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GENERALIZED HYERS-ULAM STABILITY OF A
QUADRATIC-CUBIC FUNCTIONAL EQUATION
IN MODULAR SPACES

YANG-H1 LEE

ABSTRACT. In this paper, I prove the stability problem for a quadratic-cubic func-
tional equation

fla+ky) =K fz+y) =k fl@ —y) + [z — ky)

k2 —3k%+4 k2 — k?
%f(x) + 5

in modular spaces by applying the direct method.

+ f(kz) — f(=z)=0

1. INTRODUCTION

In 1940, Ulam [19] first posed a stability problem in group homomorphisms. In
the next year, Hyers [7] gave a clear answer to this problem for additive mappings
between Banach spaces. Since then, many mathematicians came to deal with this
problem (cf. [1, 6, 11, 15]).

The definitions and terminologies used in this paper were introduced by Nakano
[14] and Musielak and Orlicz [13].

Definition 1.1 Let X be a real vector space.
(a) A functional p : X — [0, 00] is called a modular if for arbitrary z,y € X,
(i) p(z) =0 if and only if z = 0,
(ii) p(ax) = p(x) for every scaler a with |a| =1,
(iii) p(ax + By) < p(x) + p(y) if and only if « + =1 and a, 8 > 0,
(b) We say that p is a convexr modular if the last condition (iii) is replaced by
(iii") p(ax + By) < ap(x) + Bp(y) if and only if « + 8 =1 and a, § > 0.
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A modular p defines a corresponding modular space, i.e., the vector space X,
given by X, ={z € X : p(Ar) - 0 as A\ — 0}.

Definition 1.2 Let {z,} and z be in X,,.

(i) The sequence {xy}, with =, € X, is p-convergent to x and write z,, — x if
p(xy, —x) = 0 as n — co.
(ii) The sequence {z,}, with z,, € X, is called p-Cauchy if p(z,, — zn) — 0 as
n,m — 0.
(iii) A subset S of X, is called p-complete if and only if every p-Cauchy sequence

is p-convergent to an element of S.

Recently, Sadeghi [16] and K. Wongkum etc. [21] investigated the generalized
Hyers-Ulam stability of a generalized Jensen functional equation and a quadratic
functional equation for mappings from linear spaces into modular spaces, respec-
tively.

A solution of the functional equation

fle+y)—flz—y)—2f(z) —2f(y) =0

is called a quadratic mapping ([5, 17]) and a solution of the functional equation

flz+2y) =3f(x+y)+3f(x) — f(x —y) —6f(y) = 0.

is called a cubic mapping. A mapping f is called a quadratic-cubic mapping if f
is represented by sum of a quadratic mapping and a cubic mapping. A functional
equation is called a quadratic-cubic functional equation provided that each solution
of that equation is a quadratic-cubic mapping and every quadratic-cubic mapping is
a solution of that equation. Many mathematicians investigated the stability problem
for several types of quadratic-cubic functional equations [3, 4, 9, 10, 12, 18, 20]. Now,

consider the following functional equation

fla+ky) =K fz+y) — B f(z—y) + f(z - ky)

3 _ 2 3 1.2
(1) k) - Sy P ey o,

where f is a mapping from a real vector space to a p-complete modular space and
k is a fixed real number such that |k| > V2. In this paper, we show that the

functional equation (1.1) is a quadratic-cubic functional equation if k is a rational

number and we prove the stability of that equation by applying the direct method in
[7]. More precisely, starting from the given mapping f that approximately satisfies
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the functional equation (1.1), we explicitly construct an exact solution F' of that
equation, which approximates the mapping f, given by

Fla) = tim K DI+ (0" = Df (k')

n—00 2k3n

2. MAIN RESULTS

Throughout this section, let V and W be real vector spaces and let p be a convex
modular on a real vector space Y. For a given mapping f : V — W, we use the

following abbreviations:

folx) == ()—2f—93)7 folz) := W7
Qf(x,y) =f(xz+y)+ flz —y) —2f(x) — 2f(y),
Cf(z,y) =f(xz+2y) =3f(x+y) +3f(z) — f(x —y) —6f(y),
Dif(z,y) ==f(x+ky) — K f(z +y) — K f(x —y) + f(x — ky)
3 a2 312
b k) = E I ) B

for all z,y € V. Notice that the solutions of the functional equations Qf = 0 and
Cf =0 are called a quadratic mapping and a cubic mapping, respectively.

