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COMMON COUPLED FIXED POINT RESULTS FOR HYBRID

PAIR OF MAPPING UNDER GENERALIZED

(ψ, θ, φ)−CONTRACTION WITH APPLICATION

Amrish Handa

Abstract. We introduce (CLRg) property for hybrid pair F : X × X → 2X and
g : X → X. We also introduce joint common limit range (JCLR) property for
two hybrid pairs F, G : X × X → 2X and f, g : X → X. We also establish some
common coupled fixed point theorems for hybrid pair of mappings under generalized
(ψ, θ, φ)−contraction on a noncomplete metric space, which is not partially ordered.
It is to be noted that to find coupled coincidence point, we do not employ the
condition of continuity of any mapping involved therein. As an application, we
study the existence and uniqueness of the solution to an integral equation. We
also give an example to demonstrate the degree of validity of our hypothesis. The
results we obtain generalize, extend and improve several recent results in the existing
literature.

1. Introduction and Preliminaries

Let (X, d) be a metric space. We denote by 2X the class of all nonempty subsets

of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X) the class

of all nonempty closed bounded subsets of X and by K(X) the class of all nonempty

compact subsets of X. A functional H : CL(X)× CL(X) → R+ ∪ {+∞} is said to

be the Pompeiu-Hausdorff generalized metric induced by d is given by

H(A, B) =

{
max {supa∈AD(a, B), supb∈B D(b, A)} , if maximum exists,

+∞, otherwise,

for all A, B ∈ CL(X), where D(x, A) = infa∈A d(x, a) denotes the distance from x

to A ⊂ X. For simplicity, if x ∈ X, we denotes g(x) by gx.
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Nadler [23] extended the famous Banach Contraction Principle from single-valued

mapping to multivalued mapping. Markin [22] initiated to study the existence

of fixed points for multivalued contractions and nonexpansive mappings using the

Hausdorff metric which was further studied by many authors under different con-

tractive conditions. The theory of multivalued mappings has application in control

theory, convex optimization, differential inclusions and economics.

The Banach contraction principle is one of very popular tools in solving the

existence in many problems of mathematical analysis. Due to its simplicity and

usefulness, there are a lot of generalizations of this principle in the literature. Ran

and Reurings [25] extended the Banach contraction principle in partially ordered

sets with some applications to linear and nonlinear matrix equations. While Nieto

and López [24] extended the result of Ran and Reurings [25] and applied their main

theorems to obtain a unique solution for a first-order ordinary differential equation

with periodic boundary conditions.

Guo and Lakshmikantham [15] introduced the notion of coupled fixed point and

initiated the investigation of multidimensional fixed point theory. Later on, Gnana-

Bhaskar and Lakshmikantham [5] obtained some coupled fixed point theorems for

mapping F : X ×X → X (where X is a partially ordered metric space) by defining

the notion of mixed monotone mapping. After that, Lakshmikantham and Ciric [19]

proved coupled fixed/coincidence point theorems for mappings F : X × X → X

and g : X → X by introducing the concept of the mixed g-monotone property.

They also illustrated these results by proving the existence and uniqueness of the

solution for periodic boundary value problems. Samet et al. [28] claimed that most

of the coupled fixed point theorems for single valued mappings on ordered metric

spaces are consequences of well-known fixed point theorems. Many authors focused

on coupled fixed point theory including ([3], [4], [7], [8], [18], [21], [26], [29], [32]).

The concepts related to coupled fixed point theory for multivalued mappings were

extended by Abbas et al. [1] and obtained coupled coincidence point and common

coupled fixed point theorems involving hybrid pair of mappings satisfying generalized

contractive conditions in complete metric spaces. Very few researcher gave attention

to coupled fixed point problems for hybrid pair of mappings including ([9], [10], [11],

[12], [13], [14], [20], [30]).

In [1], Abbas et al. introduced the following for multivalued mappings:
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Definition 1. Let X be a nonempty set, F : X ×X → 2X and g be a self-mapping

on X. An element (x, y) ∈ X ×X is called

(1) a coupled fixed point of F if x ∈ F (x, y) and y ∈ F (y, x).

(2) a coupled coincidence point of hybrid pair (F, g) if gx ∈ F (x, y) and gy ∈
F (y, x).

(3) a common coupled fixed point of hybrid pair (F, g) if x = gx ∈ F (x, y) and

y = gy ∈ F (y, x).

We denote the set of coupled coincidence points of mappings F and g by C(F, g).

Note that if (x, y) ∈ C(F, g), then (y, x) is also in C(F, g).

Definition 2. Let F : X × X → 2X be a multivalued mapping and g be a self-

mapping on X. The hybrid pair (F, g) is called w−compatible if gF (x, y) ⊆ F (gx, gy)

whenever (x, y) ∈ C(F, g).

