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ON THE STABILITY OF RECIPROCAL-NEGATIVE FERMAT’S

EQUATION IN QUASI-β-NORMED SPACES

Dongseung Kang a and Hoewoon B. Kim b, ∗

Abstract. In this paper we introduce the reciprocal-negative Fermat’s equation
induced by the famous equation in the Fermat’s Last Theorem, establish the general
solution in the simplest cases and the differential solution to the equation, and
investigate, then, the generalized Hyers-Ulam stability in a quasi-β-normed space
with both the direct estimation method and the fixed point approach.

1. Introduction

One of the interesting questions concerning the stability problems of functional

equations is as follows: when is it true that a mapping satisfying a functional equa-

tion approximately must be close to the solution of the given functional equation?

Such an idea was suggested in 1940 by Ulam [19] as follows: Let G1 be a group and

let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0

such that if a function h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ

for all x, y ∈ G1 then there is a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε

for all x ∈ G1? In other words, we are looking for situations when the homomor-

phisms are stable, i.e., if a mapping is almost a homomorphism, then there exists a

true homomorphism near it. In 1941, Hyers [9] considered the case of approximately

additive mappings in Banach spaces and satisfying the well-known weak Hyers in-

equality controlled by a positive constant. The famous Hyers stability result that

appeared in [9] was generalized in the stability involving a sum of powers of norms

by Aoki [1]. In 1978, Rassias [16] provided a generalization of Hyers Theorem which
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allows the Cauchy difference to be unbounded. For the last decades, stability prob-

lems of various functional equations, not only linear case, have been extensively

investigated and generalized by many mathematicians (see [3, 4, 6, 7, 10, 13, 12]).

Let β be a real number with 0 < β ≤ 1 and K be either R or C . We will consider

the definition and some preliminary results of a quasi-β-norm on a linear space.

Definition 1.1. Let X be a linear space over a field K . A quasi-β-norm || · || is a

real-valued function on X satisfying the followings:

(1) ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 if and only if x = 0 .

(2) ||λx|| = |λ|β · ||x|| for all λ ∈ K and all x ∈ X .

(3) There is a constant K ≥ 1 such that ||x+y|| ≤ K(||x||+||y||) for all x, y ∈ X .

The pair (X, || · ||) is called a quasi-β-normed space if || · || is a quasi-β-norm on X .

The smallest possible K is called the modulus of concavity of || · || . A quasi-Banach

space is a complete quasi-β-normed space.

A quasi-β-norm ||·|| is called a (β, p)-norm (0 < p ≤ 1) if ||x+y||p ≤ ||x||p+||y||p ,
for all x, y ∈ X . In this case, a quasi-β-Banach space is called a (β, p)-Banach space;

see [2] and [18].

In number theory, Fermat’s Last Theorem states that no three positive integers

a, b, and c satisfy the equation cn = an + bn for any integer value of n greater than

2 . The equation 1
cn = 1

an + 1
bn can be considered the reciprocal-negative Fermat’s

equation. This equation induces that 1
cn = an+bn

an bn , that is, we have

cn =
an bn

an + bn

for any integer value of n greater than 2 . In particular, if we have the case of n = 1

then the above equation is the harmonic mean of a and b out of the well-known

three Pythagorean means; arithmetic mean, geometric mean, and harmonic mean

in geometry.

In 2010, Ravi and Kumar [17] investigated the generalized Hyers-Ulam stability of

the the reciprocal functional equation f(x + y) =
f(x)f(y)

f(x) + f(y)
. Also see [11] for a

fixed point approach. With the motivation of the Pythagorean means Narasimman,

Ravi, and Pinelas [15] in 2015 introduced the Pythagorean mean functional equation

f(
√

x2 + y2) =
f(x)f(y)

f(x) + f(y)
for all positive numbers x and y and studied the gener-

alized Hyers-Ulam stability of the equation providing counter-examples for singular

cases.
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In order to give our results in Section 4 it is convenient to state the definition

of a generalized metric on a set X and a result on a fixed point theorem of the

alternative by Diaz and Margolis [5].

