SOME INEQUALITIES FOR THE WEIGHTED CHAOTICALLY GEOMETRIC MEAN

Silvestru Sever Dragomir ${ }^{\text {a,b }}$

Abstract. In this paper we obtain some new inequalities for the weighted chaotically geometric mean of two positive operators on a complex Hilbert space.

1. Introduction

For positive operators A and B consider the weighted arithmetic and chaotically geometric means

$$
A \nabla_{\alpha} B:=(1-\alpha) A+\alpha B
$$

and

$$
A \diamond_{\alpha} B:=\exp [(1-\alpha) \ln A+\alpha \ln B]
$$

with $\alpha \in[0,1]$.
We recall that Specht's ratio is defined by [6]

$$
S(h):=\left\{\begin{array}{l}
\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{h^{\frac{1}{-1}}}\right)} \text { if } h \in(0,1) \cup(1, \infty), \tag{1.1}\\
1 \text { if } h=1 .
\end{array}\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$.

It has been shown in [4] that, if $0<m I \leq A, B \leq M I$, for some scalars $m<M$ and $h:=\frac{M}{m}$, then

$$
\begin{equation*}
S^{-1}(h) A \diamond_{\alpha} B \leq A \nabla_{\alpha} B \leq S(h) A \diamond_{\alpha} B \tag{1.2}
\end{equation*}
$$

[^0]for any $\alpha \in[0,1]$, where I is the identity operator.
With the same assumptions for A and B we also have the additive version obtained in [5]
\[

$$
\begin{equation*}
-L(m, M) \ln S(h) I \leq A \nabla_{\alpha} B-A \diamond_{\alpha} B \leq L(m, M) \ln S(h) I, \tag{1.3}
\end{equation*}
$$

\]

where

$$
L(m, M):=\left\{\begin{array}{l}
\frac{M-m}{\ln M-\ln m}, \text { if } M \neq m, \\
M, \text { if } M \neq m
\end{array}\right.
$$

is the logarithmic mean.
Motivated by these results, we establish in this paper other inequalities involving the chaotically geometric mean.

2. The Results

We have:
Theorem 2.1. If $0<m I \leq A, B \leq M I$ for some scalars $m<M$, then

$$
\begin{align*}
& -\frac{2}{\ln M-\ln m}\left|\ln A \nabla_{\alpha} \ln B-\ln G(m M) I\right| \tag{2.1}\\
& \leq L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right)-\frac{1}{2}(\sqrt{M}-\sqrt{m})^{2} I-A \diamond_{\alpha} B \\
& \leq \frac{2}{\ln M-\ln m}\left|\ln A \nabla_{\alpha} \ln B-\ln G(m M) I\right|,
\end{align*}
$$

where

$$
U(m, M):=\frac{m \ln M-M \ln m}{M-m}, G(m, M):=\sqrt{m M}
$$

and

$$
\ln A \nabla_{\alpha} \ln B=(1-\alpha) \ln A+\alpha \ln B .
$$

Proof. Recall the following result obtained by Dragomir in 2006 [1] that provides a refinement and a reverse for the weighted Jensen's discrete inequality:

$$
\begin{align*}
& n \min _{j \in\{1,2, \ldots, n\}}\left\{p_{j}\right\}\left[\frac{1}{n} \sum_{j=1}^{n} \Phi\left(x_{j}\right)-\Phi\left(\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)\right] \\
& \leq \frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} \Phi\left(x_{j}\right)-\Phi\left(\frac{1}{P_{n}} \sum_{j=1}^{n} p_{j} x_{j}\right) \tag{2.2}
\end{align*}
$$

$$
\leq n \max _{j \in\{1,2, \ldots, n\}}\left\{p_{j}\right\}\left[\frac{1}{n} \sum_{j=1}^{n} \Phi\left(x_{j}\right)-\Phi\left(\frac{1}{n} \sum_{j=1}^{n} x_{j}\right)\right]
$$

where $\Phi: C \rightarrow \mathbb{R}$ is a convex function defined on convex subset C of the linear space E, x_{1}, \ldots, x_{n} are vectors in C and p_{1}, \ldots, p_{n} are nonnegative numbers with $P_{n}=\sum_{j=1}^{n} p_{j}>0$.

