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ON FUNCTIONALLY CONVEX SETS AND FUNCTIONALLY
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ABSTRACT. We have introduced two new notions of convexity and closedness in
functional analysis. Let X be a real normed space, then C(C X) is functionally
convex (briefly, F—convex), if T(C) C R is convex for all bounded linear transfor-
mations T" € B(X,R); and K(C X) is functionally closed (briefly, F—closed), if
T(K) C R is closed for all bounded linear transformations 7' € B(X, R). By using
these new notions, the Alaoglu-Bourbaki-Eberlein-Smuljan theorem has been gener-
alized. Moreover, we show that X is reflexive if and only if the closed unit ball of X
is F'—closed. James showed that for every closed convex subset C' of a Banach space
X, C is weakly compact if and only if every f € X™ attains its supremum over C at
some point of C. Now, we show that if A is an F—convex subset of a Banach space
X, then A is bounded and F-closed if and only if every element of X™ attains its
supremum over A at some point of A.

1. INTRODUCTION

Convexity is an important tool in many fields of Mathematics, having appli-
cations in different areas. Various generalizations of the convexity were given in
the literature, including nearly convexity, closely convexity, convexlike, quasiconvex,
approximately convex and so forth. Furthermore, generalizing of convexity is a dif-
ficult task. Several generalizations have appeared to be mere formal extensions of
convexity, most of which deal with invexity.

In this work, by two notions functionally convex sets and functionally closed sets
which we introduced in [6] and [7], we improve some basic theorems in functional
analysis. Among other things, a generalization of the Alaoglu-Bourbaki-Eberlein-

Smuljan theorem is proved. In fact, we show that a real Banach space X is reflexive
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if and only if the closed unit ball of X is F—closed. Moreover, a weak form of the
James theorem is proved. Indeed, we show that if A is an F—convex subset of a
Banach space X then, the subset A is bounded and F—closed if and only if every
element of X* attains its supremum over A at some point of A.

From now on, we suppose that all normed spaces and Banach spaces are real.

Definition 1.1 ([6]). In a normed space X, we say that K(C X)) is m—functionally
convez (briefly, m-F—convex) (for m € N) if for every bounded linear transformation
T € B(X,R™), the subset T(K) of R™ is convex. A 1-F-convex set is called F—
convex. A subset K of X is called permanently F—convez if K is m—F—convex for all
m € N.

It is easy to see that every convex set is permanently F—convex.

Proposition 1.2. Fvery m + 1 — — F-convez set is m — — F-conver.

Proof. For every T € B(X,R™), we define S : X — R™*! by S(x) = (T'z,0). Note
that, S € B(X,R™*!) and for every A C X, the set T(A) is convex if and only if
S(A) is convex. O

Proposition 1.3 ([6]). If T' is a bounded linear mapping from a normed space X

into a normed space Y, and K is F—convex in X, then T(K) is F—convex in Y.

Corollary 1.4 ([6]). Let A,B be two F-convex subsets of a normed space X and X\

be a real number, then
A+B={a+b:acAbe B}, M={la:acA}

are F—convez.

Proposition 1.5 ([6]). Let A and B be F-convex subsets of a linear space X, which

have nonempty intersection. Then AU B is F-convex.

Definition 1.6 ([6]). Let X be a normed space and let A C X. We say that A is
functionally closed set (briefly, F—closed), if f(A) is closed for all f € X*.

Note that every compact set is F—closed. Also, every closed subset of real numbers
R is F-closed. In X = R?, the set A = {(z,y) : ,y > 0} is (non-compact)
F—closed whereas, the set A = Z x Z is closed but it is not F—closed (by taking
f(z,y) = = + 2y, the set f(A) is not closed in R). In fact, we know that a
subgroup G of R is dence or else there exists a € R such that G = {na : n € Z}.
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Now, since the set f(A) is not syclic so, the set f(A) is not closed. By taking
A={(z,y): 1 < 2?+y? <4} anonconvex F—closed and F— convex set is obtained.
Also, the set B = {(z,y) : z € [0,5),y > tan(x)} is a closed convex set which is not
F-closed. On the other hand, A = {(z,y) : 1 < 22 + y? < 4} is a non-compact and
F—closed set. The two last examples show that weakly closed( weakly compact) and
F—closed sets are different.

