$(L,*,\odot)$ -QUASIUNIFORM CONVERGENCE SPACES INDUCED BY OPERATORS

Jung Mi Ko $^{\rm a}$ and Yong Chan Kim $^{\rm b,*}$

ABSTRACT. In this paper, we introduce quasiuniform convergence structure induced by operators on ecl-premonoid $(L,*,\odot)$. Moreover, we obtain $(L,*,\odot)$ -quasiuniform convergence structure induced by two $(L,*,\odot)$ -quasiuniform convergence structures and gives their examples.

1. Introduction

Gäher [2,3] introduced the notions of fuzzy filters in a frame L. Höhle and Sostak [4] introduced the concept of L-filters for a complete quasimonoidal lattice L. For the case that the lattice is a stsc quantale, L-filters were introduced in [12]. Jäger [5-6] developed stratified L-convergence structures based on the concepts of L-filters where L is a complete Heyting algebra. Yao [15] extended stratified L-convergence structures to complete residuated lattices and investigated between stratified L-convergence structures and L-fuzzy topological spaces. As an extension of Yao [15], Fang [7-11] introduced L-ordered convergence structures and (pre, quasi,semi) uniform convergence spaces on L-filters and investigated their relations. Ko and Kim [13] introduced the $(L, *, \odot)$ -quasiuniform convergence spaces as an extension of Fang's uniform convergence spaces on ecl-premonoid in Orpen's sense [14].

In this paper, we introduce quasiuniform convergence structure induced by operators on ecl-premonoid $(L, *, \odot)$ and gives their examples. Moreover, we obtain $(L, *, \odot)$ -quasiuniform convergence structure induced by two $(L, *, \odot)$ -quasiuniform convergence structures.

Received by the editors February 05, 2018. Accepted March 22, 2019.

²⁰¹⁰ Mathematics Subject Classification. 03E72, 54A40, 54B10.

Key words and phrases. GL-monoid, cl-premonoid, ecl-premonoid, (L, *)-filters, $(L, *, \odot)$ -quasiuniform convergence spaces.

This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

^{*}Corresponding author.

2. Preliminaries

Definition 2.1 ([14]). A complete lattice (L, \leq, \perp, \top) is called a GL-monoid $(L, \leq, \star, \perp, \top)$ with a binary operation $*: L \times L \to L$ satisfying the following conditions:

- (G1) $a * \top = a$, for all $a \in L$,
- (G2) a * b = b * a, for all $a, b \in L$,
- (G3) a * (b * c) = (a * b) * c, for all $a, b \in L$,
- (G4) if $a \leq b$, there exists $c \in L$ such that b * c = a,
- (G5) $a * \bigvee_{i \in \Gamma} b_i = \bigvee_{i \in \Gamma} (a * b_i).$

We can define an implication operator:

$$a \Rightarrow b = \bigvee \{c \mid a * c \le b\}.$$

Remark 2.2 ([1, 4, 14]). (1) A continuous t-norm ([0, 1], \leq , *) is a GL-monoid.

(2) A frame (L, \leq, \wedge) is a GL-monoid.

Definition 2.3 ([1, 4, 14]). A complete lattice (L, \leq, \perp, \top) is called a *cl-premonoid* (L, \leq, \odot) with a binary operation $\odot: L \times L \to L$ satisfying the following conditions:

- (CL1) $a \leq a \odot \top$ and $a \leq \top \odot a$, for all $a \in L$,
- (CL2) if $a \leq b$ and $c \leq d$, then $a \odot c \leq b \odot d$,
- (CL3) $a \odot \bigvee_{i \in \Gamma} b_i = \bigvee_{i \in \Gamma} (a \odot b_i)$ and $\bigvee_{j \in \Gamma} a_j \odot b = \bigvee_{j \in \Gamma} (a_j \odot b)$.

We can define an implication operator:

$$a \to b = \bigvee \{c \mid a \odot c \le b\}.$$

Definition 2.4 ([1, 4, 14]). A complete lattice (L, \leq, \perp, \top) is called an *ecl-premonoid* $(L, \leq, \odot, *)$ with a GL-monoid $(L, \leq, *)$ and a cl-premonoid (L, \leq, \odot) which satisfy the following condition:

(D)
$$(a \odot b) * (c \odot d) \leq (a * c) \odot (b * d)$$
, for all $a, b, c, d \in L$.

An ecl-premonoid $(L, \leq, \odot, *)$ is called an M-*ecl-premonoid* if it satisfies the following condition:

(M) $a \leq a \odot a$ for all $a \in L$.

In this paper, we always assume that $(L, \leq, \odot, *)$ is an ecl-premonoid unless otherwise specified.

Lemma 2.5 ([1, 4, 13]). Let $(L, \leq, \odot, *)$ be an ecl-premonoid. For each $a, b, c, d, a_i, b_i \in L$ and for $\uparrow \in \{\rightarrow, \Rightarrow\}$, we have the following properties.

