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PURE DISCRETE SPECTRUM ON TOEPLITZ ARRAYS

Jeong-Yup Lee

Abstract. We look at Toeplitz arrays on Zd and study a characterizing property
for pure discrete spectrum in terms of the periodic structures of the Toeplitz arrays.

1. Introduction

There have been a lot of investigations about the property of pure discrete spec-

trum on the various settings like Delone sets, tilings, and Toeplitz arrays. Especially

on substitution Delone sets or tilings, the pure discrete spectrum is characterized

by simple properties like algebraic coincidence and overlap coincidence [9, 13], so

one can easily check the pure discrete spectrum using algorithms deriven from the

coincidences. Toeplitz arrays have been good examples for studying pure discrete

spectrum [1, 7]. It can be observed that Toeplitz arrays are regular if and only if

the point sets coming from the associated cut-and-project scheme are regular from

[1, 10]. Since every regular cut-and-project point set has pure discrete spectrum,

every regular Toeplitz array has pure discrete spectrum. However characterizing

property for pure discrete spectrum in Toeplitz arrays is not yet known. In this pa-

per, we provide a simple equivalent property for pure discrete spectrum on Toeplitz

arrays in terms of the periodic structures of the Toeplitz arrays.

2. Preliminary

Let Σ = {1, 2, . . . ,m} be a finite set of colours and Z ⊆ Zd a subgroup isomorphic

to Zd. For x = {x(v)}v∈Zd ∈ ΣZd
we define

Per(x,Z, i) = {w ∈ Zd : x(w + z) = σ for all z ∈ Z}, i ∈ Σ,

Received by the editors November 19, 2017. Accepted March 19, 2018.
2010 Mathematics Subject Classification. 37B50, 52C23.
Key words and phrases. Toeplitz array, pure discrete spectrum.

c⃝ 2018 Korean Soc. Math. Educ.

127



128 Jeong-Yup Lee

Per(x,Z) =
∪
σ∈Σ

Per(x,Z, i).

When Per(x,Z) ̸= ∅, we say that Z is a group of periods of x. We say that x is a

Zd-Toeplitz array (or a Toeplitz array) if for any 1 ≤ i ≤ m and v ∈ Zd, there exists

Z ⊆ Zd subgroup isomorphic to Zd such that v + Z ⊆ Per(x,Z, i).

Let x ∈ ΣZd
. A group Z ⊂ Zd of periods of x is called a group generated

by essential periods of x if Per(x,Z) ⊆ Per(x,Z ′) implies Z ′ ⊆ Z. It is shown

in [5] that for any group Z ⊆ Zd of periods of x, there exists K ⊆ Zd a group

generated by essential periods of x such that Per(x,Z) ⊆ Per(x,K). Furthermore

there exists a sequence {Zn}n≥0 of groups generated by essential periods of x such

that Zn+1 ⊆ Zn and
∪

n≥0 Per(x,Zn) = Zd. We call the sequence of groups {Zn}n≥0
a period structure of x.

Let {Zi}i≥0 be a decreasing sequence of subgroups isomorphic to Zd and let

ϕi : Zd/Zi+1 → Zd/Zi be the function induced by the inclusion Zi+1 ⊆ Zi, i ≥ 0.

Consider the inverse limit

G = lim
←i

(Zd/Zi, ϕi).

Consider the homomorphism τ : Zd → Πi≥0Zd/Zi defined for v ∈ Zd by

τ(v) = {τi(v)}i≥0,

where τi : Zd → Zd/Zi is the canonical projection. The image of Zd by τ is dense in

G, which implies that the Zd-action v(g) = τ(v) + g, v ∈ Zd, g ∈ G, is well defined

and (G,Zd) is a minimal equicontinuous system. We call (G,Zd) an odometer system

or simply an odometer.

A van Hove sequence for Rd is a sequence F = {Fn}n≥1 of bounded measurable

subsets of Rd satisfying

lim
n→∞

Vol((∂Fn)
+r)/Vol(Fn) = 0, for all r > 0.(2.1)

A multi-colour set or m-multi-colour set in Zd is a subset Λ = ∪i≤m(Λi, i), where

Λi ⊆ Zd and 1 ≤ i ≤ m. It is convenient to think of it as a set whose points come

in various colours, i being the colour of the points in Λi. Then Λ is a Zd-Toeplitz

array (or a Toeplitz array) if for any 1 ≤ i ≤ m and v ∈ Λi, there exists Z ⊆ Zd

subgroup isomorphic to Zd such that v + Z ⊆ Λi.

