx—y—2)+fly—z—2)+ f(z—z—y)
—Af(x) —4f(y) — 4f(2))
forall x,y,z € X if and only if f : X — Y is quadratic.

The functional equation (3.3) is called a quadratic p-functional equation.
We prove the Hyers-Ulam stability of the quadratic p-functional inequality (3.1)
in non-Archimedean Banach spaces.

Theorem 3.3. Let ¢ : X3 — [0,00) be a function with ¢(0,0,0) = 0 and let
f:X =Y be an even mapping such that

; io (XY i) _
(34) Jim 14] S0(21"2]"23’ =0,

o ) () () (5
—f(@) = f(y) — f(2)
<lp(fz+y+2)+fla—y—2)+fly—z—2)+ flz—z—y)

—4f(x) —4f(y) —4f ()|l + o(z,y, 2)

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

(3.6) I762) = h@)l < sup {|4' (55,0.0) }

forallx € X.

Proof. Letting x =y = z =0 in (3.5), we get || £(0)]] < |p|||8f(0)|. So f(0) =0.
Letting y = z = 0 in (3.5), we get

(3.7) |41 (5) - f@)]| < (.00
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for all x € X. So

) |ar (5) -1 (5]
<maX{H4l (2l> 4l+1f<2l+1)
=max{[4'|£ (5) - 47 (575 -
< sup {[e (55.0.0)}

for all nonnegative integers m and | with m > [ and all z € X. It follows from (3.8)

that the sequence {4" f(57%)} is a Cauchy sequence for all z € X. Since Y is complete,

Nt (o) - 475 (22|}
A4W“4Hf(2231)-4f(§%)H}

the sequence {4" f(57)} converges. So one can define the mapping h: X — Y by

h(z) = lim 4"f(=)

n—oo

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.8), we get
(3.6).
It follows from (3.4) and (3.5) that

(=5 e () () ()
—h(w) = hly) — h(=)
() e () o ()
wf (G t) =1 () -1 () -1 (3|
e (255 o1 () ()
() (3) v () )
+ lim 4" (w 2yn ;n)

~lp(h(a+ 3+ 2) + by ) Ay 2) 4 Bz )
—4h(x) — 4h(y) — 4h(2))]

= lim |4
n—oo

IN

for all x,y,z € X. So



QUADRATIC p-FUNCTIONAL INEQUALITIES 117

) () () (5
—h(z) = h(y) = h(z)

<|lph(x+y+2)+h(zx—y—2)+hly—z—2)+h(z—z—1y)
—4h(z) — 4h(y) — 4h(2))||

for all x,y,z € X. By Lemma 3.1, the mapping h : X — Y is quadratic.
Now, let T : X — Y be another quadratic mapping satisfying (3.6). Then we
have

xT

Ih(@) =) = |4 (5;) = 47 (5|
<o { o (2) 0 (2] e (2) -0 (2)])
<sup {1 (0.0)}

which tends to zero as ¢ — oo for all z € X. So we can conclude that h(z) = T'(z)

for all z € X. This proves the uniqueness of h. Thus the mapping h: X — Y is a
unique quadratic mapping satisfying (3.6). O

Corollary 3.4. Let r < 2 and 0 be nonnegative real numbers, and let f : X — Y

be an even mapping such that

rT+y+z r—y—=z Yy—Tr—z Z—T—Yy

oo o(=57) () o () ()

—f(x) = f(y) = f(2)
<|p(fle+ty+2)+f@—y—2)+fly—z—2)+flz—z—y)

—Af(z) = 4f(y) = 4F )|+ 0(l[" + 1y I" + ll=]")

for all z,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

(3.10) 1 (z) = h(z)|| < Ol|||"
forallx € X.