(1) If $b \le c$, then $a \odot b \le a \odot c$ and $a * b \le a * c$.

- (2) $a \odot b \le c$ iff $a \le b \to c$. Moreover, $a * b \le c$ iff $a \le b \Rightarrow c$.
- (3) If $b \le c$, then $a \uparrow b \le a \uparrow c$ and $c \uparrow a \le b \uparrow a$.
- (4) $a \le b$ iff $a \Rightarrow b = \top$.
- (5) $a * b \le a \odot b$, $a \rightarrow b \le a \Rightarrow b$ and $a * (b \odot c) \le (a * b) \odot c$.
- (6) $(a \uparrow b) \odot (c \uparrow d) < (a \odot c) \uparrow (b \odot d)$.
- $(7) (b \uparrow c) \le (a \odot b) \uparrow (a \odot c).$
- (8) $(b \uparrow c) \le (a \uparrow b) \uparrow (a \uparrow c)$ and $(b \uparrow a) \le (a \uparrow c) \uparrow (b \uparrow c)$.
- $(9)\ (b \to c) \leq (a \uparrow b) \to (a \uparrow c)\ and\ (b \uparrow a) \leq (a \to c) \to (b \uparrow c)$
- (10) $a_i \uparrow b_i \leq (\bigwedge_{i \in \Gamma} a_i) \uparrow (\bigwedge_{i \in \Gamma} b_i).$
- $(11) \ a_i \uparrow b_i \le (\bigvee_{i \in \Gamma} a_i) \uparrow (\bigvee_{i \in \Gamma} b_i).$
- (12) $(c \uparrow a) * (b \rightarrow d) \le (a \rightarrow b) \rightarrow (c \uparrow d)$.

Definition 2.6 ([4, 13]). For $L^X = \{f \mid f : X \to L \text{ is a function}\}$, a mapping $\mathcal{F}: L^X \to L$ is called an (L, *)-filter on X if it satisfies the following conditions:

- (F1) $\mathcal{F}(\bot_X) = \bot$ and $\mathcal{F}(\top_X) = \top$, where $\bot_X(x) = \bot, \top_X(x) = \top$ for $x \in X$.
- (F2) $\mathcal{F}(f * g) \geq \mathcal{F}(f) * \mathcal{F}(g)$, for each $f, g \in L^X$,
- (F3) if $f \leq g$, $\mathcal{F}(f) \leq \mathcal{F}(g)$.

The pair (X, \mathcal{F}) is called an (L, *)-filter space. We denote by $F_*(X)$ the set of all (L, *)-filters on X.

Theorem 2.7 ([13]). Let $\mathcal{U}, \mathcal{V} \in F_*(X \times X)$. We define $\mathcal{U} \circ_{\odot} \mathcal{V} : L^{X \times X} \to L$ as follows:

$$(\mathcal{U} \circ_{\odot} \mathcal{V})(w) = \bigvee \{\mathcal{U}(u) \odot \mathcal{V}(v) \mid u \circ v \leq w\}$$

where $u \circ v(x, z) = \bigvee_{y \in X} (u(x, y) * v(y, z)).$

- (1) $u \circ v = \perp_{X \times X} \text{ implies } \mathcal{U}(u) \odot \mathcal{V}(v) = \perp \text{ iff } (\mathcal{U} \circ_{\odot} \mathcal{V}) \in F_*(X \times X).$
- (2) If $\mathcal{U}(1_{\triangle}) = \top$ where $1_{\triangle}(x, x) = \top$ and $1_{\triangle}(x, y) = \bot$ for $x \neq y \in X$, $\mathcal{U} \circ \mathcal{U} \geq \mathcal{U}$.
- (3) $[(x,x)] \circ_* [(x,x)] = [(x,x)].$
- $(4) \bigwedge_{x \in X} [(x, x)] \circ_* \bigwedge_{x \in X} [(x, x)] = \bigwedge_{x \in X} [(x, x)].$

Definition 2.8 ([13]). A map $\Lambda : F_*(X \times X) \to L$ is called an $(L, *, \odot)$ -quasiuniform convergence structure on X if it satisfies the following conditions:

- (QC1) $\Lambda([(x,x)]) = \top$, for each $x \in X$.
- (QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{V})$.
- $(QC3) \ \Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \odot \mathcal{V}).$
- (QC4) $\Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \circ_{\odot} \mathcal{V})$ where $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_*(X \times X)$.

The pair (X,Λ) is called an $(L,*,\odot)$ -quasiuniform convergence space.

An $(L, *, \odot)$ -quasiuniform convergence space is called an $(L, *, \odot)$ -uniform convergence space if it satisfies the following condition;

(U)
$$\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{U}^{-1})$$
 where $\mathcal{U}^{-1}(u) = \mathcal{U}(u^{-1})$ and $u^{-1}(x,y) = u(y,x)$ for $x,y \in X$.

