QUADRATIC ρ -FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN NORMED SPACES

YINHUA CUI^a, YUNTAK HYUN^{b,*} AND SUNGSIK YUN^c

ABSTRACT. In this paper, we solve the following quadratic ρ -functional inequalities

$$\left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right\|$$

$$\leq \left\| \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) \right) \right\|,$$

where ρ is a fixed non-Archimedean number with $|\rho| < \frac{1}{|4|}$, and

$$||f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)||$$

$$\leq \left\| \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right) \right\|,$$

where ρ is a fixed non-Archimedean number with $|\rho| < |8|$.

Using the direct method, we prove the Hyers-Ulam stability of the quadratic ρ -functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces and prove the Hyers-Ulam stability of quadratic ρ -functional equations associated with the quadratic ρ -functional inequalities (0.1) and (0.2) in non-Archimedean Banach spaces.

1. Introduction and Preliminaries

A valuation is a function $|\cdot|$ from a field K into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|rs| = |r| \cdot |s|$ and the triangle inequality holds, i.e.,

$$|r+s| \le |r| + |s|, \quad \forall r, s \in K.$$

Received by the editors May 15, 2017. Accepted May 23, 2017.

 $^{2010\ \}textit{Mathematics Subject Classification.}\ 46\text{S}10,\ 39\text{B}62,\ 39\text{B}52,\ 47\text{S}10,\ 12\text{J}25.$

Key words and phrases. Hyers-Ulam stability, non-Archimedean normed space, quadratic ρ -functional equation, quadratic ρ -functional inequality.

^{*}Corresponding author.

A field K is called a *valued field* if K carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$|r+s| \le \max\{|r|, |s|\}, \quad \forall r, s \in K,$$

then the function $|\cdot|$ is called a non-Archimedean valuation, and the field is called a non-Archimedean field. Clearly |1| = |-1| = 1 and $|n| \le 1$ for all $n \in \mathbb{N}$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and |0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

Definition 1.1 ([11]). Let X be a vector space over a field K with a non-Archimedean valuation $|\cdot|$. A function $|\cdot|: X \to [0, \infty)$ is said to be a *non-Archimedean norm* if it satisfies the following conditions:

- (i) ||x|| = 0 if and only if x = 0;
- (ii) ||rx|| = |r|||x|| $(r \in K, x \in X);$
- (iii) the strong triangle inequality

$$||x + y|| \le \max\{||x||, ||y||\}, \quad \forall x, y \in X$$

holds. Then $(X, \|\cdot\|)$ is called a non-Archimedean normed space.

Definition 1.2. (i) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called *Cauchy* if for a given $\varepsilon > 0$ there is a positive integer N such that

$$||x_n - x_m|| \le \varepsilon$$

for all $n, m \geq N$.

(ii) Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. Then the sequence $\{x_n\}$ is called *convergent* if for a given $\varepsilon > 0$ there are a positive integer N and an $x \in X$ such that

$$||x_n - x|| \le \varepsilon$$

for all $n \geq N$. Then we call $x \in X$ a limit of the sequence $\{x_n\}$, and denote by $\lim_{n\to\infty} x_n = x$.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean $Banach\ space$.

The stability problem of functional equations originated from a question of Ulam [16] concerning the stability of group homomorphisms.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the *Cauchy equation*. In particular, every solution of the Cauchy equation is said to be an *additive mapping*. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [13] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation

$$(1.1) f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [15] for mappings $f: E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group. See [3, 9, 10] for more functional equations.

The functional equation

$$2f\left(\frac{x+y}{2}\right) + 2\left(\frac{x-y}{2}\right) = f(x) + f(y)$$

is called a Jensen type quadratic equation.

In [6], Gilányi showed that if f satisfies the functional inequality

$$(1.2) ||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||$$

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

See also [14]. Gilányi [7] and Fechner [4] proved the Hyers-Ulam stability of the functional inequality (1.1). Park, Cho and Han [12] proved the Hyers-Ulam stability of additive functional inequalities.