Theorem 3.5. Let ¢ : X3 — [0,00) be a function and let f : X — Y be an even
mapping satisfying (3.5) and
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1 I
(3.11) lim ——@(22,27y,272) =0

j—oo [4)
for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

(3.12) 1) = b)) < sup { 02,00 )
forallx € X.
Proof. Tt follows from (3.7) that

Hf - ff(2m) ©(2x,0,0)

1
!4|
for all x € X. Hence

319) || @) - s
< max{‘ %f (2133) 4l+1f (2l+1 ) , '4ml_1f (27”_133) — 4%]’“ (2™x)
1
= max{ af f (2%) — Zf (2“‘13:) }
= ot {\Axllj@@jx’ " 0)}

for all nonnegative integers m and ! with m > [ and all x € X. It follows from
(3.13) that the sequence {: f(2"z)} is a Cauchy sequence for all 2 € X. Since Y

9

|

1 1
?'”7W —f(2"z)

f (2m_11') _ 1

is complete, the sequence {4% f(2"z)} converges. So one can define the mapping
h: X —Y by

h(z) := lim —f(2” )

n—oo 4M
for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (3.13), we
get (3.12).
The rest of the proof is similar to the proof of Theorem 3.3. O

Corollary 3.6. Let r > 2 and 0 be positive real numbers, and let f : X — Y be
an even mapping satisfying (3.9). Then there exists a unique quadratic mapping
h: X —Y such that

(3.14) 1f () = h(z)]| <

forallx € X.

1270
[4]

)"
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Let

e o (257) o () e ()

if (Z‘“““‘y) — f@) - F) - ()
B(x,y,2) = [lp(flr +y+2)+ flx—y—2)+ fly—x—2)+ f(z =z —y)
—4f(x) —4f(y) —4f(2)|l

)

for all z,y,z € X.
For z,y,z € X with [|A(z,y,2)|| < [|B(z,y,2)|,

HA(‘TMU?Z)” - ||B(J},y, Z)H < HA(%,y, Z) - B(.’L’,y,Z)H

For z,y,z € X with |[A(z,y, 2)|| > || B(z,y,2)]],

1Az, y, ) = [A(z,y,2) = B(x,y,2) + B(z,y,2)||
< max{[|A(z,y,2) — B(z,y,2)l|, | B(x,y, 2) ||}
= Az, y,2) — B(z,y,2)]|
< Az,y,2) = B(z,y,2)[| + | B(x, y, 2) |,

since ||A(z,y, 2)|| > ||B(x,y, 2)||. So we have

TF+Y+2 rT—y—=z y—r—z zZ—x—Yy
) ) () ()

—f(@x) = fy) = fE)|| —llp(flz+y+2)+ fla —y—2)
+fly—xz—2)+ flz—x—y) —4f(x) —4f(y) —4f(2))]

T+y+z r—y—=z Yy — z Z—T =Y
<fr(=5) () () ()

—f(@) = fly) = f(z) =p(fx+y+2)+ flz —y—2)

+fy—r—2)+ fz—2—y) —4f(z) —4f(y) — 4/(2))
As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results

for the quadratic p-functional equation (3.3) in non-Archimedean Banach spaces.
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Corollary 3.7. Let ¢ : X3 — [0,00) be a function with ©(0,0,0) = 0 and let
f: X =Y be an even mapping satisfying (3.4) and

o (22522 o049 (59 (55
—f(@) = fly) = f(z) —p(flz+ty+2)+ fla—y—2)+ fly—z—2)
+f(z—z—y) —4f(z) —4f(y) — 4f(2))

‘ < p(x,y,2)

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y
satisfying (3.6).

Corollary 3.8. Let r < 2 and 0 be nonnegative real numbers, and let f : X — Y

be an even mapping such that

rT+y+z r—y—=z Yy—xr—=z Z—T—Yy
f<2>+f<2)+f<2>+f<2>

—f(x) = fly) = f2) —p(flz+y+2)+ fla—y—2)+ fly—z—2)

+f(z =z —y) —4f(x) —4f(y) — 4f(2)) ’ < O[] + [yl™ + N1=[")

(3.16)

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y
satisfying (3.10).

Corollary 3.9. Let ¢ : X3 — [0,00) be a function and let f : X — Y be an even
mapping satisfying (3.11) and (3.15). Then there exists a unique quadratic mapping
h: X —Y satisfying (3.12).

Corollary 3.10. Let r > 2 and 0 be positive real numbers, and let f : X — Y be

an even mapping satisfying (3.16). Then there exists a unique quadratic mapping
h: X —Y satisfying (3.14).

4. QUADRATIC p-FUNCTIONAL INEQUALITY (0.2)

Throughout this section, assume that p is a fixed non-Archimedean number with
] < [8].
In this section, we solve and investigate the quadratic p-functional inequality

(0.2) in non-Archimedean normed spaces.