We need the following particular case of Baker’s theorem [2] to prove Theorem
3.2.

Theorem 2.1 (Theorem 1 in [2]). Suppose that V and W are vector spaces over
Q, R or C and ap,Bo, - .., am, Bm are scalar such that o — a;fB; # 0 whenever
0<j<i<m. If 1: V=B for0<I<m and

> filewz + Biy) = 0
1=0

for all x;y € V, then each f; is a "generalized” polynomial mapping of "degree” at

most m — 1.

We easily obtain following theorem from Baker’s Theorem.
Theorem 2.2. If a mapping f : V — W satisfies either the functional equation
Dyf(z,y) = 0 for all x,y € V, then f is a "generalized” polynomial mapping of

”degree” at most 3.
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Suppose that f,g : V — W are generalized polynomial mapping of degree at
most 3. It is well known that if the equalities f(kz) = k%f(x) and g(kz) = k3g(x)
hold for all x € V' and any nonzero fixed rational number k such that |k| # 1, then
f and g are a quadratic mapping and a cubic mapping, respectively.

In the next theorem we will show that the functional equation Dy f = 0 is a

quadratic-cubic functional equation when k be a nonzero fixed rational number such
that |k| # 1.

Theorem 2.3. Let k be a nonzero fized rational number such that |k| # 1. A
mapping f satisfies the functional equation Dy f(x,y) = 0 for all x,y € V if and

only if fe is quadratic and f, is cubic.

Proof. If a mapping f satisfies the functional equation Dy f(z,y) = 0 for all z,y € V,
then the equalities f,(kz) = k3 f,(x) and f.(kx) = k% f.(x) follow from the equalities

Folkz) — k?3fo(l‘) _ Dkf(xvo)_szf(_xvo)’ folkz) — k‘Qfe(l‘) _ Dkf($70)+2Dkf(—»T=0)

for all x € V. Since f, and f. are generalized polynomial mappings of degree at
most 3, f, is a cubic mapping and f. is a quadratic mapping.
Conversely, assume that f, is a cubic mapping and f. is a quadratic mapping, i.e.,
f is a quadratic-cubic mapping. Notice that f, satisfies the equality f,(kz) = k3 f,(z)
and f,(x) = —fo(—2), fe satisfies f.(kx) — k% fe(x) and fe(x) = fo(—x) forallz € V
and all k£ € Q, and f(x) = fo(z) + fe(z).
The equalities Dy fy(x,y) = 0 and Dsf,(z,y) = 0 follow from the equalities
Dsfo(z,y) =Cfo(z,y) — Cfo(x —y,y),
Ds3fo(w,y) =Dafo(x +y,y) + Dafo(x —y,y) +4D2fo(z,y)
for all z,y € V. If the equality D; f,(z,y) = 0 holds for all j € Nwhen 2 < j <n-—1,
then the equality D, f,(z,y) = 0 follows from the equality

Dy fo(z,y) =Dn-1fo(z +y,y) + Dn-1fo(® — y,y) — Dp—2fo(x,y) + (n — 1)2D2f0(:c, Y)
for all x,y € V. Using mathematical induction, we obtain
ano(xv y) =0

for all z,y € V and any n € N. Since the equality D, f.(x,y) = 0 follows from the
equality

ane(lE, y) :Qfe(:Ea ny) - nQQfe(:Ev y)
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for all z,y € V, we have
Dy f(z,y) =0
for all x,y € V and any n € N. Using the equalities
Dk’fo(xay) :fo(x + ky) - k2f0($ + y) - kaO(x - y) + fo(x - ky) + 2(k2 - 1)f0($)a
Dk‘fe(xvy) :fe(aj + ky) - kae(x + y) - k2fe(x - y) + fe(x - ky) + 2(k2 - 1)f€(56)

for all z,y € X and any k € Q, we get

Dyf(w,y) =f(z +ky) = K*f(z +y) = K*f(e —y) + f(z — ky) + 2(k* = 1) f(z)
for all z,y € X and any k € Q. Therefore, if k& € Q is represented by either k = 2

m
or k = % for some n,m € N, then the desired equalities Dy, f(x,y) = 0 follows from
the equalities