We say Λ_1 is finer than Λ_2 (or Λ_2 is coarser than Λ_1) iff $\Lambda_1 \leq \Lambda_2$.

We define $\Lambda_{\top}, \Lambda_{\perp} : F_*(X \times X) \to [0, 1]$ as follows:

$$\Lambda_{\top}(\mathcal{W}) = \left\{ \begin{array}{ll} \top, & \text{if } \mathcal{W} \geq [(x,x)], \forall x \in X \\ \bot, & \text{otherwise.} \end{array} \right. \quad \Lambda_{\bot}(\mathcal{W}) = \top, \ \forall \mathcal{W} \in F_*(X \times X)$$

Then Λ_{\top} (resp. Λ_{\perp}) is the finest (resp. coarsest) $(L, *, \odot)$ -quasiuniform convergence structure.

Let (X, Λ_X) and (Y, Λ_Y) be $(L, *, \odot)$ -quasiuniform convergence spaces. A map $\psi : (X, \Lambda_X) \to (Y, \Lambda_Y)$ is called *quasiuniformly continuous* if for all $\mathcal{U} \in F_*(X \times X)$, $\Lambda_X(\mathcal{U}) \leq \Lambda_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))$.

3. $(L, *, \odot)$ -Quasiuniform Convergence Spaces induced by Operators

Theorem 3.1. Let $M: F_*(X \times X) \to L^{L^{X \times X}}$ be maps satisfying the following conditions:

- (M1) $M([(x,x)]) \uparrow [(x,x)] = \top$, for each $\uparrow \in \{\rightarrow, \Rightarrow\}$ and $x \in X$.
- (M2) If $\mathcal{U} \leq \mathcal{V}$, then $M(\mathcal{U}) \geq M(\mathcal{V})$.
- (M3) $M(\mathcal{U} \odot \mathcal{V}) \leq M(\mathcal{U}) \odot M(\mathcal{V})$.
- (M4) $M(\mathcal{U} \circ_{\odot} \mathcal{V}) \leq M(\mathcal{U}) \circ_{\odot} M(\mathcal{V}).$

For each $\uparrow \in \{\rightarrow, \Rightarrow\}$, we define a map $\Lambda^{M\uparrow} : F_*(X \times X) \to L$ as follows:

$$\Lambda^{M\uparrow}(\mathcal{U}) = \bigwedge_{u \in L^{X \times X}} (M(\mathcal{U})(u) \uparrow \mathcal{U}(u)).$$

Then the following properties hold.

- (1) $\Lambda^{M\uparrow}$ is an $(L, *, \odot)$ quasi-uniform convergence structure.
- (2) If $\psi: (X, M_X) \to (Y, M_Y)$ is a map such that $M_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \leq M_X(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v))$ for each $\mathcal{U} \in F_*(X \times X)$, then $\psi: (X, \Lambda_X^{M\uparrow}) \to (Y, \Lambda_Y^{M\uparrow})$ is quasi-uniformly continuous.

Proof. (1) (QC1) Since
$$M([(x,x)]) \uparrow [(x,x)] = \top$$
,

$$\Lambda^{M\uparrow}([(x,x)]) = \bigwedge_{u \in L^{X\times X}} (M([(x,x)])(u) \uparrow [(x,x)](u)) = \top.$$

(QC3) For each $\mathcal{U}, \mathcal{V} \in F_*(X \times X)$, by Lemma 2.5(6),

$$\begin{split} & \Lambda^{M\uparrow}(\mathcal{U}) \odot \Lambda^{M\uparrow}(\mathcal{V}) \\ &= \Big(\bigwedge_{u \in L^{X \times X}} (M(\mathcal{U})(u) \uparrow \mathcal{U}(u)) \Big) \odot \Big(\bigwedge_{v \in L^{X \times X}} (M(\mathcal{V})(v) \uparrow \mathcal{V}(v)) \Big) \\ &\leq \bigwedge_{u \in L^{X \times X}} \bigwedge_{v \in L^{X \times X}} \Big((M(\mathcal{U})(u) \uparrow \mathcal{U}(u)) \odot (M(\mathcal{V})(v) \uparrow \mathcal{V}(v)) \Big) \\ &\leq \bigwedge_{u \in L^{X \times X}} \bigwedge_{v \in L^{X \times X}} \Big(M(\mathcal{U})(u) \odot M(\mathcal{V})(v) \uparrow \mathcal{U}(u) \odot \mathcal{V}(v) \Big) \\ &\leq \bigwedge_{u \in L^{X \times X}} \Big(M(\mathcal{U})(u) \odot M(\mathcal{V})(u) \uparrow \mathcal{U}(u) \odot \mathcal{V}(u) \Big) \\ &\leq \bigwedge_{u \in L^{X \times X}} \Big(M(\mathcal{U} \odot \mathcal{V})(u) \uparrow (\mathcal{U} \odot \mathcal{V})(u) \Big) \\ &= \Lambda^{M\uparrow}(\mathcal{U} \odot \mathcal{V}). \end{split}$$