Lemma 4.1. An even mapping [ : X — Y satisfies
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(4.1) [fety+2)+flz—y—2)+fly—z—2)+ f(z—2—y)
—4f(x) —4f(y) —4f(2)|l

<l (5) (5 )H(‘“)
o (5 o=t =100

for all x,y,z € X if and only if f : X — Y is quadratic.

Proof. Assume that f: X — Y satisfies (4.1).
Letting x =y = 2 =0 in (4.1), we get

18O < Iolll £ (O)]-

So £(0) =
Letting x = y,z = 0 in (4.1), we get
(4.2) 12f (2z) — 8 ()| <0

and so f (%) = %f(:):) for all x € X.
It follows from (4.1) and (4.2) that

1f@+y+2)+ fe—y —@+f@—m—@+f@—m—w—4ﬂ@
—4f(y) — 4|

B ) e

(55 - ) - 1) - 1)

ZW(iﬂx+y+@+iﬂx—y—@+lﬂ —5-2)
b=y~ f(@) )H

!!p\!‘4,}|fx+y+z)+f(x— y=2A+fly—e-2)+fz-z-y)

—4f(x) —4f(y) — 4f ()|
and so
flety+2)+flea—y—2)+fly—z—2)+flz—2—y)
=A4f(x) +4f(y) +4f(2)
for all x,y,z € X.
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The converse is obviously true. O

Corollary 4.2. An even mapping f : X — Y satisfies

(4.3) faty+t2)+fle—y—2)+fly—z—2)+ flz—z —y) —4f(z)
—4f(y) —4f(2)

B r+y—+=z r—y—=z Yy—T—z
() () ()
w1 () - @) - ) - 1)
forall x,y,z € X and only if f: X — Y is quadratic.

The functional equation (4.3) is called a quadratic p-functional equation.
We prove the Hyers-Ulam stability of the quadratic p-functional inequality (4.1)
in non-Archimedean Banach spaces.

Theorem 4.3. Let ¢ : X3 — [0,00) be a function with ¢(0,0,0) = 0 and let
f:X =Y be an even mapping satisfying

; i (2 Y i) _
(44) Jim 4] ‘p(zj’gj’zj =0,

45) [[fz+y+2)+flx—y—2)+fly—z—2)+ flz—x—y) —4f(2)
—A4f(y) —4f(2)]]

Y () (57 (5
~1(@) = £) - £+ ol9.2)

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

_ 2j-1, (% %
(46) I5() = ne)l < sup { R (. 5.0) )
forallx € X.

Proof. Letting x =y = z = 0 in (4.5), we get ||8£(0)]| < |p|l|f(0)]. So f(0) = 0.
Letting x = y,z = 0 in (4.5), we get

4 Jor () - 1] = e (5:3-9)



QUADRATIC p-FUNCTIONAL INEQUALITIES 123

for all z € X. So

48 |47 (5) - 4ms (5|
<max{H4l (2l) 4ty (2l+1)
e (3) -1 ()
<sup {20 (7. 575r.0) )

for all nonnegative integers m and | with m > [ and all z € X. It follows from (4.8)

et () - e (50}
Ja 1 (o

=) =47 ()}

that the sequence {4" f(5%)} is a Cauchy sequence for all z € X. Since Y is complete,
the sequence {4" f(57)} converges. So one can define the mapping h: X — Y by

)

for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (4.8), we get
(4.6).
The rest of the proof is similar to the proof of Theorem 3.3. g

h(z):= lim 4”]‘“(i

n—o00 2n

Corollary 4.4. Let r < 2 and 0 be nonnegative real numbers, and let f : X — Y

be an even mapping such that

49) ||fz+y+2)+flz—y —z)+f( —z—z2)+ flz—z—y)—4f(2)
—4f(y ()]

S\\p(f(“i”>+f<_z_ )+ (=)
+1(Z55Y) = 1) - 1) - 1) | + 00l + 1l + 1111

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

(4.10) If () = h(2)] < ,2|2f+1||w|!’“

forallx € X.

Theorem 4.5. Let ¢ : X3 — [0,00) be a function and let f : X — Y be an even
mapping satisfying (4.5) and

(4.11) > ’4|] o(20x,27y,22) = 0

Jj—oo
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for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y such
that

1
(1.2 1) = )] < g sup { e 20}
forallx € X.