Now, we mention the following theorem, which help us to find a big class of F—convex

sets.

Theorem 1.7 ([6]). Every arcwise connected subset of a normed space X is F-

Convex.

Remark 1.8. The converse of the above theorem is not valid. Hence, by taking
S = {(z,sin(1) : 0 < z < 1}, the set S which is called the sine’s curve of topologist
is connected and so for any linear functional f € (RxR)*, the set f(S) is an interval.

Thus, S is an F—convex set which is not arcwise connected.

2. MAIN RESULTS

Theorem 2.1. Let A be an F-convex subset of Banach space X. Then A, the
closure of A is F—converz.

Proof. For every f € X*, we have f(A) C f(A) C f(A). Hence, by assumption,
f(A) is an interval. This completes the proof. O

Remark 2.2. In contrary the case of convex sets, interior of an F-convex set,
necessarily is not F—convex. For instance, take X = R x R and let B = {(x,y) :
22 + y? < 1}. Then if A is all elements surrounded by B and B + % is F—convex,
but the interior of A is not F—convex. Since, by taking f as projection on z-axis we

have f(A°) = (—3%,2)U(},32), which is not convex.

In the following, for a subset A of a Banach space X, a necessary and sufficient

condition for F—convexity is proved.

Theorem 2.3. Let X be a Banach space, A C X is F—convex if and only if

co(A) C (| A+ Ker(f).
fex*
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Proof. The set A C X is F—convex if and only if for all f € X*, the element
Yoy Aif(a;) belongs to f(A) which, A; > 0, a; € A and Y ;' | A; = 1. This is
equivalent that for all f € X*, there is a € A such that a—Y_;" | Nia; € Ker(f). O

Remark 2.4. Note that in special case X = R, since every nonzero functional is
one to one, we have (V. y. A+ Ker(f) = A. Thus A C R is F-convex if and only
if co(A) C A. Also, we have A C co(A). Then we obtain A C R is F-convex if and

only if A is convex.

Let X be a vector space. A hyperplane in X (through zp € X) is a set of the form
H =29+ Ker(f) C X, where f is a non-zero linear functional on X. Equivalently,
H = f~1(v), where v = f(x0). So, we have

m A+ Ker(f) = ﬂ Ua—i—Ker(f): ﬂ FHf(A)).

fexx feX*acA feXx*
Hence, A C X is F—convex if and only if
co(A) € [ F7Hf(A)).
fex=
Proposition 2.5. Let A be a subset of Banach space X. The set U = (\per (pex- 7Y (B))
is F—conver, where ' ={B: AC B, B is F-convexz}.

Proof. By the above remark and F-convexity of B we have co(B) C (¢ x- Y f(B)).
Intersecting on all B € T', implies that

co(A)= (Y eoB)SU S [ £ (F(co(A))).

Ber fexx
On the other hand, for every g € X*,

g(co(A)) € g(U) € g(g"(g(co(A)))) € g(co(A)).
Hence, for every g € X*, g(U) = g(co(A)). So U is F'—convex. O
Theorem 2.6 ([3]). If K1 and Ks are disjoint closed convex subsets of a locally

convex linear topological space X and if Ky is compact, then there exist constants c

and € > 0 and a continuous linear functional f on X such that
f(K2) <c—e<e< f(K).
Lemma 2.7 ([6]). If A is a subset of a Banach space X, then
M F(F(A) C o).

fexx
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Corollary 2.8 ([6]). Let A be an F-closed subset of a Banach space X. Then A is

F—convex if and only if
co(A) = () 1 (f(A).
fexx

Corollary 2.9. A compact subset A in a Banach space X is convex if and only if

A is F—convex and X* separates A and every element of X — A.