In Section 3, we solve the quadratic ρ -functional inequality (0.1) and prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (0.1) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of a quadratic ρ -functional equation associated with the quadratic ρ -functional inequality (0.1) in non-Archimedean Banach spaces.

In Section 4, we solve the quadratic ρ -functional inequality (0.2) and prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (0.2) in non-Archimedean Banach spaces. We moreover prove the Hyers-Ulam stability of a quadratic ρ -functional equation associated with the quadratic ρ -functional inequality (0.2) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y is a non-Archimedean Banach space. Let $|2| \neq 1$.

2. Quadratic Functional Equations

Theorem 2.1. Let X and Y be vector spaces. A mapping $f: X \to Y$ satisfies

(2.1)
$$f\left(\frac{x+y+z}{2} + \frac{x-y-z}{2} + \frac{y-x-z}{2} + \frac{z-x-y}{2}\right) = f(x) + f(y) + f(z)$$

if and only if the mapping $f: X \to Y$ is a quadratic mapping.

Proof. Sufficiency. Assume that $f: X \to Y$ satisfies (2.1). Letting x = y = z = 0 in (2.1), we have 4f(0) = 3f(0). So f(0) = 0. Letting y = z = 0 in (2.1), we get

(2.2)
$$2f\left(\frac{x}{2}\right) + 2f\left(-\frac{x}{2}\right) = f(x),$$
$$2f\left(-\frac{x}{2}\right) + 2f\left(\frac{x}{2}\right) = f(-x)$$

for all $x \in X$, which imply that f(x) = f(-x) for all $x \in X$.

From this and (2.2), we obtain $4f\left(\frac{x}{2}\right) = f(x)$ or f(2x) = 4f(x) for all $x \in X$. Putting z = 0 in (2.1), we obtain

$$\frac{1}{2}f(x+y) + \frac{1}{2}f(x-y) = f(x) + f(y)$$

for all $x, y \in X$, which means that $f: X \to Y$ is a quadratic mapping.

Necessity. Assume that $f: X \to Y$ is quadratic.

By f(x+y)+f(x-y)=2f(x)+2f(y), one can easily get f(0)=0, f(x)=f(-x) and f(2x)=4f(x) for all $x\in X$. So

$$f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right)$$

$$= \left[2f\left(\frac{x}{2}\right) + 2f\left(\frac{y+z}{2}\right)\right] + \left[2f\left(-\frac{x}{2}\right) + 2f\left(\frac{y-z}{2}\right)\right]$$

$$= 4f\left(\frac{x}{2}\right) + f\left(\frac{y+z+y-z}{2}\right) + f\left(\frac{y+z-y+z}{2}\right)$$

$$= f(x) + f(y) + f(z)$$

for all $x, y, z \in X$, which is the functional equation (2.1) and the proof is complete.

Corollary 2.2. Let X and Y be vector spaces. An even mapping $f: X \to Y$ satisfies

(2.3)
$$f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y)$$
$$= 4f(x) + 4f(y) + 4f(z)$$

for all $x, y, z \in X$. Then the mapping $f: X \to Y$ is a quadratic mapping.

Proof. Assume that $f: X \to Y$ satisfies (2.3).

Letting x=y=z=0 in (2.3), we have 4f(0)=12f(0). So f(0)=0. Letting z=0 in (2.3), we get

$$2f(x+y) + 2f(x-y) = 4f(x) + 4f(y)$$

and so f(x+y) + f(x-y) = 2f(x) + 2f(y) for all $x, y \in X$.

3. Quadratic ρ -functional Inequality (0.1)

Throughout this section, assume that ρ is a fixed non-Archimedean number with $|\rho| < \frac{1}{|4|}$.

In this section, we solve and investigate the quadratic ρ -functional inequality (0.1) in non-Archimedean normed spaces.