Definition 3. Let F : X × X → 2X be a multivalued mapping and g be a self-

mapping on X. The mapping g is called F−weakly commuting at some point (x, y) ∈
X ×X if g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx).

Lemma 4 ([27]). Let (X, d) be a metric space. Then, for each a ∈ X and B ∈
K(X), there is b0 ∈ B such that D(a, B) = d(a, b0), where D(a,B) = infb∈B d(a, b).

Sintunavarat and Kumam [31] defined the notion of common limit in the range

property in fuzzy metric space. Chauhan et al. [6] introduce the notion of the

joint common limit in the range of mappings property called (JCLR) property and

proved a common fixed point theorem for a pair of weakly compatible mappings

using (JCLR) property in fuzzy metric space.

Definition 5 ([31]). Suppose that (X, d) is a metric space and f, g : X → X are

two mappings. Then f and g are said to satisfy the common limit in the range of g

property (CLRg-property) if there exists a sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

gxn = gx for some x ∈ X.

Definition 6 ([6]). For mappings F, G, f, g : X → X, the pairs (F, f) and (G, g)

are said to have (JCLR)property if there exist sequences {xn} and {yn} in X and x,

y ∈ X such that

lim
n→∞

Fxn = lim
n→∞

Gyn = lim
n→∞

fxn = lim
n→∞

gyn = fx = gy.
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Khan and Sumitra [18] established the concept of (CLRg) property for mappings

F : X ×X → X and g : X → X.

Definition 7 ([18]). Let (X, d) be a metric space and F : X × X → X and

g : X → X be two mappings. Then F and g are said to satisfy the common limit in

the range of g property (CLRg-property) if there exist sequences {xn} and {yn} in

X, some x, y in X such that

lim
n→∞

F (xn, yn) = lim
n→∞

gxn = gx,

lim
n→∞

F (yn, xn) = lim
n→∞

gyn = gy.

In [2], Ahmed and Nafadi introduced the notion of common limit range property

(CLR property) for two hybrid pairs of mappings in fuzzy metric spaces and proved

common fixed point theorems using (CLR) property for these mappings with implicit

relation.

Definition 8 ([2]). Mappings F : X → CB(X) and g : X → X are said to satisfy

the common limit in the range of g property (CLRg-property) if there exist sequences

{xn} in X, some x in X and A in CB(X) such that

lim
n→∞

gxn = gx ∈ A = lim
n→∞

Fxn.

Definition 9 ([2]). Mappings F, G : X → CB(X) and f, g : X → X are said

to satisfy joint common limit in the range (JCLR) property if there exist sequences

{xn} and {yn} in X, some x, y in X and A, B in CB(X) such that

lim
n→∞

fxn = fx ∈ A = lim
n→∞

Fxn,

lim
n→∞

gyn = gy ∈ B = lim
n→∞

Fyn.

Definition 10 ([29]). An altering distance function is a function ψ : [0, +∞) → [0,

+∞) which satisfies the following conditions:

(iψ) ψ is continuous and non-decreasing,

(iiψ) ψ(t) = 0 if and only if t = 0.

In this paper, we introduce (CLRg) property for hybrid pair F : X×X → 2X and

g : X → X. We also introduce joint common limit range (JCLR) property for two

hybrid pairs F, G : X×X → 2X and f, g : X → X.We prove a common coupled fixed

point theorems for hybrid pair of mappings under generalized (ψ, θ, φ)−contraction

on a noncomplete metric space, which is not partially ordered. It is to be noted

that to find coupled coincidence point, we do not employ the condition of continuity
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of any mapping involved therein. As an application, we study the existence and

uniqueness of the solution to an integral equation. We modify, improve, sharpen,

enrich and generalize the results of Alotaibi and Alsulami [3], Alsulami [4], Gnana-

Bhaskar and Lakshmikantham [5], Harjani et al. [16], Harjani and Sadarangani [17],

Lakshmikantham and Ciric [19], Luong and Thuan [21], Nieto and Rodriguez-Lopez

[24], Ran and Reurings [25], Razani and Parvaneh [26] and many other famous

results in the literature. The effectiveness of our generalization is demonstrated

with the help of an example.

2. Main Results

Definition 11. Let (X, d) be a metric space. Mappings F : X × X → 2X and

g : X → X are said to satisfy the common limit in the range of g property (CLRg-

property) if there exist sequences {xn} and {yn} in X, some x, y in X and A, B in

CB(X) such that

lim
n→∞

gxn = gx ∈ A = lim
n→∞

F (xn, yn),

lim
n→∞

gyn = gy ∈ B = lim
n→∞

F (yn, xn).

