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CENTRAL INDEX BASED SOME COMPARATIVE GROWTH

ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS

FROM THE VIEW POINT OF L∗-ORDER

Tanmay Biswas

Abstract. In this paper, we discuss central index oriented and slowly changing
function based some growth properties of composite entire functions.

1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. For entire f =
∞∑
n=0

anz
n on |z| = r, the maximum modulus symbolized asMf (r), the maximum term

denoted as µf (r) and the central index indicated as νf (r) are respectively defined

as max
|z|=r

|f (z) |, max
n≥0

(|an|rn) and max {m,µf (r) = |am|rm} . Therefore, central index

νf (r) of an entire function f is the greatest exponent m such that |am|rm = µf (r) .

ObviouslyMf (r) , µf (r) and νf (r) are real and increasing function of r. For another

entire function g,Mg (r) and µg (r) are also defined and the ratios
Mf (r)
Mg(r)

when r → ∞

as well as
µf (r)
µg(r)

as r → ∞ are called the comparative growth of f with respect to g

in terms of their maximum moduli and the maximum term respectively. The prime

object of the study of the growth investigation of entire functions has usually been

done through their maximum moduli and maximum term. Though νf (r) is much

weaker than Mf (r) and µg (r) in some sense, from another angle of view
νf (r)
νg(r)

as

r → ∞ is also called the growth of f with respect to g where νg (r) denotes the

central index of entire g. Considering this, here we compare the central index of

composition of two entire functions with their corresponding left and right factors

under the treatment of the theories of slowly changing functions which in fact means
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that L (ar) ∼ L (r) as r → ∞ for every positive constant a i.e., lim
r→∞

L(ar)
L(r) = 1 where

L ≡ L (r). Actually in this paper we attempt to prove some results related to the

growth rates of composite entire functions on the basis of central index using the

idea of L∗-order (respectively, L∗-lower order) of an entire function where L∗ is

nothing but a weaker assumption of L.Our notations are standard within the theory

of Nevanlinna’s value distribution of entire functions and therefore we do not explain

those in detail as those are available in [8]. To start our paper we just recall the

following definitions which will be needed in the sequel:

Definition 1. The order ρf and lower order λf of an entire function f are define

as
ρf
λf

= lim
r→+∞

sup
inf

log logMf (r)

log r
= lim

r→+∞
sup
inf

log[2]Mf (r)

log r
.

Therefore it seems reasonable to state suitably an alternative definition of order

and lower order of entire function in terms of its central index. He and Xiao [3]

introduced such a definition in the following way:

ρf
λf

= lim
r→+∞

sup
inf

log νf (r)

log r
.

Let L ≡ L (r) be a positive continuous function increasing slowly i.e., L (ar) ∼
L (r) as r → ∞ for every positive constant a. Considering L (r) = log r and a =

1020, one can easily show that lim
r→∞

L(ar)
L(r) = 1. Somasundaram and Thamizharasi [6]

introduced the notions of L-order (respectively L-lower order) of entire functions.

The more generalized concept for L-order and L-lower order for entire functions is

L∗-order and L∗-lower order whose definition are as follows:

Definition 2 ([6]). The L∗-order ρL
∗

f and L∗-lower order λL
∗

f of an entire function

f are defined as

ρL
∗

f

λL
∗

f

= lim
r→+∞

sup
inf

log logMf (r)

log
[
reL(r)

] = lim
r→+∞

sup
inf

log[2]Mf (r)

log
[
reL(r)

] .

Taking f (z) = exp z and L (r) = log r, one can easily verify that ρf = λf = 1

and ρL
∗

f = λL
∗

f = 1
2 .

In terms of central index of entire functions, Definition 2 can be reformulated as:

Definition 3. The growth indicators ρL
∗

f and λL
∗

f of an entire function f are defined

as:
ρL

∗
f

λL
∗

f

= lim
r→+∞

sup
inf

log νf (r)

log
[
reL(r)

] .
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The concept of (p, q)-φ order of entire function was introduced by Shen et al.