Lemma 3.1. An even mapping $f: X \to Y$ satisfies

$$(3.1) \qquad \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right\|$$

$$\leq \left\| \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)) \right\|$$

for all $x, y, z \in X$ if and only if $f: X \to Y$ is quadratic.

Proof. Assume that $f: X \to Y$ satisfies (3.1).

Letting x = y = z = 0 in (3.1), we get

$$||f(0)|| \le |\rho|||8f(0)||.$$

So f(0) = 0.

Letting y = z = 0 in (3.1), we get $\left\|4f\left(\frac{x}{2}\right) - f(x)\right\| \le 0$ and so

$$f\left(\frac{x}{2}\right) = \frac{1}{4}f(x)$$

for all $x \in X$.

It follows from (3.1) and (3.2) that

$$\left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) \right\|$$

$$-f(x) - f(y) - f(z)$$

$$\leq \left\| \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) \right) \right\|$$

$$= \left| \rho \right| \left\| 4f\left(\frac{x+y+z}{2}\right) + 4f\left(\frac{x-y-z}{2}\right) + 4f\left(\frac{y-x-z}{2}\right) + 4f\left(\frac{z-x-y}{2}\right) - 4f(x) - 4f(y) - 4f(z) \right\|$$

$$\leq |4| \cdot |\rho| \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right\|$$

and so

$$f\left(\frac{x+y+z}{2}\right)+f\left(\frac{x-y-z}{2}\right)+f\left(\frac{y-x-z}{2}\right)+f\left(\frac{z-x-y}{2}\right)=f(x)+f(y)+f(z)$$
 for all $x,y,z\in X$.

The converse is obviously true.

Corollary 3.2. An even mapping $f: X \to Y$ satisfies

(3.3)
$$f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right)$$
$$-f(x) - f(y) - f(z)$$
$$= \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y)$$
$$-4f(x) - 4f(y) - 4f(z))$$

for all $x, y, z \in X$ if and only if $f: X \to Y$ is quadratic.

The functional equation (3.3) is called a quadratic ρ -functional equation.

We prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (3.1) in non-Archimedean Banach spaces.

Theorem 3.3. Let $\varphi: X^3 \to [0,\infty)$ be a function with $\varphi(0,0,0) = 0$ and let $f: X \to Y$ be an even mapping such that

(3.4)
$$\lim_{j \to \infty} |4|^j \varphi\left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j}\right) = 0,$$

(3.5)
$$\left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right\|$$

$$\leq \left\| \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) \right) \right\| + \varphi(x,y,z)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

(3.6)
$$||f(x) - h(x)|| \le \sup_{j \ge 0} \left\{ |4|^j \varphi\left(\frac{x}{2^j}, 0, 0\right) \right\}$$

for all $x \in X$.

Proof. Letting x = y = z = 0 in (3.5), we get $||f(0)|| \le |\rho|||8f(0)||$. So f(0) = 0. Letting y = z = 0 in (3.5), we get

(3.7)
$$\left\|4f\left(\frac{x}{2}\right) - f(x)\right\| \le \varphi(x,0,0)$$

for all $x \in X$. So

$$(3.8) \left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\|$$

$$\leq \max \left\{ \left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{l+1} f\left(\frac{x}{2^{l+1}}\right) \right\|, \cdots, \left\| 4^{m-1} f\left(\frac{x}{2^{m-1}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\| \right\}$$

$$= \max \left\{ |4|^{l} \left\| f\left(\frac{x}{2^{l}}\right) - 4 f\left(\frac{x}{2^{l+1}}\right) \right\|, \cdots, |4|^{m-1} \left\| f\left(\frac{x}{2^{m-1}}\right) - 4 f\left(\frac{x}{2^{m}}\right) \right\| \right\}$$

$$\leq \sup_{j \geq l} \left\{ |4|^{j} \varphi\left(\frac{x}{2^{j}}, 0, 0\right) \right\}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (3.8) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} 4^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.8), we get (3.6).