Definition 12. Let (X, d) be a metric space. For mappings f, g : X → X and

F, G : X × X → 2X , the pairs (F, f) and (G, g) are said to have joint common

limit range (JCLR) property if there exist sequences {xn}, {yn}, {un} and {vn} in

X, some x, y, u, v in X and A, B, C, D in CB(X) such that

lim
n→∞

F (xn, yn) = A, lim
n→∞

G(un, vn) = B,

then lim
n→∞

fxn = lim
n→∞

gun = fx = gu ∈ A ∩B,

and lim
n→∞

F (yn, xn) = C, lim
n→∞

G(vn, un) = D,

then lim
n→∞

fyn = lim
n→∞

gvn = fy = gv ∈ C ∩D.

Theorem 13. Let (X, d) be a metric space. Suppose F : X × X → K(X) and

g : X → X are two mappings for which there exist an altering distance function

ψ, an upper semi-continuous function θ : [0, +∞) → [0, +∞) and a lower semi-

continuous function φ : [0, +∞) → [0, +∞) such that

ψ(H(F (x, y), F (u, v))) ≤ θ(max{d(gx, gu), d(gy, gv)})(2.1)

−φ(max{d(gx, gu), d(gy, gv)}),
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for all x, y, u, v ∈ X, where θ(0) = φ(0) = 0 and ψ(t) − θ(t) + φ(t) > 0 for all

t > 0. Furthermore assume that F (X ×X) ⊆ g(X) and g(X) is a complete subset

of X. Then F and g have a coupled coincidence point. Moreover, F and g have a

common coupled fixed point, if one of the following conditions holds:

(a) F and g are w−compatible. limn→∞ gnx = u and limn→∞ gny = v for some

(x, y) ∈ C(F, g) and for some u, v ∈ X and g is continuous at u and v.

(b) g is F−weakly commuting for some (x, y) ∈ C(F, g) and gx and gy are fixed

points of g, that is, g2x = gx and g2y = gy.

(c) g is continuous at x and y. limn→∞ gnu = x and limn→∞ gnv = y for some

(x, y) ∈ C(F, g) and for some u, v ∈ X.

(d) g(C(F, g)) is a singleton subset of C(F, g).

Proof. Let x0, y0 ∈ X be arbitrary. Then F (x0, y0) and F (y0, x0) are well defined.

Choose gx1 ∈ F (x0, y0) and gy1 ∈ F (y0, x0), as F (X × X) ⊆ g(X). Since F :

X ×X → K(X), therefore by Lemma 4, there exist z1 ∈ F (x1, y1) and z2 ∈ F (y1,

x1) such that

d(gx1, z1) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, z2) ≤ H(F (y0, x0), F (y1, x1)).

Since F (X ×X) ⊆ g(X), there exist x2, y2 ∈ X such that z1 = gx2 and z2 = gy2.

Thus

d(gx1, gx2) ≤ H(F (x0, y0), F (x1, y1)),

d(gy1, gy2) ≤ H(F (y0, x0), F (y1, x1)).

Continuing this process, we obtain sequences {xn} and {yn} in X such that for all

n ∈ N, we have gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn) such that

d(gxn+1, gxn+2) ≤ H(F (xn, yn), F (xn+1, yn+1)),

d(gyn+1, gyn+2) ≤ H(F (yn, xn), F (yn+1, xn+1)),

which, by the monotonicity of ψ and (2.1), implies

ψ(d(gxn+1, gxn+2))

≤ ψ(H(F (xn, yn), F (xn+1, yn+1)))

≤ θ(max{d(gxn, gxn+1), d(gyn, gyn+1)})

−φ(max{d(gxn, gxn+1), d(gyn, gyn+1)}).
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Similarly

ψ(d(gyn+1, gyn+2))

≤ θ(max{d(gxn, gxn+1), d(gyn, gyn+1)})

−φ(max{d(gxn, gxn+1), d(gyn, gyn+1)}).

Combining them, we get

max{ψ(d(gxn+1, gxn+2)), ψ(d(gyn+1, gyn+2))}

≤ θ(max{d(gxn, gxn+1), d(gyn, gyn+1)})

−φ(max{d(gxn, gxn+1), d(gyn, gyn+1)}).

Since ψ is non-decreasing, it follows that

ψ(max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)})(2.2)

≤ θ(max{d(gxn, gxn+1), d(gyn, gyn+1)})

−φ(max{d(gxn, gxn+1), d(gyn, gyn+1)}).