Proof. If A is a compact convex subset of X, then by Theorem 2.6, the assertion
holds. Conversely, assume that A is a compact F— convex subset of X. Hence,
co(A) = Nyex- f7Y(f(A)). On the other hand, there is f € X* such that for every
x € X — A, we have f(A) < f(x). This implies that x is outside of f~1(f(A)). Thus
7Y f(A)) = A and co(A) = A. O

Remark 2.10. If X is a Hilbert space, then by Riesz representation theorem for
every f € X*, there exists a unique z € X such that for all x € X, f(z) =< z,z >,
the inner product of z and z. Then
Ker(f)={r € X :<z,2 >=0} = 2.
In this case, we have
(2.1) () £ A = [ A+ Ker(f) =[] A+2"
fex* fex* zeX
Thus, in a Hilbert space X, every F—closed subset A of X is F—convex if and only if
co(A)= [ A+ 2"
zeX
Corollary 2.11. Let A and B be F-closed and F-convex subsets of a Banach space
X which have nonempty intersection. Then
co(AU B) =co(A)Uco(B).
Proof. By Proposition 1.5, AU B is F—convex. Then we have

@w(AUB) = (] fH(f(AUB))

fex=
(N rree)U( N riow)
fexx fexx

= co(A) Uco(B).
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Corollary 2.12. Let A and B be F—closed and F-conver subsets of a Banach space
X. Then

co(A+ B) =co(A) +co(B).
Proof. Obviously, we have
co(A+ B) C co(A) +co(B).

Let x be an arbitrary element of ¢o(A) + ¢o(B). Then there are x; € ¢o(A) and
x9 € ¢o(B) such that © = x1+x2. Then for every f € X* we have f(z1) € f(A) and
f(x2) € f(B). This implies that f(z1+z2) € f(A+B) and hence, z € f~!(f(A+B)).
It follows that
e(A)+2o(B)C () f ' (f(A+ B)) =co(A+ B).
fex*
Note that if A and B are F—convex and F—closed, then A + B is F—closed. O

There are several statements equivalent with reflexivity in real Banach spaces.
Some of them are collected in the following theorem which is named the Alaoglu-

Bourbaki-Eberlein-Smuljan theorem.

Theorem 2.13 ([5, p.777]). For a Banach space X the following five statements
are equivalent:
(i) X is reflexive.
(ii) Every bounded sequence {x,} in X has a functionally convergent subse-
quence.
(iii) The closed unit ball in X is weakly compact.
(iv) Ewvery bounded closed convex set in X is weakly compact.

(v) Every bounded weakly closed set in X is weakly compact.

The equivalence of (i) and (i) is called the Eberlein-Smuljan theorem. The
equivalence of (i) and (iii) is called the Alaoglu theorem. In the following, we add
a new statement to the above list. Indeed, we generalized the Alaoglu theorem by
replacing the assumtion of weakly compactness by F'—closedness of the closed unit
ball of X which is weaker than that condition. To this end, we need the following

theorem.

Theorem 2.14. For a norm space X, we have the following.
1. The topology o(X**, X*) induces o(X, X™*) on X.
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2. The closed unit ball U of X is o(X**, X*)-dense in the closed unit ball U** of
X

3. The vector space X is o(X**, X*)-dense in X**.

Where, o(X, X*) refers to the weak topology on X and X* is the dual of X.

Proof. Here [1]. O

Theorem 2.15. Let X be a Banach spaces. Then X is reflexive if and only if the
closed unit ball of X is F—closed.