It follows from (3.4) and (3.5) that

$$\left\| h\left(\frac{x+y+z}{2}\right) + h\left(\frac{x-y-z}{2}\right) + h\left(\frac{y-x-z}{2}\right) + h\left(\frac{z-x-y}{2}\right) \right\|$$

$$-h(x) - h(y) - h(z)$$

$$= \lim_{n \to \infty} |4|^n \left\| f\left(\frac{x+y+z}{2^{n+1}}\right) + f\left(\frac{x-y-z}{2^{n+1}}\right) + f\left(\frac{y-x-z}{2^{n+1}}\right) \right\|$$

$$+ f\left(\frac{z-x-y}{2^{n+1}}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) - f\left(\frac{z}{2^n}\right)$$

$$\leq \lim_{n \to \infty} |4|^n |\rho| \left\| f\left(\frac{x+y+z}{2^n}\right) + f\left(\frac{x-y-z}{2^n}\right) + f\left(\frac{y-x-z}{2^n}\right) \right\|$$

$$+ f\left(\frac{z-x-y}{2^n}\right) - 4f\left(\frac{x}{2^n}\right) - 4f\left(\frac{y}{2^n}\right) - 4f\left(\frac{z}{2^n}\right)$$

$$+ \lim_{n \to \infty} |4|^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}, \frac{z}{2^n}\right)$$

$$= \|\rho(h(x+y+z) + h(x-y-z) + h(y-x-z) + h(z-x-y)$$

$$-4h(x) - 4h(y) - 4h(z))\|$$

for all $x, y, z \in X$. So

$$\left\| h\left(\frac{x+y+z}{2}\right) + h\left(\frac{x-y-z}{2}\right) + h\left(\frac{y-x-z}{2}\right) + h\left(\frac{z-x-y}{2}\right) - h(x) - h(y) - h(z) \right\|$$

$$\leq \|\rho(h(x+y+z) + h(x-y-z) + h(y-x-z) + h(z-x-y) - 4h(x) - 4h(y) - 4h(z))\|$$

for all $x, y, z \in X$. By Lemma 3.1, the mapping $h: X \to Y$ is quadratic.

Now, let $T:X\to Y$ be another quadratic mapping satisfying (3.6). Then we have

$$\begin{split} \|h(x) - T(x)\| &= \left\| 4^q h\left(\frac{x}{2^q}\right) - 4^q T\left(\frac{x}{2^q}\right) \right\| \\ &\leq \max\left\{ \left\| 4^q h\left(\frac{x}{2^q}\right) - 4^q f\left(\frac{x}{2^q}\right) \right\|, \left\| 4^q T\left(\frac{x}{2^q}\right) - 4^q f\left(\frac{x}{2^q}\right) \right\| \right\} \\ &\leq \sup_{j>0} \left\{ |4|^{q+j} \varphi\left(\frac{x}{2^{q+j}}, 0, 0\right) \right\}, \end{split}$$

which tends to zero as $q \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h: X \to Y$ is a unique quadratic mapping satisfying (3.6).

Corollary 3.4. Let r < 2 and θ be nonnegative real numbers, and let $f : X \to Y$ be an even mapping such that

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$||f(x) - h(x)|| < \theta ||x||^r$$

for all $x \in X$.

Theorem 3.5. Let $\varphi: X^3 \to [0, \infty)$ be a function and let $f: X \to Y$ be an even mapping satisfying (3.5) and

(3.11)
$$\lim_{j \to \infty} \frac{1}{|4|^j} \varphi(2^j x, 2^j y, 2^j z) = 0$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

(3.12)
$$||f(x) - h(x)|| \le \sup_{j>1} \left\{ \frac{1}{|4|^j} \varphi(2^j x, 0, 0) \right\}$$

for all $x \in X$.