Let Λ be a Toeplitz array in Zd. Let us define a dynamical hull defined by a

local topology. Let XΛ = {x+Λ : x ∈ Zd}ρ, where ρ is the metric on the set of

multi-colour points in Zd for which two point sets are close if they agree on a large
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region around the origin with small shift(see the detail of this topology in [3, 12]).

Then we get a topological dynamical system (XΛ,Zd) with a translation action of

Zd.

On the other hand, we can consider a slightly different pseudo metric e on the

set of Zd-Toeplitz arrays. For any two Zd-Toeplitz arrays Λ′,Λ′′, we define

e(Λ′,Λ′′) = lim sup
n→∞

∑m
i=1 ♯((x+ Λ′i)△Λ′′i ) ∩ Fn)

♯(Zd ∩ Fn)
,

where {Fn} is a van Hove sequence on R2. We let A(Λ) = {x+Λ : x ∈ Zd}e be the

orbit closure of Λ under the topology defined by the pseudo metric e(see [3, 11]for

the detail about this topology). For each ϵ > 0, define

U(ϵ) := {(x, y) ∈ Zd × Zd : e(x+Λ, y +Λ) < ϵ}.

Let U = {U(ϵ) ⊂ Zd×Zd : ϵ > 0}. Then U forms a fundamental set of entourages for

a uniformity on Zd. Since each U(ϵ) is Zd-invariant, we obtain a topological group

structure on Zd. Let A(Λ) be the completion of Zd in this topology, which is a new

topological group. For y ∈ Zd and U ∈ U , define U [y] = {x ∈ Zd : (x, y) ∈ U}. Let
Pϵ = {x ∈ Zd : e(x + Λ,Λ) < ϵ} for each ϵ > 0. Then U(ϵ)[0] = Pϵ. Note that

for any ϵ > 2e(Λ, ∅), Pϵ = Zd. Although A(Λ) is the completion of Zd under this

topology, one can also think of it as the hull (completion) of Λ under translation

action by Zd when the topology is supplied by the pseudo-metric e.

Let {Fn}n≥1 be a van Hove sequence. A cluster of Λ is a family P = (Pi)i≤m

where Pi ⊂ Λi is finite for all i ≤ m. The Toeplitz array Λ has uniform cluster

frequencies (UCF) (relative to {Fn}n≥1) if for any cluster P, the limit

freq(P,Λ) = lim
n→∞

LP(x+ Fn)

Vol(Fn)
≥ 0 ,

where LP(x+Fn) = ♯{v ∈ Rd : v+P ⊂ (x+Fn)∩Λ}, exists uniformly in x ∈ Rd. It

is known that for a Zd-Toeplitz array Λ, the dynamical system (XΛ,Zd) is uniquely

ergodic if and only if Λ has UCF (see [12, Theorem 2.7]).

2.1. Maximal equicontinuous factor The topological dynamical system (X,Zd)

is said to be equicontinuous if for every ϵ > 0 there exists δ > 0 such that if Γ,Γ′ ∈ X

satisfy d(Γ,Γ′) < δ, then d(Γ+ v,Γ′ + v) < δ for all v ∈ Zd. We say that (X,Zd) is

an extension of (Y,Zd), or (Y,Zd) is a factor of (X,Zd), if there exists a continuous

surjection ϕ : X → Y such that ϕ preserves the Zd-action. We call ϕ a factor map.

We call (Y,Zd) themaximal equicontinuous factor of (X,Zd) if it is an equicontinuous
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factor of (X,Zd) such that for any other equicontinuous factor (Y ′,Zd) of (X,Zd)

there exists a factor map ϕ : Y → Y ′ that satisfies ϕ ◦ f = f ′, with f : X → Y and

f ′ : X → Y ′ factor maps.

Proposition 2.1 ([5, Proposition 5]). If {Zn}n≥0 is a period structure of Λ, then the

odometer G = lim←(Zd/Zn, ϕn) is the maximal equicontinuous factor of (XΛ,Zd).

2.2. Dynamical spectrum and diffraction spectrum Suppose that Λ is a Zd-

Toeplitz array with UCF. In this case, we observe that the autocorrelation is unique

for any measure of the form

ν =
∑
i≤m

aiδΛi , where δΛi =
∑
x∈Λi

δx and ai ∈ C .(2.2)

Let γ(ν) denote its autocorrelation, that is, the vague limit

γ(ν) = lim
n→∞

1

Vol(Fn)
(ν|Fn ∗ ν̃|Fn) ,(2.3)

where ∗ is a convolution of the two measures, {Fn}n≥1 is a van Hove sequence and

ν̃ =
∑

i≤m aiδ−Λi . Simple computation shows

γ(ν) =
m∑

i,j=1

aiaj
∑

y∈Λi,z∈Λj

freq((y, z),Λ)δy−z.(2.4)

Here (y, z) stands for a cluster consisting of two points y ∈ Λi, z ∈ Λj . The measure

γ(ν) is positive definite, so by Bochner’s Theorem the Fourier transform γ̂(ν) is a

positive measure on Rd, called the diffraction measure for ν. We say that the measure

ν(orΛ) has pure point diffraction spectrum if γ̂(ν) is a pure point or discrete measure.