Proof. Let U, the closed unit ball of X, be F—closed. Assume that {z,} C U is
o(X**, X*)—convergent to x. Then, for every f € X*, we have limz,(f) = z(f).
Consequently, for every f € X* we have lim f(z,) = f(z). On the other hand, U is
F-closed, then f(z) € f(U) for all f € X*. It follows that x € (¢ - f7HfU)) C
¢o(U) = U. This means that U is o(X™*, X*)-closed. Now, it follows from Theorem
2.14 (2) that U = U**. Hence, X = X*™*. Conversely, if X is reflexive, then U
is weakly compact. If f is a bounded linear functional on X, then it is weakly
continuous. Therefore, the set f(U) is a compact set of R. Hence, it is closed. and
so U is F—closed. O

Remark 2.16. As a consequence of the above theorem, the closed unit ball of the
space cq is not F—closed. Note that this set is a closed convex and bounded subset

of Co-

James [4] showed that for every closed convex subset C' of a Banach space X, C
is weakly compact if and only if every f € X* attains its supremum over C at some

point of C. Now, we have the following theorem.

Theorem 2.17. Let A be an F-conver subset of a Banach space X. Then A is
bounded and F—closed if and only if every element of X* attains its supremum over

A at some point of A.

Proof. Suppose that every f € X* attains its supremum over A at some point of A.

For every z € A, we have

[f(2)] < |f(ao)| < o0, (f € X7)

and so the uniform boundedness principle implies that A is bounded. On the

other hand, since A is F—convex, f(A) is a bounded interval. By assumption, f
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attains its supremum over A at some point of A. Hence, the right side of this
interval is closed. By taking — f, one may show the closedness of the left side of the
interval.

If A is bounded and F—closed then, the set f(A) is a compact subset of R. O

Theorem 2.18. Let X be an infinite dimensional Banach space with separable con-
jugate and A be an F—closed subset of X. Then, A is F—convex if and only if

AY =70o(A), where A" is the weak closure of A.

Proof. Let A" = @(A), then every x € co(A) belongs to A”. Hence, there is a
sequence {a,} C A which weakly tends to x, and so for every f € X* we have
f(z) = lim, . f(a,). This implies that f(z) € f(A) = f(A). Therefore, z €
f7Y(f(A)). Applying Theorem 2.8, the F—convexity of A is obtained.

On the other hand, let A be an F—convex subset of X. For every x € A" there is
a sequence {a,} C A such that f(x) € f(A) = f(A). Therefore, z € f~1(f(A)).
Applying Lemma 2.7, we have A" C @(A). If 2 is an arbitrary element of co(A),

then there is a sequence {y,} C co(A) such that y,, tends to z. So, for every f € X*,
the real number f(yy) tends to f(x). Let B be a dense countable set of X* so, there
is a sequence {f;}5° C B such that f = lim; . f;. Since A is F—convex, for every
f € X* we have f(A) = f(co(A)). Hence, for each i € N, there is a sequence
{al} C A which, for every n € N, the equality f;(y,) = fi(a’) holds. By a diagonal
method, one may find a sequence a} = al' in A such that lim, oo fin(al) = fin(x).
Applying the identity, f = lim;_ f; we have lim, .~ f(alt) = f(x). This implies
that 2 € A", O

Corollary 2.19. Let X be an infinite dimensional Banach space with separable
conjugate and A be a weakly compact subset of X. Then, A is F—convex if and only

if A is convexz.

At the end, we offer some problems.

1-Is a Banach space X reflexive if and only if every closed bounded F-convex subset
of X is F-closed?

2- Let X be a real Banach space. If A is a bounded F—closed and F—convex subset
of X, then

o(A) =eo(Ext(A) = [ f7(f(A)).
fexx
By this the Krein-Millman theorem will be generalized. In other words the assump-

tion of weakly compactness is replaced by a weaker condition.
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3-Let X be a Hilbert space and A be a nonempty closed and F— closed and F—
convex subset of X and = € X — co(A). Is there ap € A such that

— ap|| = inf ||z — a|?
|z = aoll = inf ||z —al

This means that the nearest point theorem will be extended.
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