Proof. It follows from (3.7) that

$$\left\| f(x) - \frac{1}{4}f(2x) \right\| \le \frac{1}{|4|}\varphi(2x,0,0)$$

for all $x \in X$. Hence

$$(3.13) \left\| \frac{1}{4^{l}} f(2^{l}x) - \frac{1}{4^{m}} f(2^{m}x) \right\|$$

$$\leq \max \left\{ \left\| \frac{1}{4^{l}} f\left(2^{l}x\right) - \frac{1}{4^{l+1}} f\left(2^{l+1}x\right) \right\|, \cdots, \left\| \frac{1}{4^{m-1}} f\left(2^{m-1}x\right) - \frac{1}{4^{m}} f\left(2^{m}x\right) \right\| \right\}$$

$$= \max \left\{ \frac{1}{|4|^{l}} \left\| f\left(2^{l}x\right) - \frac{1}{4} f\left(2^{l+1}x\right) \right\|, \cdots, \frac{1}{|4|^{m-1}} \left\| f\left(2^{m-1}x\right) - \frac{1}{4} f\left(2^{m}x\right) \right\| \right\}$$

$$\leq \sup_{i \geq l+1} \left\{ \frac{1}{|4|^{j}} \varphi(2^{j}x, 0, 0) \right\}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (3.13) that the sequence $\{\frac{1}{4^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^n}f(2^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.13), we get (3.12).

The rest of the proof is similar to the proof of Theorem 3.3.

Corollary 3.6. Let r > 2 and θ be positive real numbers, and let $f: X \to Y$ be an even mapping satisfying (3.9). Then there exists a unique quadratic mapping $h: X \to Y$ such that

(3.14)
$$||f(x) - h(x)|| \le \frac{|2|^r \theta}{|4|} ||x||^r$$

for all $x \in X$.

Let

$$\begin{split} A(x,y,z) := & \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) \right. \\ & \left. + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right\|, \\ B(x,y,z) := & \left\| \rho(f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)) \right\| \end{split}$$

for all $x, y, z \in X$.

For $x, y, z \in X$ with $||A(x, y, z)|| \le ||B(x, y, z)||$,

$$||A(x, y, z)|| - ||B(x, y, z)|| \le ||A(x, y, z) - B(x, y, z)||.$$

For $x, y, z \in X$ with ||A(x, y, z)|| > ||B(x, y, z)||,

$$\begin{split} \|A(x,y,z)\| &= \|A(x,y,z) - B(x,y,z) + B(x,y,z)\| \\ &\leq \max\{\|A(x,y,z) - B(x,y,z)\|, \|B(x,y,z)\|\} \\ &= \|A(x,y,z) - B(x,y,z)\| \\ &\leq \|A(x,y,z) - B(x,y,z)\| + \|B(x,y,z)\|, \end{split}$$

since ||A(x, y, z)|| > ||B(x, y, z)||. So we have

$$\left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) \right\|$$

$$-f(x) - f(y) - f(z) - \|\rho(f(x+y+z)) + f(x-y-z)\|$$

$$+f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)$$

$$\leq \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) \right\|$$

$$-f(x) - f(y) - f(z) - \rho(f(x+y+z) + f(x-y-z))$$

$$+f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)$$

As corollaries of Theorems 3.3 and 3.5, we obtain the Hyers-Ulam stability results for the quadratic ρ -functional equation (3.3) in non-Archimedean Banach spaces.

Corollary 3.7. Let $\varphi: X^3 \to [0, \infty)$ be a function with $\varphi(0, 0, 0) = 0$ and let $f: X \to Y$ be an even mapping satisfying (3.4) and

$$(3.15) \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) - \rho(f(x+y+z) + f(x-y-z) + f(y-x-z)) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)) \right\| \le \varphi(x,y,z)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (3.6).

Corollary 3.8. Let r < 2 and θ be nonnegative real numbers, and let $f : X \to Y$ be an even mapping such that

$$(3.16) \left\| f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) - \rho(f(x+y+z) + f(x-y-z) + f(y-x-z)) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)) \right\| \le \theta(\|x\|^r + \|y\|^r + \|z\|^r)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (3.10).

Corollary 3.9. Let $\varphi: X^3 \to [0, \infty)$ be a function and let $f: X \to Y$ be an even mapping satisfying (3.11) and (3.15). Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (3.12).