(QC4) For each $\mathcal{U}, \mathcal{V} \in F_*(X \times X)$, by Lemma 2.5(6),

$$\begin{split} & \Lambda^{M\uparrow}(\mathcal{U} \circ_{\circlearrowleft} \mathcal{V}) \\ &= \bigwedge_{u \in L^{X \times X}} \Big(M(\mathcal{U} \circ_{\circlearrowleft} \mathcal{V})(u) \uparrow (\mathcal{U} \circ_{\circlearrowleft} \mathcal{V})(u) \Big) \\ &\geq \bigwedge_{u \in L^{X \times X}} \Big((M(\mathcal{U}) \circ_{\circlearrowleft} M(\mathcal{V}))(u) \uparrow (\mathcal{U} \circ_{\circlearrowleft} \mathcal{V})(u) \Big) \\ &\geq \bigwedge_{u \in L^{X \times X}} \Big(\bigvee_{u_1 \circ u_2 \leq u} (M(\mathcal{U})(u_1) \odot M(\mathcal{V})(u_2)) \uparrow (\mathcal{U} \circ_{\circlearrowleft} \mathcal{V})(u)) \Big) \\ &= \bigwedge_{u \in L^{X \times X}} \bigwedge_{u_1 \circ u_2 \leq u} \Big(M(\mathcal{U})(u_1) \odot M(\mathcal{V})(u_2) \uparrow (\mathcal{U} \circ_{\circlearrowleft} \mathcal{V})(u) \Big) \\ &\geq \bigwedge_{u \in L^{X \times X}} \bigwedge_{u_1 \circ u_2 \leq u} \Big(M(\mathcal{U})(u_1) \odot M(\mathcal{V})(u_2) \uparrow \mathcal{U}(u_1) \odot \mathcal{V}(u_2) \Big) \\ &\geq \bigwedge_{u_1 \in L^{X \times X}} \bigwedge_{u_2 \in L^{X \times X}} \Big((M(\mathcal{U})(u_1) \uparrow \mathcal{U}(u_1)) \odot (M(\mathcal{V})(u_2) \uparrow \mathcal{V}(u_2)) \Big) \\ &\geq \Big(\bigwedge_{u_1 \in L^{X \times X}} (M(\mathcal{U})(u_1) \uparrow \mathcal{U}(u_1)) \Big) \odot \Big(\bigwedge_{u_2 \in L^{X \times X}} (M(\mathcal{V})(u_2) \uparrow \mathcal{V}(u_2)) \Big) \\ &= \Lambda^{M\uparrow}(\mathcal{U}) \odot \Lambda^{M\uparrow}(\mathcal{V}). \end{split}$$

(2) For each $\mathcal{U} \in F_*(X \times X)$, by Lemma 2.5(8),

$$\Lambda_{X}^{M\uparrow}(\mathcal{U}) \uparrow \Lambda_{Y}^{M\uparrow}((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))
\geq \left(\bigwedge_{u \in L^{X \times X}} (M_{X}(\mathcal{U})(u) \uparrow \mathcal{U}(u)) \right)
\uparrow \left(\bigwedge_{v \in L^{Y \times Y}} (M_{Y}((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \uparrow (\psi \times \psi)^{\Rightarrow}(\mathcal{U})(v)) \right)
\geq \left(\bigwedge_{v \in L^{Y \times Y}} (M_{X}(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v)) \uparrow \mathcal{U}((\psi \times \psi)^{\leftarrow}(v))) \right) \uparrow
\left(\bigwedge_{v \in L^{Y \times Y}} (M_{Y}((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \uparrow (\psi \times \psi)^{\Rightarrow}(\mathcal{U})(v)) \right)
\geq \bigwedge_{v \in L^{Y \times Y}} \left((M_{X}(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v)) \uparrow \mathcal{U}((\psi \times \psi)^{\leftarrow}(v))) \uparrow
(M_{Y}((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \uparrow \mathcal{U}((\psi \times \psi)^{\leftarrow}(v))) \right)
\geq \bigwedge_{v \in L^{Y \times Y}} \left(M_{Y}((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \uparrow M_{X}(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v)) \right).$$

Since $M_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \leq M_X(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v))$ for each $v \in L^{Y \times Y}, \mathcal{U} \in F_*(X \times X)$, by Lemma 2.5(4),

$$\bigwedge_{v \in L^{Y \times Y}} \left(M_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) \Rightarrow M_X(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v)) \right) = \top.$$

Hence $\Lambda_X^{M\uparrow}(\mathcal{U}) \Rightarrow \Lambda_Y^{M\uparrow}((\psi \times \psi)^{\Rightarrow}(\mathcal{U})) = \top$. Thus $\psi : (X, \Lambda_X^{M\uparrow}) \rightarrow (Y, \Lambda_Y^{M\uparrow})$ is quasi-uniformly continuous.