But we have ψ(max{d(gxn, gxn+1), d(gyn, gyn+1)})− θ(max{d(gxn, gxn+1), d(gyn,

gyn+1)}) + φ(max{d(gxn, gxn+1), d(gyn, gyn+1)}) > 0.Then

ψ(max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)})
ψ(max{d(gxn, gxn+1), d(gyn, gyn+1)})

≤
θ

(
max

{
d(gxn, gxn+1),
d(gyn, gyn+1)

})
− φ

(
max

{
d(gxn, gxn+1),
d(gyn, gyn+1)

})
ψ (max {d(gxn, gxn+1), d(gyn, gyn+1)})

< 1.

Thus

ψ(max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)})

< ψ(max{d(gxn, gxn+1), d(gyn, gyn+1)}).

Since ψ is non-decreasing, therefore

max{d(gxn+1, gxn+2), d(gyn+1, gyn+2)}

< max{d(gxn, gxn+1), d(gyn, gyn+1)}.

This shows that the sequence {δn}∞n=0 defined by

δn = max{d(gxn, gxn+1), d(gyn, gyn+1)},

is a decreasing sequence of positive numbers. Then there exists δ ≥ 0 such that

(2.3) lim
n→∞

δn = lim
n→∞

max{d(gxn, gxn+1), d(gyn, gyn+1)} = δ.
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We shall prove that δ = 0. Suppose to the contrary that δ > 0. Taking n → ∞ in

(2.2), by using the property of ψ, θ, φ and (2.3), we obtain

ψ(δ) ≤ θ(δ)− φ(δ),

so

ψ(δ)− θ(δ) + φ(δ) ≤ 0,

which is a contradiction. Thus, by (2.3), we get

(2.4) lim
n→∞

δn = lim
n→∞

max{d(gxn, gxn+1), d(gyn, gyn+1)} = 0.

We now claim that {gxn}∞n=0 and {gyn}∞n=0 are Cauchy sequences in X. Suppose,

to the contrary, that at least one of the sequences {gxn}∞n=0 and {gyn}∞n=0 is not a

Cauchy sequence. Then there exists an ε > 0 for which we can find subsequences

{gxn(k)}, {gxm(k)} of {gxn}∞n=0
and {gyn(k)}, {gym(k)} of {gyn}∞n=0

such that

max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))} ≥ ε for n(k) > m(k) > k.

Assuming that n(k) is the smallest such positive integer, we get

max{d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k))}) < ε.

Now, by triangle inequality, we have

ε ≤ rk = max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}

≤ max{d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1)}

+max{d(gxn(k)−1, gxm(k)), d(gyn(k)−1, gym(k))}

< max{d(gxn(k), gxn(k)−1), d(gyn(k), gyn(k)−1)}+ ε.

Letting k → ∞ in the above inequality and using (2.4), we get

(2.5) lim
k→∞

rk = lim
k→∞

max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))} = ε.

By the triangle inequality, we have

max{d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1)}

≤ max{d(gxn(k)+1, gxn(k)), d(gyn(k)+1, gyn(k))}

+max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}

+max{d(gxm(k), gxm(k)+1), d(gym(k), gym(k)+1)}.

Letting k → ∞ in the above inequalities, using (2.4) and (2.5), we have

(2.6) lim
k→∞

max{d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1)} = ε.
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Now, by the monotonicity of ψ and (2.1), implies

ψ(d(gxn(k)+1, gxm(k)+1))

≤ ψ(H(F (xn(k), yn(k)), F (xm(k), ym(k))))

≤ θ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

−φ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}).

Similarly

ψ(d(gyn(k)+1, gym(k)+1))

≤ θ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

−φ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}).

Combining them, we get

max{ψ(d(gxn(k)+1, gxm(k)+1)), ψ(d(gyn(k)+1, gym(k)+1))}

≤ θ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

−φ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}).

Since ψ is non-decreasing, it follows that

ψ(max{d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1)})

≤ θ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))})

−φ(max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}).

Letting k → ∞ in the above inequality, by using the property of ψ, θ, φ and (2.5),

(2.6), we have

ψ(ε) ≤ θ(ε)− φ(ε),

which is a contradiction due to ε > 0. This shows that {gxn}∞n=0 and {gxn}∞n=0 are

Cauchy sequences in g(X). Since g(X) is complete, there exist x, y ∈ X such that

(2.7) lim
n→∞

gxn = gx and lim
n→∞

gyn = gy.

Now, since gxn+1 ∈ F (xn, yn) and gyn+1 ∈ F (yn, xn), by using condition (2.1) and

by the monotonicity of ψ, we get

ψ(D(gxn+1, F (x, y)))

≤ ψ(H(F (xn, yn), F (x, y)))

≤ θ(max{d(gxn, gx), d(gyn, gy)})

−φ(max{d(gxn, gx), d(gyn, gy)}).
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On taking n→ ∞ in the above inequality and by using the property of ψ, θ, φ and

(2.7), we get

D(gx, F (x, y)) = 0. Similarly D(gy, F (y, x)) = 0,

which implies that

gx ∈ F (x, y) and gy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is nonempty.

Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

(2.8) lim
n→∞

gnx = u and lim
n→∞

gny = v,

where u, v ∈ X. Since g is continuous at u and v, we have, by (2.8), that u and v

are fixed points of g, that is,

(2.9) gu = u and gv = v.

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1,

that is,

(2.10) gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x), for all n ≥ 1.

Now, by using (2.1), (2.10) and by the monotonicity of ψ, we obtain

ψ(D(gnx, F (u, v)))

≤ ψ(H(F (gn−1x, gn−1y), F (u, v)))

≤ θ(max{d(gnx, gu), d(gny, gv)})

−φ(max{d(gnx, gu), d(gny, gv)}).

On taking limit as n → ∞ in the above inequality, by using (2.8), (2.9) and by the

continuity of ψ, we get

D(gu, F (u, v)) = 0. Similarly D(gv, F (v, u)) = 0,

which implies that

(2.11) gu ∈ F (u, v) and gv ∈ F (v, u).

Now, from (2.9) and (2.11), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
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Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g is

F−weakly commuting, that is g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and g2x = gx

and g2y = gy. Thus gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy, gx), that is, (gx,

gy) is a common coupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for some

u, v ∈ X, limn→∞ gnu = x and limn→∞ gnv = y. Since g is continuous at x and y,

then x and y are fixed points of g, that is, gx = x and gy = y. Since (x, y) ∈ C(F,

g), so we obtain x = gx ∈ F (x, y) and y = gy ∈ F (y, x), that is, (x, y) is a common

coupled fixed point of F and g.

Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then {x} = {gx} =

F (x, x). Hence (x, x) is a common coupled fixed point of F and g. �

If we put g = I (the identity mapping) in the Theorem 13, we get the following

result:

Corollary 14. Let (X, d) be a complete metric space, F : X × X → K(X) be

a mapping for which there exist an altering distance function ψ, an upper semi-

continuous function θ : [0, +∞) → [0, +∞) and a lower semi-continuous function

φ : [0, +∞) → [0, +∞) such that

ψ(H(F (x, y), F (u, v))) ≤ θ(max{d(x, u), d(y, v)})−φ(max{d(x, u), d(y, v)}),

for all x, y, u, v ∈ X, where θ(0) = φ(0) = 0 and ψ(t)−θ(t)+φ(t) > 0 for all t > 0.

Then F has a coupled fixed point.

If we take ψ(t) = θ(t) in Theorem 13, we obtain the following corollary.

Corollary 15. Let (X, d) be a metric space. Suppose F : X × X → K(X) and

g : X → X are two mappings for which there exist an altering distance function ψ

and a lower semi-continuous function φ : [0, +∞) → [0, +∞) such that

ψ(H(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), d(gy, gv)})(2.12)

−φ(max{d(gx, gu), d(gy, gv)}),

for all x, y, u, v ∈ X, where φ(0) = 0. Furthermore assume that F (X ×X) ⊆ g(X)

and g(X) is a complete subset of X. Then F and g have a coupled coincidence point.

Moreover, F and g have a common coupled fixed point, if one of the conditions

(a)− (d) of Theorem 13 holds.

If we put g = I (the identity mapping) in Corollary 15, we get the following

result:
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Corollary 16. Let (X, d) be a complete metric space, F : X × X → K(X) be a

mapping for which there exist an altering distance function ψ and a lower semi-

continuous function φ : [0, +∞) → [0, +∞) such that

ψ(H(F (x, y), F (u, v))) ≤ ψ(max{d(x, u), d(y, v)})−φ(max{d(x, u), d(y, v)}),

for all x, y, u, v ∈ X, where φ(0) = 0. Then F has a coupled fixed point.

If we take ψ(t) = θ(t) = t and φ(t) = (1− k)t with k < 1 in Theorem 13, we get

the following corollary.

Corollary 17. Let (X, d) be a metric space. Suppose F : X × X → K(X) and

g : X → X are two mappings satisfying

(2.13) H(F (x, y), F (u, v)) ≤ kmax{d(gx, gu), d(gy, gv)}),

for all x, y, u, v ∈ X, where k < 1. Furthermore assume that F (X×X) ⊆ g(X) and

g(X) is a complete subset of X. Then F and g have a coupled coincidence point.

Moreover, F and g have a common coupled fixed point, if one of the conditions

(a)− (d) of Theorem 13 holds.