Corollary 3.10. Let r > 2 and θ be positive real numbers, and let $f : X \to Y$ be an even mapping satisfying (3.16). Then there exists a unique quadratic mapping $h : X \to Y$ satisfying (3.14).

4. Quadratic ρ -functional Inequality (0.2)

Throughout this section, assume that ρ is a fixed non-Archimedean number with $|\rho| < |8|$.

In this section, we solve and investigate the quadratic ρ -functional inequality (0.2) in non-Archimedean normed spaces.

Lemma 4.1. An even mapping $f: X \to Y$ satisfies

$$(4.1) || f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) ||$$

$$\le \left\| \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right) \right\|$$

for all $x, y, z \in X$ if and only if $f: X \to Y$ is quadratic.

Proof. Assume that $f: X \to Y$ satisfies (4.1).

Letting x = y = z = 0 in (4.1), we get

$$||8f(0)|| \le |\rho|||f(0)||.$$

So f(0) = 0.

Letting x = y, z = 0 in (4.1), we get

$$(4.2) ||2f(2x) - 8f(x)|| \le 0$$

and so $f\left(\frac{x}{2}\right) = \frac{1}{4}f(x)$ for all $x \in X$.

It follows from (4.1) and (4.2) that

$$||f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) -4f(y) - 4f(z)||$$

$$\leq ||\rho(f(\frac{x+y+z}{2}) + f(\frac{x-y-z}{2}) + f(\frac{y-x-z}{2}) + f(\frac{y-x-z}{2}) + f(\frac{z-x-y}{2}) - f(x) - f(y) - f(z))||$$

$$= ||\rho(\frac{1}{4}f(x+y+z) + \frac{1}{4}f(x-y-z) + \frac{1}{4}f(y-x-z) + \frac{1}{4}f(y-x-z) + \frac{1}{4}f(x-y-z) + f(y-x-z) + f(y-x-z)$$

and so

$$f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y)$$

= $4f(x) + 4f(y) + 4f(z)$

for all $x, y, z \in X$.

The converse is obviously true.

Corollary 4.2. An even mapping $f: X \to Y$ satisfies

(4.3)
$$f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x)$$
$$-4f(y) - 4f(z)$$
$$= \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right)$$

for all $x, y, z \in X$ and only if $f: X \to Y$ is quadratic.

The functional equation (4.3) is called a quadratic ρ -functional equation.

We prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (4.1) in non-Archimedean Banach spaces.

Theorem 4.3. Let $\varphi: X^3 \to [0,\infty)$ be a function with $\varphi(0,0,0) = 0$ and let $f: X \to Y$ be an even mapping satisfying

(4.4)
$$\lim_{j \to \infty} |4|^j \varphi\left(\frac{x}{2^j}, \frac{y}{2^j}, \frac{z}{2^j}\right) = 0,$$

$$(4.5) \|f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) -4f(y) - 4f(z)\|$$

$$\leq \|\rho\left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) -f(x) - f(y) - f(z))\| + \varphi(x,y,z)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

(4.6)
$$||f(x) - h(x)|| \le \sup_{j>0} \left\{ |2|^{2j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right) \right\}$$

for all $x \in X$.

Proof. Letting x = y = z = 0 in (4.5), we get $||8f(0)|| \le |\rho|||f(0)||$. So f(0) = 0. Letting x = y, z = 0 in (4.5), we get

$$\left\|4f\left(\frac{x}{2}\right) - f(x)\right\| \le \frac{1}{|2|}\varphi\left(\frac{x}{2}, \frac{x}{2}, 0\right)$$

for all $x \in X$. So

$$(4.8) \left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\|$$

$$\leq \max \left\{ \left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{l+1} f\left(\frac{x}{2^{l+1}}\right) \right\|, \cdots, \left\| 4^{m-1} f\left(\frac{x}{2^{m-1}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\| \right\}$$

$$= \max \left\{ |4|^{l} \left\| f\left(\frac{x}{2^{l}}\right) - 4 f\left(\frac{x}{2^{l+1}}\right) \right\|, \cdots, |4|^{m-1} \left\| f\left(\frac{x}{2^{m-1}}\right) - 4 f\left(\frac{x}{2^{m}}\right) \right\| \right\}$$

$$\leq \sup_{j \geq l} \left\{ |2|^{2j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, 0\right) \right\}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (4.8) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} 4^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.8), we get (4.6).