Let X be a set. A function d : X ×X −→ [0,∞] is called a generalized metric on X

if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.2. Let (X, d) be a complete generalized metric space and let J : X −→
X be a strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for

each element x ∈ X, either d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or

there exists a positive n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y .

In this paper, we consider the following the functional equation:

(1.1) f
(

n
√
xn + yn

)
=

f(x)f(y)

f(x) + f(y)

for fixed positive integers n and for all x, y ∈ X . Due to the reciprocal-negative

Fermat’s equation, we call the mapping f the reciprocal-negative Fermat’s function.

In Section 2 we establish the general solution of the reciprocal-negative Fermat’s

equation (4.1) in the simplest case and give the differential solution to the equation

(4.1). In Section 3 we prove the generalized Hyers-Ulam stability of the reciprocal-

negative Fermat’s equation (4.1) in a quasi-β-normed space. Lastly, we’ll investigate

the generalized stability of the equation (4.1) with a fixed theorem approach.

2. General Solution of the Reciprocal-negative Fermat’s
Functional Equation

In this section we show the general solution of the reciprocal-negative Fermat’s

equation (4.1) in the simple case by the limiting process argument and also present

the differential solution to the equation (4.1) following the work by Ger [8]
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Theorem 2.1 (Simple Case). Let n ∈ N be an odd integer. The only nonzero

solution f : R \ {0} −→ R (or f : (0,∞) −→ R with the case of an even integer

n ∈ N), admitting a finite limit of the quotient
f(x)

1
xn

at zero, of the equation (4.1)

is of the form
c

xn
for a constant c ∈ R.

Proof. Substituting y = x in (4.1) we have the equality f( n
√
2x) =

1

2
f(x) for all

x ∈ R \ {0} (or x ∈ (0,∞)) for an even number n.

Let g(x) =
f(x)

1
x

for all x ∈ R \ {0} (or x ∈ (0,∞)). Then we have the limit

lim
x→0

g(x)
1

xn−1

= c

for some nonzero c ∈ R and using the property of f(x) we obtain

g
(

n
√
2x
)
=

1
n
√
2n−1

g(x)

for all x ∈ R \ {0} (or x ∈ (0,∞)). By the mathematical induction for every positive

integer k, we also have

(2.1) g

(
x

( n
√
2)k

)
= (

n
√
2n−1)kg(x)

for all x ∈ R \ {0} (or x ∈ (0,∞)). Therefore we conclude, by the above equality

(2.1), that

(2.2)
g(x)
1

xn−1

=
(

n
√
2n−1)kg(x)

(
n
√
2n−1)k

1

xn−1

=

g

(
x

( n
√
2)k

)
(
( n
√
2)k

x

)n−1 −→ c

as n → ∞. By the definition of g(x) we get the solution

f(x) =
1

x
g(x) =

1

x

( c

xn−1

)
=

c

xn

for all x ∈ R \ {0} (or x ∈ (0,∞)) and this completes the proof. �

The following theorem gives the differentiable solution of the reciprocal-negative

Fermat’s functional equation (4.1) applying the work of Ger [8]. For simplicity we

will consider the case of an odd integer n ∈ N.
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Theorem 2.2 (Differential Solution). Let f : (0,∞) −→ R be continuously dif-

ferentiable function with the derivative f ′(x) ̸= 0 for all x ∈ (0,∞). Then f is

a solution to the reciprocal-negative Fermat’s equation if and only if there exists a

nonzero constant c ∈ R such that f(x) =
c

xn
for all x ∈ (0,∞).