If we put g = I (the identity mapping) in Corollary 17, we get the following

result:

Corollary 18. Let (X, d) be a complete metric space and F : X ×X → K(X) be

a mapping satisfying

H(F (x, y), F (u, v)) ≤ kmax{d(x, u), d(y, v)},

for all x, y, u, v ∈ X, where k < 1. Then F has a coupled fixed point.

If we take F to be a singleton set in Theorem 13, then we get the following result:

Corollary 19. Let (X, d) be a metric space. Suppose F : X × X → X and g :

X → X are two mappings for which there exist an altering distance function ψ, an

upper semi-continuous function θ : [0, +∞) → [0, +∞) and a lower semi-continuous

function φ : [0, +∞) → [0, +∞) such that

ψ(d(F (x, y), F (u, v))) ≤ θ(max{d(gx, gu), d(gy, gv)})

−φ(max{d(gx, gu), d(gy, gv)}),

for all x, y, u, v ∈ X, where θ(0) = φ(0) = 0 and ψ(t)−θ(t)+φ(t) > 0 for all t > 0.

Furthermore F (X ×X) ⊆ g(X) and g(X) is a complete subset of X. Then F and g

have a coupled coincidence point.
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Put g = I (the identity mapping) in Corollary 19, we get the following result:

Corollary 20. Let (X, d) be a complete metric space. Assume F : X × X → X

is a mapping for which there exist an altering distance function ψ, an upper semi-

continuous function θ : [0, +∞) → [0, +∞) and a lower semi-continuous function

φ : [0, +∞) → [0, +∞) such that

ψ(d(F (x, y), F (u, v)))

≤ θ(max{d(x, u), d(y, v)})− φ(max{d(x, u), d(y, v)}),

for all x, y, u, v ∈ X, where θ(0) = φ(0) = 0 and ψ(t)−θ(t)+φ(t) > 0 for all t > 0.

Then F has a coupled fixed point.

Theorem 21. Let (X, d) be a metric space. Suppose F : X × X → CB(X) and

g : X → X are two mappings for which there exist an altering distance function

ψ, an upper semi-continuous function θ : [0, +∞) → [0, +∞) and a lower semi-

continuous function φ : [0, +∞) → [0, +∞) satisfying (2.1), for all x, y, u, v ∈ X,

where θ(0) = φ(0) = 0 and ψ(t) − θ(t) + φ(t) > 0 for all t > 0 and (F, g) satisfies

(CLRg) property. Then F and g have a coupled coincidence point. Moreover, if

one of the conditions (a)− (d) of Theorem 13 holds, then F and g have a common

coupled fixed point.

Proof. Since (F, g) satisfies (CLRg) property, there exist sequences {xn} and {yn}
in X, some x, y in X and A, B in CB(X) such that

lim
n→∞

gxn = gx ∈ A = lim
n→∞

F (xn, yn),(2.14)

lim
n→∞

gyn = gy ∈ B = lim
n→∞

F (yn, xn).

Now, by contractive condition (2.1), we have

ψ(H(F (xn, yn), F (x, y))) ≤ θ(max{d(gxn, gx), d(gyn, gy)})

−φ(max{d(gxn, gx), d(gyn, gy)}).

On taking n→ ∞ in the above inequality and by using the property of ψ, θ, φ and

(2.14), we get

ψ(H(A, F (x, y))) ≤ θ(0)− φ(0) = 0− 0 = 0,

which, by (iiψ), implies

H(A, F (x, y)) = 0, similarly H(B, F (y, x)) = 0.
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Since gx ∈ A and gy ∈ B,

gx ∈ F (x, y) and gy ∈ F (y, x),

that is, (x, y) is a coupled coincidence point of F and g. Hence C(F, g) is nonempty.

Suppose now that (a) holds. Assume that for some (x, y) ∈ C(F, g),

(2.15) lim
n→∞

gnx = u and lim
n→∞

gny = v,

where u, v ∈ X. Since g is continuous at u and v, we have, by (2.15), that u and v

are fixed points of g, that is,

(2.16) gu = u and gv = v.

As F and g are w−compatible, so

(gnx, gny) ∈ C(F, g), for all n ≥ 1,

that is, for all n ≥ 1,

(2.17) gnx ∈ F (gn−1x, gn−1y) and gny ∈ F (gn−1y, gn−1x).

Now, by using contractive condition (2.1), (2.17) and by the monotonicity of ψ, we

obtain

ψ(D(gnx, F (u, v)))

≤ ψ(H(F (gn−1x, gn−1y), F (u, v)))

≤ θ(max{d(gnx, gu), d(gny, gv)})

−φ(max{d(gnx, gu), d(gny, gv)}).