2

_ yy_ ™ Yy
D%f(l‘,y) _an (xam) mQDmf <xam>7
Don f(z,y) =Dn fe(z,y)
for all z,y € X and n,m € N. O

The following properties given in the paper [8] are necessary to prove main the-

orem.

Remark. Let p be a convex modular on X. If 0 < a < § and o; > 0 with
Yo, o = 1, then properties p(ax) < p(Bz) and

p <E OéifL"i) < E aip(z;)
i=1 i=1
hold for all =, z1,...,2, € X .

Now we will prove the generalized Hyers-Ulam stability of the functional equation

Theorem 2.4. Let V' be a real vector space, Y, be a p-complete modular space and k
be a fized real number such that |k| > /2. Suppose f : V — Y, satisfies an inequality
of the form

(2.1) p(Drf(z,y)) < (z,y)

for all z,y € V, where ¢ : V2 — [0,00) be a function such that

> o(k'z, kly
i=0
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for all x,y € V. Then there exists a unique solution I’ :'V — 'Y, of the functional
equation (1.1) such that
o0 ’k‘z+1+1| |k:i+171| ;
(2.3) p(f(x Z ( 2|k:|3l+3 o(k'z,0) + W@(—k r,0)
=0
forallxz eV.
Proof. Notice that the inequality Y ;2 (lT;sz?} L+ lT;E;,I |) < 1 holds for |k| > /2.
Let J,f : V — Y, be the mappings defined by

Tnf(a) = L F 1>f<k”w>2+k (" = 1)f(-}"2)

for all x € V and any n € N. Then the equality

follows from the equality

(K747 4 1) () + (K 1) f (k)

9k3n+3m
R 1) (R D) PR + (B DR — 1) f(— k)
- 9fe3n+3m
L R = D"+ DF (k) + (B = D (" — 1) f(R72)
9L3n+3m

for all x € V and any n,m € NU {0}. Since the inequality

o |k‘i+1+1| |k:i+1—1| )
> SIkPTS T 2[k[FS ) <
i=0

and the equality

— (K" + 1)Dy, f (k2,0 EFY —1)Di f(—k'x,0
Jif (@) = Jisn f(z) = ( —gk?ﬂi-lf;f( z,0) 2)k35f3( z,0)

holds for all z € V and any ¢ € N, we have

p(Jnf(:L‘) — Jn+mf($))
n+m—1
= p< Z (Jlf(ef) - Jz+lf($))>

=n

ntm—1 , 511 i i+l ki
(2.4) <p< 3 < (K" + 1) Dy f(K'2,0) (K — 1) Dy f(=k ,0)))

2k31+3 9L3i+3
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n+m—1 i i
|k’7’+1+1| : |]€7’+1—1| ;
< 2|k”3i+3 p(Dkf(k .%‘,0)) + 2|k”3i+3 p(Dk:f(_k $)0)>

ntm—1 i+1 i+1
LR [ =1 i

< W Lo P

for all z € V and any n,m € N U {0}. So, it is easy to show that the sequence
{Jnf(x)} is a Cauchy sequence for all z € V. Since Y, is complete, the sequence
{Jnf(x)} converges for all x € V. Hence, we can define a mapping F' : V — Y, by

n 1 n n __ 1 _
Py et (D) & (" = 1) f (k)

n—00 2k3n

for all x € V. From the definition of F', we have the properties lim,, oo p(J, f(x) —
F(z)) =0 and