Proof. Differentiating the equation (4.1) with respect to x on both sides we have

(2.3) f ′( n
√
xn + yn)

(
x

n
√
xn + yn

)n−1

=
f ′(x)(f(y))2

(f(x) + f(y))2

for all x, y ∈ (0,∞). Letting y = x in the equation (4.1) and the equation (2.3),

respectively, we just have

(2.4) f(
n
√
2x) =

1

2
f(x)

and

(2.5) f ′(
n
√
2x) =

1

2
n+1
n

f ′(x)

for all x ∈ (0,∞). Putting y = n
√
x in (2.3) again and using (2.4) and (2.5) we

obtain

(2.6) f ′(
n
√
3x) =

1

3
n+1
n

f ′(x)

for all x ∈ (0,∞). The equations (2.5) and (2.6) give

(2.7) f ′((
n
√
2)l(

n
√
3)mx) =

1

(2
n+1
n )l(3

n+1
n )m

f ′(x)

for all integers l and m. It is well-known that the set {(2
n+1
n )l(3

n+1
n )m : n,m ∈

Z} is dense in (0,∞). Since the function f ′ is continuous we derive the following

differential equation

(2.8) f ′(λ) = f ′(1)
1

λn+1

for λ ∈ (0,∞). Therefore, the solution f(x) =
c

xn
+d for some constants c and d for

x ∈ (0,∞). It is obvious that the constant d should be zero since f( n
√
2x) =

1

2
f(x)

and it completes the proof.

�
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3. Stability of a Reciprocal-negative Fermat’s Functional
Equation

Throughout this section, let X be a linear space and let Y be a quasi-β-Banach

space with a quasi-β-norm || · ||Y . Let K be the modulus of concavity of || · ||Y .

We will investigate the generalized Hyers-Ulam-Rassias stability problem for the

functional equation (4.1). For a given mapping f : X → Y and a fixed positive

integer n , let

Dnf(x, y) := f
(

n
√
xn + yn

)
− f(x)f(y)

f(x) + f(y)

for all x, y ∈ X and R+ := [0,∞)

Theorem 3.1. Suppose that there exists a function ϕ : X ×X → R+ for which a

mapping f : X → Y satisfies

(3.1) ||Dnf(x, y)||Y ≤ ϕ(x, y)

and the series
∑∞

j=0(2
βK)jϕ(( n

√
2)jx, ( n

√
2)jy) converges for all x, y ∈ X . Then

there exists a unique reciprocal-negative Fermat’s function R : X → Y which satisfies

the equation (4.1) and the inequality

(3.2) ||f(x)−R(x)||Y ≤ 2βK
∞∑
j=0

(2βK)jϕ((
n
√
2)jx, (

n
√
2)jx) ,

for all x ∈ X .

Proof. Letting x = y in the equation (3.1), we have

||Dnf(x, x)||Y = ||1
2
f(x)− f(

n
√
2x)||Y ≤ ϕ(x, x)

that is,

(3.3) ||f(x)− 2f(
n
√
2x)||Y ≤ 2βϕ(x, x)

for all x ∈ X . Let m be a positive integer. Putting x = ( n
√
2)mx and multiplying

2mβ in the inequality (3.3), we get

(3.4) ||2mf((
n
√
2)mx)− 2m+1f((

n
√
2)m+1x)||Y ≤ 2β · 2mβϕ((

n
√
2)mx, (

n
√
2)mx)

for all x ∈ X . According to the mathematical induction, we have the following

inequality:

(3.5) ||f(x)− 2mf((
n
√
2)mx)||Y ≤ (2βK)

m−1∑
j=0

(2βK)jϕ((
n
√
2)jx, (

n
√
2)jx)



RECIPROCAL-NEGATIVE FERMAT’S EQUATION 91

for all positive integers m and for all x ∈ X . Also, for all positive integers s and t

with s > t , we have

(3.6) ||2tf(( n
√
2)tx)− 2sf((

n
√
2)sx)||Y ≤ (2βK)

s−1∑
j=t

(2βK)jϕ((
n
√
2)jx, (

n
√
2)jx)

for all x ∈ X . Since the series
∑∞

j=0(2
βK)jϕ(( n

√
2)jx, ( n

√
2)jy) converges, we may

conclude that the right-hand side of the inequality (3.6) tends to 0 as t → ∞ . Hence

{2mf(( n
√
2)mx)} is a Cauchy sequence in the quasi-β-Banach space Y . Thus we may

define

R(x) = lim
m→∞

2mf((
n
√
2)mx)

for all x ∈ X . Now, we claim that R(x) is a reciprocal-negative Fermat’s equation.