The rest of the proof is similar to the proof of Theorem 3.3.

Corollary 4.4. Let r < 2 and θ be nonnegative real numbers, and let $f : X \to Y$ be an even mapping such that

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

(4.10)
$$||f(x) - h(x)|| \le \frac{2\theta}{|2|^{r+1}} ||x||^r$$

for all $x \in X$.

Theorem 4.5. Let $\varphi: X^3 \to [0,\infty)$ be a function and let $f: X \to Y$ be an even mapping satisfying (4.5) and

(4.11)
$$\sum_{j \to \infty} \frac{1}{|4|^j} \varphi(2^j x, 2^j y, 2^j z) = 0$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

(4.12)
$$||f(x) - h(x)|| \le \frac{1}{|8|} \sup_{j>0} \left\{ \frac{1}{|4|^j} \varphi(2^j x, 2^j x, 0) \right\}$$

for all $x \in X$.

Proof. It follows from (4.7) that

$$\left\| f(x) - \frac{1}{4}f(2x) \right\| \le \frac{1}{|8|}\varphi(x, x, 0)$$

for all $x \in X$. Hence

$$(4.13) \left\| \frac{1}{4^{l}} f(2^{l}x) - \frac{1}{4^{m}} f(2^{m}x) \right\|$$

$$\leq \max \left\{ \left\| \frac{1}{4^{l}} f\left(2^{l}x\right) - \frac{1}{4^{l+1}} f\left(2^{l+1}x\right) \right\|, \cdots, \left\| \frac{1}{4^{m-1}} f\left(2^{m-1}x\right) - \frac{1}{4^{m}} f\left(2^{m}x\right) \right\| \right\}$$

$$= \max \left\{ \frac{1}{|4|^{l}} \left\| f\left(2^{l}x\right) - \frac{1}{4} f\left(2^{l+1}x\right) \right\|, \cdots, \frac{1}{|4|^{m-1}} \left\| f\left(2^{m-1}x\right) - \frac{1}{4} f\left(2^{m}x\right) \right\| \right\}$$

$$\leq \frac{1}{|8|} \sup_{j>l} \left\{ \frac{1}{|4|^{j}} \varphi(2^{j}x, 2^{j}x, 0) \right\}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (4.13) that the sequence $\{\frac{1}{4^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^n}f(2^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.13), we get (4.12).

The rest of the proof is similar to the proof of Theorems 3.3.

Corollary 4.6. Let r > 2 and θ be nonnegative real numbers, and let $f: X \to Y$ be an even mapping satisfying (4.9). Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$||f(x) - h(x)|| \le \frac{2\theta}{|8|} ||x||^r$$

for all $x \in X$.

Let

$$A(x,y,z) := \|f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)\|$$

$$B(x,y,z) := \left\| \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right) \right\|$$

for all $x, y, z \in X$.

For $x, y, z \in X$ with $||A(x, y, z)|| \le ||B(x, y, z)||$,

$$||A(x,y,z)|| - ||B(x,y,z)|| \le ||A(x,y,z) - B(x,y,z)||.$$

For $x, y, z \in X$ with ||A(x, y, z)|| > ||B(x, y, z)||,

$$\begin{aligned} \|A(x,y,z)\| &= \|A(x,y,z) - B(x,y,z) + B(x,y,z)\| \\ &\leq \max\{\|A(x,y,z) - B(x,y,z)\|, \|B(x,y,z)\|\} \\ &= \|A(x,y,z) - B(x,y,z)\| \\ &\leq \|A(x,y,z) - B(x,y,z)\| + \|B(x,y,z)\|, \end{aligned}$$

since ||A(x, y, z)|| > ||B(x, y, z)||. So we have

$$||f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z)||$$

$$- ||\rho\left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z)\right)||$$

$$\leq ||f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) - \rho\left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) - f(x) - f(y) - f(z)\right)||.$$