F(z) = lim Jyynf(z) = lim J,Jof(z) = Jy lim J,f(z) = JnF(2)
n—oo n—oo n—oo
for all x € V and any m € N. If we choose m € N such that

o (R 1) R 1 R k-1
—~ 2|k\3i+3 2|k:|3i+3 2|k’3m 2‘k|3m

<1,

then we obtain

p(f(x) — F(z))
= p(f(x) = Im F(z))

m+n—1

=p( Y (Jif(@) = Jig1f (@) + Jmnf (&) = T F ()
=0
Tl (B ) Dy F(K, 0) (K — 1) Dy f(—kx, 0
(5 (e oty e
B+ D) (nf = F)(k"2) + (™ = 1) (Jnf = F)(=k"2)
2k3m
ntm=l il g . i+l A
< > (G0 + Hmlo-rie0)
1=0
LR Up(Juf (R72) = F(k™2)) + K™ = Lp(Juf (“K™2) — F(—k’”m))>
2|k;|3m

00 |k 1 i ki+l — 1] i
—>Z Wgo(k $,0)+W(p(—k x,O) ,asn — o0
=0
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for all x € V| i.e., the inequality (2.3) holds for all z € V. From the definition of F’
and the properties of F', we get

|k|? + 4|k + 6

= 'O<]k]3—|—41\k:]2+6 ((F — Jnf) @+ ky) = K*(F = Jof)(z +y)
— K2 (F = Juf) (@ —y) + (F = Juf) (@ — ky) + (F = Jo f) (kz)
k* —3k* 42 kS — k2

- (F - @)+ (F = Jnf) ()

(" + DD k') | (8 = DD k)
2k3n 2k3n

< !k!?’+41\k|2+6 (p((F — Jnf) (@ + ky)) + K2p((F — Juf)(z + 1))
+12p((F = Juf) (@ — ) + p((F = Juf)(@ = ky)) + p((F = Ju f) (k)

3 2 ’ ’
$ BEEEE2 (@) + o — ) (-)

%”+1M%WaWWX+W”—1M%WaHWU
2|k|3n 2|k.‘3n
— 0, asn — 00

for all z,y € V. Hence we obtain the equality M% =0 for all z,y € V, i.e.,

F is a solution of the functional equation (1.1).

To prove the uniqueness of F, assume that F' : V — Y, is another solu-
tion of the functional equation (1.1) which satisfies the inequality in (2.3). No-
tice that the property F'(z) = J,F'(z) is obtained from JoF'(z) — J,F'(x) =
Z?:_Ol _(ki+1+2113£ffl(kix’o) — (ki+1_1)2€§£;(_kix70) for all z € V and any n € N . From
the relation

p(nte) - F'@)

= p(f@) - 1P @)

(k" +1)(f = F))(k"z) + (k" = 1)(f = F')(=k"z)
p( YRR )

“3<m”+1uﬁ4+1| k™ 1| — 1
0

IN

(k™ "z,0) +

IN

i+
2‘k|3i+3n+3 2|k|3i+3n+3 o(—k""z, 0))

7=
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— (k" = 1|k + 1 : =1k -1
+Z <| || + ‘(p(—kl+n$70)+ | H |g0(kl+n$,0)>

2 | k‘3z+3n+3 2 ‘ k|31+3n+3
kn+l+1 + 1’ - |kn+i+1 _ 1| it
Z < D[S Pk, 0) + WSD(—’“’ "5”’0))

=0

|k1+1+1| ; |ki+1_1| ;
< <2k|3l+3<ﬂ((k ,0) + W‘P((_k r,0)

— 0, asn — o0

i=n

for all z € V, we get the equality F'(z) = lim, o Jpf(z) for all z € V| ie
F'(z)=F(z) forall z € V.

We can easily prove the following corollary by using Theorem 2.4.

Collorary 2.5. Let X be a real normed space and let p,0 be nonnegative real

constants such that p < 2. If a mapping f : X — Y, satisfies the inequality

p(Drf(x,y)) < O([l|” + lly[”)

for all x,y € X, then there exists a unique solution F' : X — Y, of the functional
equation (1.1) such that

(2.5) p(f(z) — F(a)) < g

< mllxllp

forallz e X.

Proof. If we put ¢(x,y) := 0(||z||P + [|y||P) for all z,y € X, then ¢ satisfies the
inequality (2.5). O
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