Example 3.2. Let $(L = [0,1], \leq, \odot, *, 0, 1)$ be an M-ecl-premonoid. Let a map $M_X : F_*(X \times X) \to [0,1]^{[0,1]^X}$ defined as $M_X(\mathcal{U}) = \bigwedge_{x \in X} [(x,x)]$.

(1) Let $(L = [0,1], \leq, \wedge, *, 0, 1)$ be an M-ecl-premonoid. Since

$$M_X(\mathcal{U}) = \bigwedge_{x \in X} [(x, x)] \le [(x, x)],$$

 $M_X(\mathcal{U} \odot \mathcal{V}) = \bigwedge_{x \in X} [(x, x)] \leq \bigwedge_{x \in X} [(x, x)] \odot \bigwedge_{x \in X} [(x, x)] = M_X(\mathcal{U}) \odot M_X(\mathcal{V})$ and

$$(M_X(\mathcal{U}) \circ_{\wedge} M_X(\mathcal{V}))(u) \geq M_X(\mathcal{U})(u) \odot M_X(\mathcal{U})(1_{\triangle})$$

$$= \bigwedge_{x \in X} [(x,x)](u) \odot \bigwedge_{x \in X} [(x,x)](1_{\triangle}) \ge \bigwedge_{x \in X} [(x,x)](u),$$

it satisfies the following conditions (M1), (M2) and (M3). For each $\uparrow \in \{\rightarrow, \Rightarrow\}$,

$$\Lambda^{M_X\uparrow}(\mathcal{U}) = \bigwedge_{u \in L^{X \times X}} (\bigwedge_{x \in X} [(x,x)](u) \uparrow \mathcal{U}(u)) = \bigwedge_{u \in L^{X \times X}} (\bigwedge_{x \in X} u(x,x) \uparrow \mathcal{U}(u)).$$

Then $\Lambda^{M_X\uparrow}$ is an $(L, *, \odot)$ -quasi-uniform convergence structure.

Let $\psi: (X, M_X) \to (Y, M_Y)$ be a map with $M_Y(\mathcal{V}) = \bigwedge_{y \in Y} [(y, y)]$ for all $\mathcal{V} \in F(Y \times Y)$. Since $M_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) = \bigwedge_{y \in Y} v(y, y) \leq \bigwedge_{x \in X} v(\psi(x), \psi(x)) = M_X(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v))$ for each $v \in L^{Y \times Y}$, then $\psi: (X, \Lambda^{M_X \uparrow}) \to (Y, \Lambda^{M_Y \uparrow})$ is uniformly continuous.

Example 3.3. Let $X = \{a, b, c\}$ be a set and $(L = [0, 1], \leq, \land, *, 0, 1)$ an M-ecl-premonoid with $a * b = (a + b - 1) \lor 0$. Put $u \in [0, 1]^{X \times X}$ as follows:

$$u(a,a)=u(b,b)=1, u(c,c)=0.4, \ \ u(a,b)=u(b,a)=0.6,$$

$$u(a,c) = u(c,a) = 0.5, u(b,c) = u(c,b) = 0.4.$$

Define [0,1]-filter as $\mathcal{U}:[0,1]^{X\times X}\to[0,1]$ as follows

$$\mathcal{U}(w) = \begin{cases} 1, & \text{if } w \ge 1_{\triangle}, \\ 0.2, & \text{if } u \le w \not\ge 1_{\triangle}, \\ 0, & \text{otherwise.} \end{cases}$$

Since $v \circ 1_{\triangle} = v$, we obtain $\mathcal{U} \circ_{\wedge} \mathcal{U} = \mathcal{U} = \mathcal{U}^{-1}$ and $0.2 = \mathcal{U}(u) \leq [(c, c)](u) = 0.4$. Put $M_X(\mathcal{W}) = \mathcal{U}$ for all $\mathcal{W} \in F_*(X \times X)$. Then M_X satisfies the conditions (M1)-(M4). For each $\uparrow \in \{\rightarrow, \Rightarrow\}$, we obtain an $(L, *, \land)$ uniform convergence structure $\Lambda^{M_X\uparrow}: F_*(X\times X)\to [0,1]$ as follows:

$$\begin{array}{ll} \Lambda^{M_X\uparrow}(\mathcal{W}) &= \bigwedge_{v \in L^{X\times X}} (M_X(\mathcal{W})(v) \uparrow \mathcal{W}(v)) = \bigwedge_{v \in L^{X\times X}} (\mathcal{V}(v) \uparrow \mathcal{W}(v)) \\ \Lambda^{M_X\uparrow}(\mathcal{W}^{-1}) &= \bigwedge_{v \in L^{X\times X}} (M_X(\mathcal{W}^{-1})(v) \uparrow \mathcal{W}^{-1}(v)) \\ &= \bigwedge_{v \in L^{X\times X}} (\mathcal{V}(v) \uparrow \mathcal{W}^{-1}(v)) = \bigwedge_{v \in L^{X\times X}} (\mathcal{V}^{-1}(v) \uparrow \mathcal{W}(v^{-1})) \\ &= \bigwedge_{v \in L^{X\times X}} (\mathcal{V}(v^{-1}) \uparrow \mathcal{W}(v^{-1})) = \Lambda^{M_X\uparrow}(\mathcal{W}) \end{array}$$

where $a \Rightarrow b = (1 - a + b) \land 1$ and

$$a \to b = \begin{cases} 1, & \text{if } a \le b, \\ b, & \text{if } a \not\le b. \end{cases}$$

Example 3.4. Let $X = \{a, b, c\}$ be a set, $(L = [0, 1], \leq, \odot, *, 0, 1)$ an ecl-premonoid with $a * b = a \cdot b$, $a \odot b = a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ and $u \in [0, 1]^{X \times X}$ defined as follows:

$$u(a, a) = u(b, b) = u(c, c) = 1, \ u(a, b) = 0.5, u(b, a) = 0.6,$$

$$u(a,c) = u(c,a) = 0.5, u(b,c) = 0.6, u(c,b) = 0.4.$$

Define [0,1]-filter as $\mathcal{U}:[0,1]^{X\times X}\to [0,1]$ as follows:

$$\mathcal{U}(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n, & \text{if } u^n \le w \not\ge u^{n-1}, n \in N, \\ 0, & \text{otherwise.} \end{cases}$$

where $u^{n+1} = u^n * u$ and $u^0 = 1_{X \times X}$.

Since $u^n \circ u^n = u^n$, we obtain

$$(\mathcal{U} \circ_{\odot} \mathcal{U})(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n \odot 0.6^n, & \text{if } u^n \leq w \not\geq u^{n-1}, n \in N,, \\ 0, & \text{otherwise.} \end{cases}$$

$$(\mathcal{U} \odot \mathcal{U})(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n \odot 0.6^n, & \text{if } u^n \le w \not\ge u^{n-1}, n \in N, \\ 0, & \text{otherwise.} \end{cases}$$

Put $M_X(W) = \mathcal{U}$ for all $W \in F_*(X \times X)$.

(1) Let $(L = [0,1], \leq, \wedge, *, 0, 1)$ be an M-ecl-premonoid with $a * b = a \cdot b$ with

$$a \Rightarrow b = \left\{ \begin{array}{l} 1, & \text{if } a \leq b, \\ \frac{b}{a}, & \text{if } a \nleq b, \end{array} \right. a \rightarrow b = \left\{ \begin{array}{l} 1, & \text{if } a \leq b, \\ b, & \text{if } a \nleq b. \end{array} \right.$$

Since $\mathcal{U} \circ_{\wedge} \mathcal{U} = \mathcal{U} \wedge \mathcal{U} = \mathcal{U}$, M satisfies the conditions (M1)-(M4). For each $\uparrow \in \{\rightarrow, \Rightarrow\}$, we obtain an $(L, *, \land)$ quasi-uniform convergence structures $\Lambda^{M_X \uparrow} : F_*(X \times X) \to [0, 1]$ as follows:

$$\begin{array}{ll} \Lambda^{M_X\uparrow}(\mathcal{W}) &= \bigwedge_{v \in L^{X \times X}} (M_X(\mathcal{W})(v) \uparrow \mathcal{W}(v)) \\ &= \bigwedge_{v \in L^{X \times X}} (\mathcal{U}(v) \uparrow \mathcal{W}(v)) \\ &= \bigwedge_{n \in N} (0.6^n \uparrow \mathcal{W}(u^n)). \end{array}$$

So, we have

$$\Lambda^{M_X \Rightarrow}(\mathcal{W}) = \left\{ \begin{array}{ll} 1, & \text{if } 0.6^n \leq \mathcal{W}(u^n), \forall n \in N \\ \frac{\mathcal{W}(u^n)}{0.6^n}, & \text{if } 0.6^n \not\leq \mathcal{W}(u^n), \end{array} \right.$$

$$\Lambda^{M_X \to}(\mathcal{W}) = \left\{ \begin{array}{ll} 1, & \text{if } 0.6^n \leq \mathcal{W}(u^n), \forall n \in N \\ \mathcal{W}(u^n), & \text{if } 0.6^n \not\leq \mathcal{W}(u^n). \end{array} \right.$$