Let m be a positive integer. Letting x = ( n
√
2)mx and y = ( n

√
2)my and multiplying

2mβ in the inequality (3.1), we get

2mβ||Dnf((
n
√
2)mx, (

n
√
2)my)||Y

= 2mβ||f(( n
√
2)m n

√
xn + yn)− f(( n

√
2)mx)f(( n

√
2)my)

f(( n
√
2)mx) + f(( n

√
2)my)

||Y

≤ (2βK)mϕ((
n
√
2)mx, (

n
√
2)my)

for all x , y ∈ X . On taking m → ∞ , the definition of R implies that R satisfies

the equation (4.1) for all x, y ∈ X , that is, R is the reciprocal-negative Fermat’s

equation. Also, the inequality (3.5) implies the inequality (3.2).

Now, it remains to show the uniqueness of the reciprocal-negative Fermat’s equa-

tion R . Assume that there exists r : X → Y satisfying (4.1) and (3.2). Then

||R(x)− r(x)||Y = ||2−mR((
n
√
2)−mx)− 2−mr((

n
√
2)−mx)||Y

= 2−mβ||R((
n
√
2)−mx)− r((

n
√
2)−mx)||Y

≤ K
(
||2−mR((

n
√
2)−mx)− f(x)||Y

+||2−mr((
n
√
2)−mx)− f(x)||Y

)
≤ 2β+1K2

m−1∑
j=0

(2βK)jϕ((
n
√
2)jx, (

n
√
2)jx)

for all x ∈ X . By letting m → ∞ , we immediately have the uniqueness of the

reciprocal-negative Fermat’s mapping R , as desired. �

Now we have another equivalent version of Theorem 3.1 by scaling down the

approximate f(x) in (3.1) as follows:



92 Dongseung Kang & Hoewoon B. Kim

Theorem 3.2. Suppose that there exists a function ϕ : X ×X → R+ for which a

mapping f : X → Y satisfies

(3.7) ||Dnf(x, y)||Y ≤ ϕ(x, y)

and the series
∑∞

j=0(K/2β)jϕ(( n
√
2)−jx, ( n

√
2)−jy) converges for all x, y ∈ X . Then

there exists a unique reciprocal-negative Fermat’s function R : X → Y which satisfies

the equation (4.1) and the inequality

(3.8) ||f(x)−R(x)||Y ≤ K

∞∑
j=0

(K/2β)jϕ((
n
√
2)−jx, (

n
√
2)−jx) ,

for all x ∈ X .

Proof. The proof is obtained by starting with the replacement x = y =
x
n
√
2
in (3.7)

and following the same arguments as in Theorem 3.1. �

As an immediate consequence of Theorem 3.2 we have the following Hyers-Ulam-

Rassias type stability of the functional equation (4.1).

Corollary 3.3. Let X be a quasi-β normed space with a norm || · || and and choose

a constant p >

(
n

β

)(
lnK

ln 2
− n

)
. Suppose that f : X → Y satisfies

(3.9) ||Dnf(x, y)||Y ≤ c(||x||p + ||y||p)

for all x, y ∈ X with a nonnegative constant c. Then there exists a unique function

R : X → Y such that

(3.10) ||f(x)−R(x)||Y ≤ 2cK

(
2

βp
n
+β

2
βp
n
+β −K

)
||x||p

for all x ∈ X.