[5] where p ≥ q ≥ 1 and φ : [0,+∞) → (0,+∞) be a non-decreasing unbounded

function. Shen et al. [5] also established the equivalence of the definition of (p, q)-φ

order of entire function in terms of maximum modulus and central index under some

certain condition. For details about it, one may see [5]. For particular if we consider

p = 1, q = 1 and φ (r) = reL(r), then in view of Proposition 1.2 of [5], we can write

that
ρL

∗
f

λL
∗

f

= lim
r→+∞

sup
inf

log logMf (r)

log
[
reL(r)

] = lim
r→+∞

sup
inf

log νf (r)

log
[
reL(r)

] .
2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([3, Theorems 1.9 and 1.10] or [4, Satz 4.3 and 4.4]). Let f be any entire

function, then

logµf (r) = log |a0|+
r∫
0

νf (t)

t
dt where a0 ̸= 0,

and for r < R,

Mf (r) < µf (r)

{
νf (R) +

R

R− r

}
.

Lemma 2 ([1]). Let f and g are any two entire functions with g (0) = 0. Also let

β satisfy 0 < β < 1 and c (β) = (1−β)2

4β . Then for all sufficiently large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .

In addition if β = 1
2 , then for all sufficiently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

Lemma 3. Let f be an entire function with 0 < λf ≤ ρf < ∞. Also let g be

an entire function with non zero finite lower order. If 0 < α < λg, then for all

sufficiently large values of r,

νf◦g(r) > νf (exp(r
α)) .

Proof. For any constant E, we get from the second part of Lemma 1, that

logMf (r) < νf (r) log r + log νf (2r) + E {cf. [2] } .
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Therefore from above we obtain that

logMf (r) < νf (2r) log r + νf (2r) + E

i.e., logMf (r) < νf (2r) (1 + log r) + E

i.e., logMf (r) < νf (2r) log (e · r) + E

i.e., logMf

(r
2

)
< νf (r) log

(
e · r

2

)
+ E

(1) i.e., logMf

(r
2

)
< νf (r) log

(
e · r

2

)(
1 +

E

νf (r) log
(
e · r

2

)) .
In view of (1) we get for all sufficiently large values of r that

log νf◦g(r) > log[2]Mf◦g(
r

2
)− log[2]

(
e.
r

2

)
− log

(
1 +

E

νf◦g(r) log
(
e. r2
))

i.e., lim inf
r→∞

log νf◦g(r)

log νf (exp(rα))
≥ lim inf

r→∞

log[2]Mf◦g(
r
2)

log νf (exp(rα))
−

lim sup
r→∞

log[2]
(
e. r2
)

log νf (exp(rα))
− lim sup

r→∞

log

(
1 + E

νf◦g(r) log(e. r2)

)
log νf (exp(rα))

(2) i.e., lim inf
r→∞

log νf◦g(r)

log νf (exp(rα))
≥ lim inf

r→∞

log[2]Mf◦g(
r
2)

log νf (exp(rα))
.

Further in view of Lemma 2, we obtain for all sufficiently large values of r that

log[2]Mf◦g

(r
2

)
≥ log[2]Mf

(
1

8
Mg

(r
4

))

(3) i.e., log[2]Mf◦g

(r
2

)
≥ (λf − ε)

1

8
+ (λf − ε)

(r
4

)λg−ε
.

where we choose ε in such a way that 0 < ε < min (λf , λg) .

Again from the definition of λf of entire function in terms of central index, we

obtain for all sufficiently large values of r that

log νf (exp(r
α)) ≤ (ρf + ε) log exp(rα)

i.e., log νf (exp(r
α)) ≤ (ρf + ε) rα .(4)

Now from (3) and (4) it follows for all sufficiently large values of r that

log[2]Mf◦g
(
r
2

)
log νf (exp(rα))

≥
(λf − ε) 1

8 + (λf − ε)
(
r
4

)λg−ε

(ρf + ε) rα
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(5) lim inf
r→∞

log[2]Mf◦g
(
r
2

)
log νf (exp(rα))

≥ lim inf
r→∞

(λf − ε) 1
8 + (λf − ε)

(
r
4

)λg−ε

(ρf + ε) rα

As α < λg we can choose ε (> 0) in such a way that

(6) α < λg − ε .