Since $1 = \Lambda^{M_X \to}(\mathcal{U}) = 0.6 \to \mathcal{U}(u) \not\leq \Lambda^{M_X \to}(\mathcal{U}^{-1}) = 0.6 \to \mathcal{U}(u^{-1}) = 0.6 \to 0.36 = 0.36$, $\Lambda^{M_X \to}$ is not an $(L, *, \wedge)$ uniform convergence structure on X. Since $1 = \Lambda^{M_X \Rightarrow}(\mathcal{U}) = 0.6 \Rightarrow \mathcal{U}(u) \not\leq \Lambda^{M_X \Rightarrow}(\mathcal{U}^{-1}) = (0.6 \Rightarrow \mathcal{U}(u^{-1})) = \frac{1}{6}$, $\Lambda^{M_X \Rightarrow}$ is not an $(L, *, \wedge)$ uniform convergence structure on X.

Let $\psi: (X, M_X^x) \to (Y, M_Y^{\psi(x)})$ be a map with $M_Y(\mathcal{V}) = (\psi \times \psi)^{\Rightarrow}(\mathcal{U})$ for all $\mathcal{V} \in F_*(Y \times Y)$. Then $M_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))(v) = (\psi \times \psi)^{\Rightarrow}(\mathcal{U})(v) = \mathcal{U}((\psi \times \psi)^{\leftarrow}(v)) = M_X(\mathcal{U})((\psi \times \psi)^{\leftarrow}(v))$ for each $\mathcal{U} \in F_*(X \times X)$. Thus $\psi: (X, \Lambda^{M_X \uparrow}) \to (Y, \Lambda^{M_X \uparrow})$ is uniformly continuous.

(2) Let $(L = [0, 1], \leq, \odot, *, 0, 1)$ be an M-ecl-premonoid with $a * b = a \cdot b$, $a \odot b = a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ with

$$a \Rightarrow b = \begin{cases} 1, & \text{if } a \leq b, \\ \frac{b}{a}, & \text{if } a \nleq b, \end{cases} \quad a \to b = \begin{cases} 1, & \text{if } a \leq b, \\ (\frac{b}{a^3})^{\frac{1}{3}}, & \text{if } a \nleq b. \end{cases}$$

We obtain an $(L, *, \odot)$ quasi-uniform convergence structures $\Lambda^{M_X \Rightarrow}, \Lambda^{M_X \rightarrow} : F_*(X \times X) \rightarrow [0, 1]$ as follows:

$$\Lambda^{M_X \Rightarrow}(\mathcal{W}) = \left\{ \begin{array}{ll} 1, & \text{if } 0.6^n \leq \mathcal{W}(u^n), \forall n \in N \\ \frac{\mathcal{W}(u^n)}{0.6^n}, & \text{if } 0.6^n \not\leq \mathcal{W}(u^n), \end{array} \right.$$

$$\Lambda^{M_X \to}(\mathcal{W}) = \begin{cases} 1, & \text{if } 0.6^n \le \mathcal{W}(u^n), \forall n \in N \\ (\frac{\mathcal{W}(u^n)}{0.6^{3n}})^{\frac{1}{3}}, & \text{if } 0.6^n \not\le \mathcal{W}(u^n). \end{cases}$$

Theorem 3.5. Let Λ_1 and Λ_2 be $(L, *, \odot)$ -quasi-uniform convergence spaces on X. We define a map $\Lambda_1 \odot_* \Lambda_2 : F_*(X \times X) \to L$ as follows:

$$(\Lambda_1 \odot_* \Lambda_2)(\mathcal{U}) = \bigvee \{\Lambda_1(\mathcal{U}_1) \odot \Lambda_2(\mathcal{U}_2) \mid \mathcal{U}_1 * \mathcal{U}_2 \leq \mathcal{U}\}.$$

Then $\Lambda_1 \odot_* \Lambda_2$ is an $(L, *, \odot)$ -quasi-uniform convergence space on X which is coarser than Λ_1 and Λ_2 . Moreover, $\Lambda_1 *_* \Lambda_2$ is the finest (L, *, *) -quasi-uniform convergence spaces on X which is coarser than Λ_1 and Λ_2 .