For $n=2$, we deduce from (2.2) that

$$
\begin{align*}
& 2 \min \{\nu, 1-\nu\}\left[\frac{\Phi(x)+\Phi(y)}{2}-\Phi\left(\frac{x+y}{2}\right)\right] \tag{2.3}\\
& \leq \nu \Phi(x)+(1-\nu) \Phi(y)-\Phi[\nu x+(1-\nu) y] \\
& \leq 2 \max \{\nu, 1-\nu\}\left[\frac{\Phi(x)+\Phi(y)}{2}-\Phi\left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

for any $x, y \in \mathbb{R}$ and $\nu \in[0,1]$.
If we take $\Phi(x)=\exp (x)$, then we get from (2.3)

$$
\begin{align*}
& 2 \min \{\nu, 1-\nu\}\left[\frac{\exp (x)+\exp (y)}{2}-\exp \left(\frac{x+y}{2}\right)\right] \tag{2.4}\\
& \leq \nu \exp (x)+(1-\nu) \exp (y)-\exp [\nu x+(1-\nu) y] \\
& \leq 2 \max \{\nu, 1-\nu\}\left[\frac{\exp (x)+\exp (y)}{2}-\exp \left(\frac{x+y}{2}\right)\right]
\end{align*}
$$

for any $x, y \in \mathbb{R}$ and $\nu \in[0,1]$.
Let $0<m<M$ and take $x=\ln M$ and $y=\ln m$ to get

$$
\begin{align*}
& 2 \min \{\nu, 1-\nu\}\left(\frac{m+M}{2}-\sqrt{m M}\right) \tag{2.5}\\
& \leq \nu M+(1-\nu) m-\exp [\nu \ln M+(1-\nu) \ln m] \\
& \leq 2 \max \{\nu, 1-\nu\}\left(\frac{m+M}{2}-\sqrt{m M}\right)
\end{align*}
$$

for any $\nu \in[0,1]$.
Let $z \in[\ln m, \ln M]$ and take $\nu \in[0,1]$ such that $\nu \ln M+(1-\nu) \ln m=z$, namely $\nu=\frac{z-\ln m}{\ln M-\ln m}$.

Since

$$
\begin{aligned}
\min \{\nu, 1-\nu\} & =\frac{1}{2}-\left|\nu-\frac{1}{2}\right|=\frac{1}{2}-\left|\frac{z-\ln m}{\ln M-\ln m}-\frac{1}{2}\right| \\
& =\frac{1}{2}-\frac{1}{\ln M-\ln m}|z-\ln G(m M)|
\end{aligned}
$$

and

$$
\max \{\nu, 1-\nu\}=\frac{1}{2}+\frac{1}{\ln M-\ln m}|z-\ln G(m M)|
$$

then by (2.5) we have

$$
\begin{align*}
& \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(1-\frac{2}{\ln M-\ln m}|z-\ln G(m M)|\right) \tag{2.6}\\
& \leq \frac{z-\ln m}{\ln M-\ln m} M+\frac{\ln M-z}{\ln M-\ln m} m-\exp z \\
& \leq \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(1+\frac{2}{\ln M-\ln m}|z-\ln G(m M)|\right)
\end{align*}
$$

for any $z \in[\ln m, \ln M]$.
If X is a selfadjoint operator with $\operatorname{Sp}(X) \subset[\ln m, \ln M]$, then by (2.6) we have

$$
\begin{align*}
& \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(I-\frac{2}{\ln M-\ln m}|X-\ln G(m M) I|\right) \tag{2.7}\\
& \leq \frac{X-\ln m I}{\ln M-\ln m} M+\frac{\ln M I-X}{\ln M-\ln m} m-\exp X \\
& \leq \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(I+\frac{2}{\ln M-\ln m}|X-\ln G(m M) I|\right) .
\end{align*}
$$

Since

$$
\begin{align*}
& \frac{X-\ln m I}{\ln M-\ln m} M+\frac{\ln M I-X}{\ln M-\ln m} m \tag{2.8}\\
& =\frac{M-m}{\ln M-\ln m} X+\frac{m \ln M-M \ln m}{\ln M-\ln m} I \\
& =L(m, M)\left(X+\frac{m \ln M-M \ln m}{M-m} I\right) \\
& =L(m, M)(X+U(m, M) I),
\end{align*}
$$