Proof. Taking ϕ(x, y) = c(||x||p + ||y||p) in Theorem 3.2 completes the proof. �

Remark 3.4. By the symmetric property of stability of the reciprocal-negative

Fermat’s equation (4.1) from Theorem 3.1 and 3.2 we note that it is not hard to get

the corresponding result to Corollary 3.3 as a consequence of Theorem 3.1, i.e.,

(3.11) ||f(x)−R(x)||Y ≤ 2cK

(
2−

βp
n
−β

2−
βp
n
−β −K

)
||x||p

for p >

(
n

β

)(
− lnK

ln 2
− n

)
.
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Not only the Hyers-Ulam-Raissias stability type as Corollary 3.3, but it is also pos-

sible to consider the Ulam-Gavruta-Rasssias stability and Hyers-Ulam-J.M.Rassias

stability of the reciprocal-negative Fermat’s equation (4.1) with c1(||x||
p
2 ||y||

p
2 ) and

c2(||x||2α + ||y||2α + ||x||α||y||α) for the control function ϕ in Theorems 3.1 and 3.2,

respectively. Obtaining all results of these stability types is very similar to the

arguments as in the proof of Corollary 3.3.

4. Generalized Stability of a Reciprocal-Negative Fermat’s
Functional Equations: A Fixed Point Theorem of the

Alternative Approach

In this section we will investigate the generalized Hyers-Ulam stability of the

reciprocal-negative Fermat’s functional equation which is introduced earlier in pre-

vious sections

(4.1) f
(

n
√
xn + yn

)
=

f(x)f(y)

f(x) + f(y)

for fixed positive integer n and for all x, y ∈ X by the approach of the fixed point of

the alternative. As we used the notations in the previous sections we assume that

X is a linear space and (Y, || · ||) is a quasi-β-Banach space in this section. A set R+

denotes the set of all nonnegative real numbers.

Theorem 4.1. Suppose that a function ϕ : X ×X −→ R+ is given and there exists

a constant L with 0 < L < 1 such that

(4.2) ϕ(x, y) ≤ 2−1Lϕ
(
x/

n
√
2, y/

n
√
2
)

for all x, y ∈ X and

(4.3)

∞∑
j=0

(2βK)jϕ
(
(

n
√
2)jx, (

n
√
2)jy

)
< ∞.

Furthermore, let f : X −→ Y be a mapping such that

(4.4) ||Dnf(x, y)|| =
∥∥∥∥f( n

√
xn + yn

)
− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ ϕ(x, y)

for all x, y ∈ X.

Then there exists the unique reciprocal-negative Fermat’s function C : X −→ Y

satisfying (4.1) and

(4.5) ||f(x)− C(x)|| ≤ 2β

1− L
ϕ(x, x)



94 Dongseung Kang & Hoewoon B. Kim

for all x ∈ X.

Proof. We consider the set Ω = {g|g : X −→ Y } and then define a generalized metric

d on Ω as follows:

d(g, h) = inf {λ ∈ [0,∞] : ∥g(x)− h(x)∥ ≤ λϕ(x, x) for allx ∈ X}

with inf ∅ = ∞. Then (Ω, d) is a complete generalized metric space; see Lemma 2.1

in [14]. Now we define a mapping T : Ω −→ Ω by

(4.6) T (g)(x) = 2g(
n
√
2x)

for all x ∈ X. We, then, will show that T is strictly contractive on Ω.

Given g, h ∈ Ω, let λ ∈ [0,∞] be a constant with d(g, h) ≤ λ. Then we have

∥g(x)− h(x)∥ ≤ λϕ(x, x) for all x ∈ X.

We also have
∥T (g)(x)− T (h)(x)∥ = ∥2g( n

√
2x)− 2h(

n
√
2x)∥

≤ 2βλϕ(
n
√
2x,

n
√
2x) ≤ 2βλ(1/2)ϕ(x, x)

≤ λLϕ(x, x)

for all x ∈ X, which implies

d(T (g), T (h)) ≤ Lλ.