Proof. (QUC1) Since $[(x,x)] * [(x,x)] \le [(x,x)]$,

$$(\Lambda_1 \odot_* \Lambda_2)([(x,x)]) \ge \Lambda_1([(x,x)]) \odot \Lambda_1([(x,x)]) = \top$$

```
Since (\mathcal{U}_{1} \odot \mathcal{V}_{1}) * (\mathcal{U}_{2} \odot \mathcal{V}_{2}) \leq (\mathcal{U}_{1} * \mathcal{U}_{2}) \odot (\mathcal{V}_{1} * \mathcal{V}_{2}),
(\Lambda_{1} \odot_{*} \Lambda_{2})(\mathcal{U}) \odot (\Lambda_{1} \odot_{*} \Lambda_{2})(\mathcal{V})
= \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\} \odot \bigvee \{\Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
= \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \odot \Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \odot \Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \odot \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \odot \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \odot \mathcal{V}_{1}) * (\mathcal{U}_{2} \odot \mathcal{V}_{2}) \leq \mathcal{U} \odot \mathcal{V}\}
\leq (\Lambda_{1} \odot_{*} \Lambda_{2})(\mathcal{U} \odot \mathcal{V}).
Since (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq (\mathcal{U}_{1} * \mathcal{U}_{2}) \circ_{\odot} (\mathcal{V}_{1} * \mathcal{V}_{2}),
(\Lambda_{1} \odot_{*} \Lambda_{2})(\mathcal{U}) \odot (\Lambda_{1} \odot_{*} \Lambda_{2})(\mathcal{V})
= \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}\} \odot \bigvee \{\Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
= \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \cup \Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2}) \odot \Lambda_{1}(\mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{V}_{2}) \mid \mathcal{U}_{1} * \mathcal{U}_{2} \leq \mathcal{U}, \mathcal{V}_{1} * \mathcal{V}_{2} \leq \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq \mathcal{U} \circ_{\odot} \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq \mathcal{U} \circ_{\odot} \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq \mathcal{U} \circ_{\odot} \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq \mathcal{U} \circ_{\odot} \mathcal{V}\}
\leq \bigvee \{\Lambda_{1}(\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) \odot \Lambda_{2}(\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \mid (\mathcal{U}_{1} \circ_{\odot} \mathcal{V}_{1}) * (\mathcal{U}_{2} \circ_{\odot} \mathcal{V}_{2}) \leq \mathcal{U} \circ_{\odot} \mathcal{V}_{2}
```

If $\odot = *$ and $\Lambda_i \leq \Lambda$ for $i \in \{1, 2\}$, we have $\Lambda_1 *_* \Lambda_2 \leq \Lambda$ from:

Similarly, $\Lambda_1 \odot_* \Lambda_2 \geq \Lambda_2$.

$$\begin{array}{ll} (\Lambda_1 *_* \Lambda_2)(\mathcal{U}) &= \bigvee \{\Lambda_1(\mathcal{U}_1) * \Lambda_2(\mathcal{U}_2) \mid \mathcal{U}_1 * \mathcal{U}_2 \leq \mathcal{U}\} \\ &\leq \bigvee \{\Lambda(\mathcal{U}_1) * \Lambda(\mathcal{U}_2) \mid \mathcal{U}_1 * \mathcal{U}_2 \leq \mathcal{U}\} \leq \Lambda(\mathcal{U}). \end{array}$$

References

- 1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
- 2. W. Gähler: The general fuzzy filter approach to fuzzy topology I. Fuzzy Sets and Systems **76** (1995), 205-224.
- 3. _____: The general fuzzy filter approach to fuzzy topology II. Fuzzy Sets and Systems **76** (1995), 225-246.
- 4. U. Höhle & A.P. Sostak: Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series. Kluwer Academic Publisher, Dordrecht, 1999.
- 5. G. Jäger: Subcategories of lattice-valued convergence spaces. Fuzzy Sets and Systems **156** (2005), 1-24.
- 6. _____: Pretopological and topological lattice-valued convergence spaces. Fuzzy Sets and Systems **158** (2007), 424-435.
- Jinming Fang: Stratified L-order convergence structures. Fuzzy Sets and Systems 161 (2010), 2130-2149.

- 8. _____: Relationships between L-ordered convergence structures and strong L-tologies. Fuzzy Sets and Systems **161** (2010), 2923-2944.
- 9. _____: Lattice-valued semiuniform convergence spaces. Fuzzy Sets and Systems **195** (2012), 33-57.
- 10. _____: Stratified L-order quasiuniform limit spaces. Fuzzy Sets and Systems 227 (2013), 51-73.
- 11. _____: Lattice-valued preuniform convergence spaces. Fuzzy Sets and Systems **251** (2014), 52-70.
- 12. Y.C. Kim & J.M. Ko: Images and preimages of L-filter bases. Fuzzy Sets and Systems 173 (2005), 93-113.
- 13. _____: $(L, *, \odot)$ -quasiuniform convergence spaces. Submit to International Journal of Pure and Applied Mathematics.
- D. Orpen & G. Jäger: Lattice-valued convergence spaces. Fuzzy Sets and Systems 190 (2012), 1-20.
- W. Yao: On many-valued L-fuzzy convergence spaces. Fuzzy Sets and Systems 159 (2008), 2503-2519.

 $^{^{\}rm a}{\rm Department}$ of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea $\it Email\ address:\ jmko@gwnu.ac.kr$

^bDepartment of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea *Email address*: yck@gwnu.ac.kr