Proof. 1t follows from (4.7) that

|1@) - 162

1

S 7@('7;71.70)
18]

for all x € X. Hence

(413) || 3 7(2') — o F(27)

<max{ | f (20) = gt (#7%0)

|
_max{ apt || (2%) - Zf (212)

1 1
Wax. 2720
ng{w]<w x>}

for all nonnegative integers m and [ with m > [ and all x € X. It follows from

1 ) 1

gaotf 277 e) = f (27e)
1
T

R

L rem

f (mel l‘) 1

(4.13) that the sequence {4 f(2"z)} is a Cauchy sequence for all € X. Since Y
is complete, the sequence {4% f(2"z)} converges. So one can define the mapping
h: X —Y by

ha) = lim L f(2")

n—oo
for all z € X. Moreover, letting [ = 0 and passing the limit m — oo in (4.13), we
get (4.12).
The rest of the proof is similar to the proof of Theorems 3.3. O

Corollary 4.6. Let r > 2 and 0 be nonnegative real numbers, and let f : X — Y

be an even mapping satisfying (4.9). Then there exists a unique quadratic mapping
h:X —Y such that

(4.14) 1f () = h(2)] <

i
ISI

forallx € X.
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Let

Alz,y,2) = [[flx+y+2)+fla—y—2)+ fly—z-2)+ flz—z—y)
—4f(x) —4f(y) —4 ()H

e = o (1 (7157) 00 (5 >+f( )

Ty
o (F5) - 0|
for all z,y,z € X.

For z,y,z € X with |[A(z,y, 2)|| < |[B(z,y,2)]],

1Az, y, 2)|| = [ B(2,y, 2)[| < |A(2,y,2) — B(x,y, 2)|-

For z,y,z € X with [[A(z,y,2)[| > || B(z,y, 2)];

1Az, y,2)ll = [A(z,y,2) = B(x,y,2) + B(x,y,2)]|
max{[|A(z,y, z) — B(x,y,2)l|, | B(x,y,2) ||}
|A(z, y,2) — B(z,y, 2]

1A(z, y, 2) — B(z,y, 2)[| + | B(x, y, 2|,

IN

IN

since | A(z,y, z)|| > ||B(x,y, 2)||. So we have

[fx+y+2)+flx—y—2)+fly—z—2)+ f(z —x—y)
—4f(x) —4f(y) —4f(2)||

el () o () ()
+f< ‘g‘y>—f@»—ﬂw—f@0H

SHﬂw+y+d+f@—y—d+f@—x—@+f@—x—w

_4f(x)—4f(y)_4f(z)_p<f (x—i—g—i—z) +f<$—g—z>

+f<y_;_z)+f<z_§_y>—fuﬂ—f@%—ﬂ@>w

As corollaries of Theorems 4.3 and 4.5, we obtain the Hyers-Ulam stability results

for the quadratic p-functional equation (4.3) in non-Archimedean Banach spaces.
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Corollary 4.7. Let ¢ : X3 — [0,00) be a function with ©(0,0,0) = 0 and let
f: X =Y be an even mapping satisfying (4.4) and

(4.15) Hf(:v+y+Z)+f(w—y—z)+f(y—m—z)+f(z—w—y)—4f(w)

—4f(y) —4f(z) — p (f <"’“"“2/+z> bt (ff“g”) Ly (y—r;—z)

z—x—y
1 () - @ - 1) - 1)) | < o)
for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y
satisfying (4.6).

Corollary 4.8. Let r < 2 and 0 be nonnegative real numbers, and let f : X — Y

be an even mapping such that

(4.16) \fe+y+2)+fle—y—2)+fly—z—-2)+flz—z—y) - 4f(z)

—4f(y) —4f(z) = p (f (W) +f (T) +f (y—g—z>
1 (5 - s - ) - £0))

for all x,y,z € X. Then there exists a unique quadratic mapping h : X — Y
satisfying (4.10).

<Ol l” + llylI" + 120"

Corollary 4.9. Let o : X3 — [0,00) be a function and let f : X — Y be an even
mapping satisfying (4.11) and (4.15) Then there exists a unique quadratic mapping
h:X =Y satisfying (4.12).

Corollary 4.10. Let r > 2 and 0 be positive real numbers, and let f : X — Y be

an even mapping satisfying (4.16). Then there exists a unique quadratic mapping
h:X =Y satisfying (4.14).
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