then by (2.7) and (2.8) we get

$$
\begin{align*}
& \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(I-\frac{2}{\ln M-\ln m}|X-\ln G(m M) I|\right) \tag{2.9}\\
& \leq L(m, M)(X+U(m, M) I)-\exp X \\
& \leq \frac{1}{2}(\sqrt{M}-\sqrt{m})^{2}\left(I+\frac{2}{\ln M-\ln m}|X-\ln G(m M) I|\right),
\end{align*}
$$

that is equivalent to

$$
\begin{align*}
& -\frac{2}{\ln M-\ln m}|X-\ln G(m M) I| \tag{2.10}\\
& \leq L(m, M)(X+U(m, M) I)-\frac{1}{2}(\sqrt{M}-\sqrt{m})^{2} I-\exp X \\
& \leq \frac{2}{\ln M-\ln m}|X-\ln G(m M) I| .
\end{align*}
$$

This inequality is of interest in itself.

If we take $X=\ln A \nabla_{\alpha} \ln B, \alpha \in[0,1]$, then $\operatorname{Sp}(X) \subset[\ln m, \ln M]$ and by (2.10) we get the desired result (2.1).

We also have:
Theorem 2.2. With the assumptions of Theorem 2.1 we have

$$
\begin{align*}
0 & \leq L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right)-A \diamond_{\alpha} B \tag{2.11}\\
& \leq L(m, M)\left(\ln M I-\ln A \nabla_{\alpha} \ln B\right)\left(\ln A \nabla_{\alpha} \ln B-\ln m I\right) \\
& \leq \frac{1}{4}(\ln M-\ln m)(M-m) I,
\end{align*}
$$

for any $\alpha \in[0,1]$.
Proof. We use the following inequality for convex functions, see for instance [2]: If the function $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable convex function on I, then for any $a, b \in I$ and $\nu \in[0,1]$ we have

$$
\begin{align*}
0 & \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \tag{2.12}\\
& \leq \nu(1-\nu)(b-a)\left[f^{\prime}(b)-f^{\prime}(a)\right] .
\end{align*}
$$

If we write this inequality for the convex function $f(x)=\exp (x)$, then we have

$$
\begin{align*}
0 & \leq(1-\nu) \exp a+\nu \exp b-\exp ((1-\nu) a+\nu b) \tag{2.13}\\
& \leq \nu(1-\nu)(b-a)[\exp b-\exp a],
\end{align*}
$$

for any $a, b \in \mathbb{R}$ and $\nu \in[0,1]$.
Let $0<m<M$ and take $b=\ln M$ and $a=\ln m$ to get

$$
\begin{align*}
0 & \leq \nu M+(1-\nu) m-\exp [\nu \ln M+(1-\nu) \ln m] \tag{2.14}\\
& \leq \nu(1-\nu)(\ln M-\ln m)(M-m)
\end{align*}
$$

Let $z \in[\ln m, \ln M]$ and take $\nu \in[0,1]$ such that $\nu \ln M+(1-\nu) \ln m=z$, namely $\nu=\frac{z-\ln m}{\ln M-\ln m}$. Then by (2.14) and upon some simple calculations we get

$$
0 \leq L(m, M)(z+U(m, M))-\exp z \leq L(m, M)(\ln M-z)(z-\ln m)
$$

for any $z \in[\ln m, \ln M]$.
Since

$$
(\ln M-z)(z-\ln m) \leq \frac{1}{4}(\ln M-\ln m)^{2}
$$

then we have

$$
\begin{align*}
0 & \leq L(m, M)(z+U(m, M))-\exp z \leq L(m, M)(\ln M-z)(z-\ln m) \tag{2.15}\\
& \leq \frac{1}{4}(\ln M-\ln m)(M-m)
\end{align*}
$$

for any $z \in[\ln m, \ln M]$.
If X is a selfadjoint operator with $\operatorname{Sp}(X) \subset[\ln m, \ln M]$, then by (2.15) we have

$$
\begin{align*}
0 & \leq L(m, M)(X+U(m, M) I)-\exp X \tag{2.16}\\
& \leq L(m, M)(\ln M I-X)(X-\ln m I) \\
& \leq \frac{1}{4}(\ln M-\ln m)(M-m) I
\end{align*}
$$

which is an inequality of interest in itself as well.
If we take $X=\ln A \nabla_{\alpha} \ln B, \alpha \in[0,1]$, then $\operatorname{Sp}(X) \subset[\ln m, \ln M]$ and by (2.16) we get the desired result (2.11).