Therefore we conclude that

d(T (g), T (h)) ≤ Ld(g, h)

for any g, h ∈ Ω. Since L is a constant with 0 < L < 1, T is strictly contractive as

claimed.

Letting x = y in (4.4) we should have

(4.7) ∥1
2
f(x)− f(

n
√
2)∥ ≤ ϕ(x, x)

or

(4.8) ∥f(x)− 2f(
n
√
2)∥ ≤ 2βϕ(x, x)

for all x ∈ X. Hence we just have

(4.9) d(T (f), f) ≤ 2β < ∞.

By the Alternative of Fixed Point as we introduced in Theorem 1.2, there exists a

mapping C : X −→ Y which is a fixed point of T such that d(Tm(f), C) → 0 as

m → ∞, that is,

C(x) = lim
m→∞

Tm(f)(x)
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for all x ∈ X. Then we will show that C is the reciprocal-negative Fermat’s function.

It would not be hard if we recall the approximation inequality (4.4) for f where we

let x = n
√
2x and y = n

√
2y, respectably, as follows:∥∥∥∥C( n

√
xn + yn)− C(x)C(y)

C(x) + C(y)

∥∥∥∥
= lim

m→∞
2mβ

∥∥∥∥f( n
√
2 n
√
xn + yn)−

f( n
√
x)f( n

√
y)

f( n
√
x) + f( n

√
y)

∥∥∥∥
≤ lim

m→∞
(2βK)mϕ( n

√
x, n

√
y) = 0

for all x, y ∈ X, which implies that C is a reciprocal-negative Fermat’s function.

By the Alternative of Fixed Point theorem and the inequality (4.9) we get

d(f, C) ≤
(

1

1− L

)
d(f, T (f)) ≤ 2β

1− L
.

Hence the inequality (4.10) is true for all x ∈ X.

By the uniqueness of the fixed point of T , the function C should be unique, which

completes the proof. �

Let us give the classical Cauchy difference type stability of the reciprocal-negative

Fermat’s equation (4.1) from Theorem 4.1. For the following result we assume that

X is a normed vector space with || · || and that as we did (Y, || · ||) is a quasi-β-Banach

space with K = 1.

Corollary 4.2. Let ϵ ≥ 0 and p be a real number with p < −n for a fixed positive

integer n. Suppose f : X −→ Y is a function and it satisfies

||Dnf(x, y)|| =
∥∥∥∥f( n

√
xn + yn

)
− f(x)f(y)

f(x) + f(y)

∥∥∥∥ ≤ ϵ(||x||p + ||y||p)

for all x, y ∈ X. Then there exists the unique reciprocal-negative Fermat’s function

C : X −→ Y satisfying (4.1) and

(4.10) ||f(x)− C(x)|| ≤ ϵ

(
2β+1

1− L

)
||x||p

for all x ∈ X.

Proof. This proof follows from Theorem 4.1 by taking ϕ(x, y) = ϵ(||x||p + ||y||p) for
all x, y ∈ X with L = 21+p/n. �

Remark 4.3. As an application of the reciprocal-negative Fermat’s equation (4.1)

we consider a parallel circuit having two resistors. It is well-know from physics that
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the inverse of total resistance r of the circuit is sum of the inverses of the individual

resistances r1 and r2,
1

r
=

1

r1
+

1

r2
or

r =
r1r2

r1 + r2

If we take r1 =
1

xn
and r2 =

1

yn
then we have

(4.11) r =

1
xn

1
yn

1
xn + 1

yn
.

Since the electric conductance is reciprocal to the resistance we have the total con-

ductance g of the circuit should be g = xn + yn. From the equation (4.11) we

conclude that

1

g
=

1
xn

1
yn

1
xn + 1

yn
,

that is,

1

xn + yn
=

1
xn

1
yn

1
xn + 1

yn
,

which is the reciprocal-negative Fermat’s equation (4.1) when, in particular, f(x) =
c

xn
for some constant c.
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