On the other hand, we also have the measure-preserving system (XΛ, µ,Zd) as-

sociated with Λ. Consider the associated group of unitary operators {Ux}x∈Zd on

L2(XΛ, µ):

Uxf(Λ
′) = f(−x+Λ′).

Every f ∈ L2(XΛ, µ) defines a function on Zd by x 7→ (Uxf, f). This function

is positive definite on Zd, so its Fourier transform is a positive measure σf on Rd

called the spectral measure corresponding to f . We say that the Toeplitz array Λ

has pure discrete dynamical spectrum if σf is pure discrete for every f ∈ L2(XΛ, µ).

We recall that f ∈ L2(XΛ, µ) is an eigenfunction for the Zd-action if for some

α = (α1, . . . , αd) ∈ Zd,

Uxf = e2πix·αf, for all x ∈ Zd,
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where · is the standard inner product on Zd.

We recall the following series of theorems in the literature. We consider a Zd-

Toeplitz array Λ with UCF.

Theorem 2.2 ([2, 8, 12]). Λ has pure point diffraction spectrum if and only if Λ

has pure discrete dynamical spectrum.

Theorem 2.3 ([4, Theorem 5]). Λ has pure point diffraction spectrum if and only

if for all ϵ, Pϵ is relatively dense.

Theorem 2.4 ([4]). Λ has pure point diffraction spectrum if and only if A(Λ) is

compact.

Theorem 2.5 ([3, Theorem 7]). The dynamical system (XΛ,Zd) has pure discrete

dynamical spectrum with continuous eigenfunctions if and only if there exists a con-

tinuous surjective Zd-map β : XΛ → A(Λ).

3. Characterization of Pure Discrete Dynamical Spectrum
on Zd-Toeplitz Arrays

For two Zd-Toeplitz arrays Λ and Γ, define

dens(Λ ∩ Γ) = lim
n→∞

♯(Λ ∩ Γ ∩ Fn)

♯(Zd ∩ Fn)
,

where {Fn}n∈N is a van Hove sequence on Rd.

Theorem 3.1. Let Λ be a Toeplitz array in Zd and {pnZd}n∈N is a periodic structure

of Λ. Let (XΛ,Zd) be a minimal topological dynamical system with unique ergod-

icity. Suppose that every measurable eigenfunctions for (XΛ,Zd) can be considered

as continuous eigenfunctions. Then Λ has pure discrete dynamical spectrum if and

only if for any ϵ > 0, there exists pmZd ∈ {pnZd}n∈N such that

dens((t+Λ) ∩Λ) > 1− ϵ, ∀ t ∈ pmZd.(3.1)

Proof. Since Λ is a Zd-Toeplitz array, the odometer G = lim←(Zd/pnZd, ϕn) is the

maximal equicontinuous factor of (XΛ,Zd) from Proposition 2.1. Let ψ : XΛ → G

be an equicontinuous factor map. Then ψ is a continuous and surjective map.

From Theorem 2.2 and Theorem 2.5, if (XΛ,Zd) has pure discrete dynami-

cal spectrum with continuous eigenfunctions, there exists a continuous onto map

ϕ : G → A(Λ), since G is the maximal equicontinuous factor. It is known from
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Theorem 2.3 that Λ has pure point diffraction spectrum if and only if Pϵ is rela-

tively dense. Note that Pϵ is an open set in A(Λ). Since ϕ−1(Pϵ) is an open set

by continuous map ϕ, ∃ m ∈ N s.t pmZd ⊂ Pϵ where pmZd ∈ {pnZd}n∈N. Thus if

(XΛ,Zd) is pure discrete dynamical spectrum with continuous eigenfunctions and

has unique ergodicity, then the formula (3.1) follows. On the other hand, if the for-

mula (3.1) holds, then Pϵ becomes relatively dense. From Theorem 2.3 and Theorem

2.2, (XΛ,Zd) is pure discrete dynamical spectrum. �

Remark 3.2. The paper [6] provides a sufficient condition for L2(XΛ, µ) to have

continuous eigenfunctions in linear recurrent dynamical Cantor system, although it

is not a necessary condition. It would be interesting to know that under what condi-

tions, every measurable eigenfunctions in L2(XΛ, µ) can be considered as continuous

eigenfunctions.
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