On taking limit as n→ ∞ in the above inequality, by using the property of ψ, θ, φ

and (2.15), (2.16), we get

ψ(D(gu, F (u, v))) ≤ θ(0)− φ(0) = 0− 0 = 0,

which, by (iiψ), implies

D(gu, F (u, v)) = 0, similarly D(gv, F (v, u)) = 0,

which implies that

(2.18) gu ∈ F (u, v) and gv ∈ F (v, u),

Now, from (2.16) and (2.18), we have

u = gu ∈ F (u, v) and v = gv ∈ F (v, u),

that is, (u, v) is a common coupled fixed point of F and g.
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Suppose now that (b) holds. Assume that for some (x, y) ∈ C(F, g), g is

F−weakly commuting, that is g2x ∈ F (gx, gy) and g2y ∈ F (gy, gx) and g2x = gx

and g2y = gy. Thus gx = g2x ∈ F (gx, gy) and gy = g2y ∈ F (gy, gx), that is, (gx,

gy) is a common coupled fixed point of F and g.

Suppose now that (c) holds. Assume that for some (x, y) ∈ C(F, g) and for some

u, v ∈ X, limn→∞ gnu = x and limn→∞ gnv = y. Since g is continuous at x and y,

then x and y are fixed points of g, that is, gx = x and gy = y. Since (x, y) ∈ C(F,

g), so we obtain x = gx ∈ F (x, y) and y = gy ∈ F (y, x), that is, (x, y) is a common

coupled fixed point of F and g.

Finally, suppose that (d) holds. Let g(C(F, g)) = {(x, x)}. Then {x} = {gx} =

F (x, x). Hence (x, x) is a common coupled fixed point of F and g. �

If we take ψ(t) = θ(t) in Theorem 21, we obtain the following corollary.

Corollary 22. Let (X, d) be a metric space. Suppose F : X × X → CB(X) and

g : X → X are two mappings for which there exist an altering distance function ψ

and a lower semi-continuous function φ : [0, +∞) → [0, +∞) satisfying (2.12), for

all x, y, u, v ∈ X, where φ(0) = 0 and (F, g) satisfies (CLRg) property. Then F

and g have a coupled coincidence point. Moreover, F and g have a common coupled

fixed point, if one of the conditions (a)− (d) of Theorem 13 holds.

If we take ψ(t) = θ(t) = t and φ(t) = (1− k)t with k < 1 in Theorem 21, we get

the following corollary.

Corollary 23. Let (X, d) be a metric space. Suppose F : X × X → CB(X) and

g : X → X are two mappings satisfying (2.13), for all x, y, u, v ∈ X, where k < 1

and (F, g) satisfies (CLRg) property. Then F and g have a coupled coincidence

point. Moreover, F and g have a common coupled fixed point, if one of the conditions

(a)− (d) of Theorem 13 holds.

Example 24. Suppose that X = [0, 1], equipped with the metric d : X ×X → [0,

+∞) defined as d(x, y) = max{x, y} and d(x, x) = 0 for all x, y ∈ X. Let F :

X ×X → K(X) be defined as

F (x, y) =

{
{0}, for x, y = 1,[

0, x2+y2

6

]
, for x, y ∈ [0, 1),

and g : X → X be defined as

gx = x2, for all x ∈ X.
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and ψ(t) = θ(t) = t and φ(t) = 2t
3 for t ≥ 0. Now, for all x, y, u, v ∈ X with x, y,

u, v ∈ [0, 1), we have

Case (a). If x2 + y2 = u2 + v2, then

ψ(H(F (x, y), F (u, v)))

= H(F (x, y), F (u, v))

=
u2 + v2

6

≤ 1

6
max{x2, u2}+ 1

6
max{y2, v2}

≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
(max{d(gx, gu), d(gy, gv)})

≤ θ(max{d(gx, gu), d(gy, gv)})− φ(max{d(gx, gu), d(gy, gv)}).

Case (b). If x2 + y2 ̸= u2 + v2 with x2 + y2 < u2 + v2, then

ψ(H(F (x, y), F (u, v)))

= H(F (x, y), F (u, v))

=
u2 + v2

6

≤ 1

6
max{x2, u2}+ 1

6
max{y2, v2}

≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
(max{d(gx, gu), d(gy, gv)})

≤ θ(max{d(gx, gu), d(gy, gv)})− φ(max{d(gx, gu), d(gy, gv)}).

Similarly, we obtain the same result for u2 + v2 < x2 + y2. Thus the contractive

condition (2.1) is satisfied for all x, y, u, v ∈ X with x, y, u, v ∈ [0, 1). Again, for

all x, y, u, v ∈ X with x, y ∈ [0, 1) and u, v = 1, we have

ψ(H(F (x, y), F (u, v)))

= H(F (x, y), F (u, v))

=
x2 + y2

6

≤ 1

6
max{x2, u2}+ 1

6
max{y2, v2}
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≤ 1

6
d(gx, gu) +

1

6
d(gy, gv)

≤ 1

3
(max{d(gx, gu), d(gy, gv)})

≤ θ(max{d(gx, gu), d(gy, gv)})− φ(max{d(gx, gu), d(gy, gv)}).