We also have:

Theorem 2.3. With the assumptions of Theorem 2.1 we have

$$
\begin{align*}
& \frac{1}{2} m\left(\ln A \nabla_{\alpha} \ln B-\ln m I\right)\left(\ln M I-\ln A \nabla_{\alpha} \ln B\right) \tag{2.17}\\
& \leq L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right)-A \diamond_{\alpha} B \\
& \leq \frac{1}{2} M\left(\ln A \nabla_{\alpha} \ln B-\ln m I\right)\left(\ln M I-\ln A \nabla_{\alpha} \ln B\right)
\end{align*}
$$

for any $\alpha \in[0,1]$.
Proof. We use the following result for twice differentiable functions, see for instance [3]:

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on the interval I, the interior of I. If there exists the constants d, D such that

$$
\begin{equation*}
d \leq f^{\prime \prime}(t) \leq D \text { for any } t \in \stackrel{\circ}{I} \tag{2.18}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu) d(b-a)^{2} & \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \tag{2.19}\\
& \leq \frac{1}{2} \nu(1-\nu) D(b-a)^{2}
\end{align*}
$$

for any $a, b \in \stackrel{\circ}{I}$ and $\nu \in[0,1]$.

If we write this inequality for the convex function $f(x)=\exp (x)$, then we have

$$
\begin{align*}
& \frac{1}{2} \nu(1-\nu)(b-a)^{2} \exp (\min \{a, b\}) \tag{2.20}\\
& \leq(1-\nu) \exp a+\nu \exp b-\exp ((1-\nu) a+\nu b) \\
& \leq \frac{1}{2} \nu(1-\nu)(b-a)^{2} \exp (\max \{a, b\})
\end{align*}
$$

for any $a, b \in \mathbb{R}$ and $\nu \in[0,1]$.
Let $0<m<M$ and take $b=\ln M$ and $a=\ln m$ to get

$$
\begin{align*}
& \frac{1}{2} \nu(1-\nu)(\ln M-\ln m)^{2} m \tag{2.21}\\
& \leq(1-\nu) m+\nu M-\exp ((1-\nu) \ln m+\nu \ln M) \\
& \leq \frac{1}{2} \nu(1-\nu)(\ln M-\ln m)^{2} M
\end{align*}
$$

for any $\nu \in[0,1]$.
Let $z \in[\ln m, \ln M]$. If we take $\nu=\frac{z-\ln m}{\ln M-\ln m} \in[0,1]$, then we get

$$
\begin{align*}
\frac{1}{2}(z-\ln m)(\ln M-z) m & \leq L(m, M)(z+U(m, M))-\exp z \tag{2.22}\\
& \leq \frac{1}{2}(z-\ln m)(\ln M-z) M
\end{align*}
$$

for any $z \in[\ln m, \ln M]$.
If X is a selfadjoint operator with $\operatorname{Sp}(X) \subset[\ln m, \ln M]$, then by (2.22) we have

$$
\begin{align*}
\frac{1}{2} m(X-\ln m I)(\ln M I-X) & \leq L(m, M)(X+U(m, M) I)-\exp X \tag{2.23}\\
& \leq \frac{1}{2} M(X-\ln m I)(\ln M I-X)
\end{align*}
$$

which is an inequality of interest in itself as well.
If we take $X=\ln A \nabla_{\alpha} \ln B, \alpha \in[0,1]$, then $\operatorname{Sp}(X) \subset[\ln m, \ln M]$ and by (2.23) we get the desired result (2.17).

Remark 2.4. Since

$$
\left(\ln A \nabla_{\alpha} \ln B-\ln m I\right)\left(\ln M I-\ln A \nabla_{\alpha} \ln B\right) \leq \frac{1}{4}(\ln M-\ln m)^{2} I
$$

then from (2.17) we get the following simpler upper bound

$$
\begin{equation*}
L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right)-A \diamond_{\alpha} B \leq \frac{1}{8} M(\ln M-\ln m)^{2} I \tag{2.24}
\end{equation*}
$$