Thus from (5) and (6) we get that

(7) lim
r→∞

log[2]Mf◦g
(
r
2

)
log νf (exp(rα))

= ∞ .

Therefore from (2) and (7) we obtain that

i.e., lim
r→∞

log νf◦g(r)

log νf (exp(rα))
= ∞ .

So from above we obtain for all sufficiently large values of r and K > 1 that

log νf◦g(r) > K log νf (exp(r
α))

i.e., log νf◦g(r) > log {νf (exp(rα))}K

i.e., νf◦g(r) ≥ νf (exp(r
α)) .

This proves the theorem. �

In the line of Lemma 3, one can easily verify the following corollary and therefore

its proof is omitted.

Corollary 1. Let f be an entire function with non zero lower order. Also let g be

an entire function with 0 < λg ≤ ρg < ∞. If 0 < α < λg, then for all sufficiently

large values of r,

νf◦g(r) > νg(exp(r
α)) .

3. Results

In this section we present the main results of the paper.

Theorem 4. Let f be an entire function with non zero finite order and lower order

and g be an entire function with non zero finite lower order. If 0 < λL
∗

f ≤ ρL
∗

f <∞,

then for any A > 0

lim
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα)) +K (r,A;L)
= ∞ ,
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where 0 < α < λg and K (r,A;L) =

 0 if rα = o
{
L
(
exp

(
exp

(
αrA

)))}
as r → ∞

L
(
exp

(
exp

(
αrA

)))
otherwise .

Proof. Let 0 < α < α′ < λg. Now from the definition of L∗-lower order we obtain

in view of Lemma 3, for for all sufficiently large values of r that

log νf◦g
(
exp

(
rA
))

≥ log νf

(
exp

(
exp

(
rA
))α′)

i.e., log νf◦g
(
exp

(
rA
))

≥
(
λL

∗
f − ε

)
. log

{
exp

(
exp

(
rA
))α′

. expL
(
exp

(
exp

(
rA
))α′)}

i.e., log νf◦g
(
exp

(
rA
))

≥
(
λL

∗
f − ε

)
.
{(

exp
(
rA
))α′

+ L
(
exp

(
exp

(
rA
))α′)}

i.e., log νf◦g
(
exp

(
rA
))

≥
(
λL

∗
f − ε

)
.

(exp (rA))α′

1 +
L
(
exp

(
exp

(
rA
))α′)

(exp (rA))α
′


i.e., log[2] νf◦g

(
exp

(
rA
))

≥ O (1) + α′ log exp
(
rA
)

+ log

1 +
L
(
exp

(
exp

(
rA
))α′)

(exp (rA))α
′


i.e., log[2] νf◦g

(
exp

(
rA
))

≥ O (1) + α′rA

+ log

1 +
L
(
exp

(
exp

(
rA
))α′)

(exp (rA))α
′


i.e., log[2] νf◦g

(
exp

(
rA
))

≥ O (1) + α′rA

+ log

[
1 +

L
(
exp

(
exp

(
α′rA

)))
exp (α′rA)

]

i.e., log[2] νf◦g
(
exp

(
rA
))

≥ O (1) + α′rA + L
(
exp

(
exp

(
αrA

)))
− log

[
exp

{
L
(
exp

(
exp

(
αrA

)))}]
+ log

[
1 +

L
(
exp

(
exp

(
α′rA

)))
exp (α′rA)

]
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i.e., log[2] νf◦g
(
exp

(
rA
))

≥ O (1) + α′rA + L
(
exp

(
exp

(
αrA

)))
+ log

[
exp

(
α′rA

)
+ L

(
exp

(
exp

(
α′rA

)))
exp {L (exp (exp (αrA)))} · exp (α′rA)

]

i.e., log[2] νf◦g
(
exp

(
rA
))

≥ O (1) + α′r(A−α).rα(8)

+ L
(
exp

(
exp

(
αrA

)))
.