Thus the contractive condition (2.1) is satisfied for all x, y, u, v ∈ X with x, y ∈ [0,

1) and u, v = 1. Similarly, we can see that the contractive condition (2.1) is satisfied

for all x, y, u, v ∈ X with x, y, u, v = 1. Hence, the hybrid pair (F, g) satisfies

the contractive condition (2.1), for all x, y, u, v ∈ X. In addition, all the other

conditions of Theorem 13 and Theorem 21 are satisfied and z = (0, 0) is a common

coupled fixed point of hybrid pair (F, g). The function F : X×X → K(X) involved

in this example is not continuous at the point (1, 1) ∈ X ×X.

3. Applications

In this section, based on the results in [17], we propose an application to our

results. Consider the integral equation

(3.1) x(t) =

∫ T

0
K(t, s, x(s))ds+ h(t), t ∈ [0, T ],

where T > 0. We introduce the following space:

C[0, T ] = {u : [0, T ] → R : u is continuous on [0, T ]},

equipped with the metric

d(x, y) = sup
t∈[0, T ]

|x(t)− y(t)| , for each x, y ∈ C[0, T ].

It is clear that (C[0, T ], d) is a complete metric space.

Now, we state the main result of this section.

Theorem 25. We assume that the following hypotheses hold:

(i) K1, K2 : [0, T ]× [0, T ]× R → R and h : [0, T ] → R are continuous,

(ii) there exists a continuous function G : [0, T ]× [0, T ] → [0, +∞) such that

|K(t, s, x(s))−K(t, s, y(s))| ≤ G(t, s) · |x(s)− y(s)|
6

,

for all s, t ∈ C[0, T ] and x, y ∈ R,
(iii) supt∈[0, T ]

∫ T
0 G(t, s)2ds ≤ 1

T .

Then the integral equation (3.1) has a solution (u∗, v∗) ∈ C[0, T ].
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Proof. We first define ψ, θ, φ : [0, +∞) → [0, +∞) as follows

ψ(t) = θ(t) = t and φ(t) =
2t

3
for t ≥ 0,

and define F : C[0, T ]× C[0, T ] → C[0, T ] by

F (x, y)(t) =

∫ T

0
[K(t, s, x(s)) +K(t, s, y(s))]ds+ h(t),

for all t ∈ [0, T ] and x, y ∈ C[0, T ]. Now, for all x, y, u, v ∈ C[0, T ], due to (ii) and

by using Cauchy-Schwarz inequality, we get

|F (x, y)(t)− F (u, v)(t)|

≤
∫ T

0
|K(t, s, x(s))−K(t, s, u(s))| ds

+

∫ T

0
|K(t, s, y(s))−K(t, s, v(s))| ds

≤
∫ T

0
G(t, s) ·

(
|x(s)− u(s)|+ |y(s)− v(s)|

6

)
ds

≤
(∫ T

0
G(t, s)2ds

) 1
2

(∫ T

0

(
|x(s)− u(s)|+ |y(s)− v(s)|

6

)2

ds

) 1
2

.

Thus

|F (x, y)(t)− F (u, v)(t)|(3.2)

≤
(∫ T

0
G(t, s)2ds

) 1
2

(∫ T

0

(
|x(s)− u(s)|+ |y(s)− v(s)|

6

)2

ds

) 1
2

.

Taking (iii) into account, we estimate the first integral in (3.2) as follows:

(3.3)

(∫ T

0
G(t, s)2ds

) 1
2

≤ 1√
T
.

For the second integral in (3.2) we proceed in the following way:

(3.4)

(∫ T

0

(
|x(s)− u(s)|+ |y(s)− v(s)|

6

)2

ds

) 1
2

≤
√
T · d(x, u) + d(y, v)

6
.

Combining (3.2), (3.3) and (3.4), we conclude that

|F (x, y)(t)− F (u, v)(t)| ≤ 1

6
d(x, u) +

1

6
d(y, v)

≤ 1

3
max{d(x, u), d(y, v)}.
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It yields

ψ(d(F (x, y), F (u, v))) ≤ θ(max{d(x, u), d(y, v)})− φ(max{d(x, u), d(y, v)}),

for all x, y, u, v ∈ C[0, T ]. Hence, all hypotheses of Corollary 20 are satisfied. Thus,

F has a coupled fixed point (u∗, v∗) ∈ C[0, T ] × C[0, T ] which is a solution of

(3.1). �
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