In [7], M. Tominaga obtained the following reverses of Young's inequality

$$
\begin{equation*}
\left(a^{1-\nu} b^{\nu} \leq\right)(1-\nu) a+\nu b \leq S\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
(0 \leq)(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq L(a, b) \ln S\left(\frac{a}{b}\right) \tag{2.26}
\end{equation*}
$$

for any $a, b>0$ and $\nu \in[0,1]$.
Theorem 2.5. With the assumptions of Theorem 2.1 we have

$$
\begin{equation*}
\left(A \diamond_{\alpha} B \leq\right) L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right) \leq S\left(\frac{M}{m}\right) A \diamond_{\alpha} B \tag{2.27}
\end{equation*}
$$

and

$$
\begin{align*}
& (0 \leq) L(m, M)\left(\ln A \nabla_{\alpha} \ln B+U(m, M) I\right)-A \diamond_{\alpha} B \tag{2.28}\\
& \leq L(m, M) \ln S\left(\frac{M}{m}\right) I
\end{align*}
$$

for any $\alpha \in[0,1]$.
Proof. For $0<m<M$ we have by (2.25) that
(2.29) $(1-\nu) m+\nu M \leq S\left(\frac{m}{M}\right) m^{1-\nu} M^{\nu}=S\left(\frac{M}{m}\right) \exp ((1-\nu) \ln m+\nu \ln M)$ for any $\nu \in[0,1]$.

Similarly,

$$
\begin{equation*}
(1-\nu) m+\nu M-\exp ((1-\nu) \ln m+\nu \ln M) \leq L(m, M) \ln S\left(\frac{M}{m}\right) \tag{2.30}
\end{equation*}
$$

for any $\nu \in[0,1]$.
Let $z \in[\ln m, \ln M]$. If we take $\nu=\frac{z-\ln m}{\ln M-\ln m} \in[0,1]$ in (2.29) and (2.29) then we get

$$
\begin{equation*}
L(m, M)(z+U(m, M)) \leq S\left(\frac{M}{m}\right) \exp z \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
L(m, M)(z+U(m, M))-\exp z \leq L(m, M) \ln S\left(\frac{M}{m}\right) \tag{2.32}
\end{equation*}
$$

for any $z \in[\ln m, \ln M]$.
If X is a selfadjoint operator with $\operatorname{Sp}(X) \subset[\ln m, \ln M]$, then by (2.31) and (2.32) we have

$$
\begin{equation*}
L(m, M)(X+U(m, M) I) \leq S\left(\frac{M}{m}\right) \exp X \tag{2.33}
\end{equation*}
$$

and

$$
\begin{equation*}
L(m, M)(X+U(m, M) I)-\exp X \leq L(m, M) \ln S\left(\frac{M}{m}\right) I \tag{2.34}
\end{equation*}
$$

which are inequalities of interest in themselves.
If we take $X=\ln A \nabla_{\alpha} \ln B, \alpha \in[0,1]$, then $\operatorname{Sp}(X) \subset[\ln m, \ln M]$ and by (2.33) and (2.34) we deduce the desired results (2.27) and (2.28).

References

1. S.S. Dragomir: Bounds for the normalized Jensen functional. Bull. Austral. Math. Soc. 74 (2006), no. 3, 417-478.
2. S.S. Dragomir: A note on Young's inequality. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 349-354. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [Onlinehttp://rgmia.org/papers/v18/v18a126.pdf].
3. S.S. Dragomir: A note on new refinements and reverses of Young's inequality. Transylv. J. Math. Mech. 8 (2016), no. 1, 45-49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [Online http://rgmia.org/papers/v18/v18a131.pdf].
4. M. Fujii, S.H. Lee, Y. Seo \& D. Jung: Reverse inequalities on chaotically geometric mean via Specht ratio. Math. Inequal. Appl. 6 (2003), no. 3, 509-519.
5. M. Fujii, J. Mićić, J. Pečaric \& Y. Seo: Reverse inequalities on chaotically geometric mean via Specht ratio, II. J. Inequal. Pure Appl. Math. 4(2) 2003 Art. 40.
6. W. Specht: Zer Theorie der elementaren Mittel. Math. Z. 74 (1960), 91-98.
7. M. Tominaga: Specht's ratio in the Young inequality. Sci. Math. Japon. 55 (2002), 583-588.
${ }^{a}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
Email address: sever.dragomir@vu.edu.au
${ }^{\mathrm{b}}$ School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa
Email address: sever.dragomir@vu.edu.au

[^0]: Received by the editors February 21, 2019. Accepted July 18, 2019.
 2010 Mathematics Subject Classification. 47A63, 47A30.
 Key words and phrases. operator Inequality, convex functions, arithmetic mean-geometric mean inequality, chaotically geometric mean.