Again we have for all sufficiently large values of r that

log νf (exp (r
α)) ≤

(
ρL

∗
f + ε

)
log
{
exp (rα) eL(exp(r

α))
}

i.e., log νf (exp (r
α)) ≤

(
ρL

∗
f + ε

)
{log exp (rα) + L (exp (rα))}

i.e., log νf (exp (r
α)) ≤

(
ρL

∗
f + ε

)
{rα + L (exp (rα))}

(9) i.e.,
log νf (exp (r

α))−
(
ρL

∗
f + ε

)
L (exp (rα))(

ρL
∗

f + ε
) ≤ rα .

Now from (8) and (9) it follows for all sufficiently large values of r that

log[2] νf◦g
(
exp

(
rA
))

(10)

≥ O (1) +

(
α′r(A−α)

ρL
∗

f + ε

)[
log νf (exp (r

α))−
(
ρL

∗
f + ε

)
L (exp (rα))

]
+ L

(
exp

(
exp

(
αrA

)))
i.e.,

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα))
≥
L
(
exp

(
exp

(
αrA

)))
+O (1)

log νf (exp (rα))
(11)

+
µ′r(A−α)

ρL
∗

f + ε

1−

(
ρL

∗
f + ε

)
L (exp (rα))

log νf (exp (rα))

 .

Again from (10) we get for all sufficiently large values of r that

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα)) + L (exp (exp (αrA)))
≥ O (1)− α′r(A−µ)L (exp (rα))

log νf (exp (rα)) + L (exp (exp (αrA)))

+

(
µ′r(A−α)

ρL
∗

f +ε

)
log νf (exp (r

α))

log νf (exp (rα)) + L (exp (exp (αrA)))
+

L
(
exp

(
exp

(
αrA

)))
log νf (exp (rα)) + L (exp (exp (αrA)))
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i.e.,
log[2] νf◦g

(
exp

(
rA
))

log νf (exp (rα)) + L (exp (exp (αrA)))
≥

O(1)−α′r(A−µ)L(exp(rα))
L(exp(exp(αrA)))

log νf (exp(rα))

L(exp(exp(αrA)))
+ 1

(12)

+

(
µ′r(A−α)

ρL
∗

f +ε

)
log νf (exp (r

α))

1 + L(exp(exp(αrA)))
log νf (exp(rα))

+
1

1 +
log νf (exp(rα))

L(exp(exp(αrA)))

.

Case I. If rα = o
{
L
(
exp

(
exp

(
αrA

)))}
then it follows from (11) that

lim
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα))
= ∞ .

Case II. rα ̸= o
{
L
(
exp

(
exp

(
αrA

)))}
then two sub cases may arise.

Sub case (a). If L
(
exp

(
exp

(
αrA

)))
= o {log νf (exp (rα))}, then we get from

(12) that

lim sup
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα)) + L (exp (exp (αrA)))
= ∞ .

Sub case (b). If L
(
exp

(
exp

(
αrA

)))
∼ log νf (exp (r

α)) then

lim
r→∞

L
{
exp

(
exp

(
αrA

))}
log νf (exp (rα))

= 1

and we obtain from (12) that

lim
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα)) + L (exp (exp (αrA)))
= ∞ .

Combining Case I and Case II we may obtain that

lim
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νf (exp (rα)) +K (r,A;L)
= ∞ ,

where K (r,A;L) =

 0 if rµ = o
{
L
(
exp

(
exp

(
αrA

)))}
as r → ∞

L
(
exp

(
exp

(
αrA

)))
otherwise .

This proves the theorem. �

Theorem 5. Let f be an entire function with non zero finite order and lower order

and g be an entire function with non zero finite lower order. If λL
∗

f > 0 and ρL
∗

g <∞
then for any A > 0

lim
r→∞

log[2] νf◦g
(
exp

(
rA
))

log νg (exp (rα)) +K (r,A;L)
= ∞ ,
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where 0 < α < λg and K (r,A;L) =

 0 if rα = o
{
L
(
exp

(
exp

(
αrA

)))}
as r → ∞

L
(
exp

(
exp

(
αrA

)))
otherwise .

The proof is omitted because it can be carried out in the line of Theorem 4.
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