As corollaries of Theorems 4.3 and 4.5, we obtain the Hyers-Ulam stability results for the quadratic ρ -functional equation (4.3) in non-Archimedean Banach spaces.

Corollary 4.7. Let $\varphi: X^3 \to [0,\infty)$ be a function with $\varphi(0,0,0) = 0$ and let $f: X \to Y$ be an even mapping satisfying (4.4) and

$$(4.15) \left\| f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) - \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) - f(x) - f(y) - f(z) \right) \right\| \le \varphi(x,y,z)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h : X \to Y$ satisfying (4.6).

Corollary 4.8. Let r < 2 and θ be nonnegative real numbers, and let $f : X \to Y$ be an even mapping such that

$$(4.16) \left\| f(x+y+z) + f(x-y-z) + f(y-x-z) + f(z-x-y) - 4f(x) - 4f(y) - 4f(z) - \rho \left(f\left(\frac{x+y+z}{2}\right) + f\left(\frac{x-y-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{y-x-z}{2}\right) + f\left(\frac{z-x-y}{2}\right) - f(x) - f(y) - f(z) \right) \right\| \le \theta(\|x\|^r + \|y\|^r + \|z\|^r)$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (4.10).

Corollary 4.9. Let $\varphi: X^3 \to [0, \infty)$ be a function and let $f: X \to Y$ be an even mapping satisfying (4.11) and (4.15) Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (4.12).

Corollary 4.10. Let r > 2 and θ be positive real numbers, and let $f : X \to Y$ be an even mapping satisfying (4.16). Then there exists a unique quadratic mapping $h : X \to Y$ satisfying (4.14).

References

- 1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
- 2. P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. **27** (1984), 76-86.

- 3. G.Z. Eskandani & J.M. Rassias: Approximation of a general cubic functional equation in Felbin's type fuzzy normed linear spaces. Results Math. **66** (2014), 113-123.
- 4. W. Fechner: Stability of a functional inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. **71** (2006), 149-161.
- 5. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184** (1994), 431-43.
- 6. A. Gilányi: Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math. **62** (2001), 303-309.
- 7. A. Gilányi: On a problem by K. Nikodem. Math. Inequal. Appl. 5 (2002), 707-710.
- 8. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. **27** (1941), 222-224.
- 9. Pl. Kannappan: Quadratic functional equation and inner product spaces. Results Math. **27** (1995), 368-372.
- 10. J. Lee: Stability of functional equations in matrix random normed spaces: a fixed point approach. Results Math. **66** (2014), 99-112.
- 11. M.S. Moslehian & Gh. Sadeghi: A Mazur-Ulam theorem in non-Archimedean normed spaces. Nonlinear Anal.-TMA **69** (2008), 3405-3408.
- C. Park, Y. Cho & M. Han: Functional inequalities associated with Jordan-von Neumann-type additive functional equations. J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
- 13. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. **72** (1978), 297-300.
- 14. J. Rätz: On inequalities associated with the Jordan-von Neumann functional equation. Aequationes Math. **66** (2003), 191-200.
- 15. F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
- S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.

^aDEPARTMENT OF MATHEMATICS, YANBIAN UNIVERSITY, YANJI 133001, P. R. CHINA *Email address*: cuiyh@ybu.edu.cn

^bDepartment of Mathematics, Hanyang University, Seoul 04763, Korea *Email address*: gusdbsxkr@hanmail.net

 $^{\rm c}$ Department of Financial Mathematics, Hanshin University, Gyeonggi-do 18101, Korea Email~address: ssyun@hs.ac.kr