INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5) FUNCTION

Majid Mirmiran ${ }^{\text {a,* }}$ and Binesh Naderi ${ }^{\text {b }}$

Abstract

A necessary and sufficient condition in terms of lower cut sets is given for the insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that whose F_{σ}-kernel of sets are F_{σ}-sets.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [22] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to $[4,10]$.

In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers $[1,3,7,8,9,11,12,21]$.

Results of Katětov $[13,14]$ concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are

[^0]used in order to give a necessary and sufficient condition for the insertion of a Baire.5 function between two comparable real-valued functions on the topological spaces that whose F_{σ}-kernel of sets are F_{σ}-sets.

A real-valued function f defined on a topological space X is called contra-Baire-1 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a $G_{\delta}-$ set in X [23].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g<f$) in case $g(x) \leq f(x)$ (resp. $g(x)<f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is a $B-.5-$ property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-. 5 function also has property P. If P_{1} and P_{2} are $B-.5-$ properties, the following terminology is used: (i) A space X has the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leq h \leq f$. (ii) A space X has the $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g<h<f$.

In this paper, for a topological space that whose F_{σ}-kernel of sets are F_{σ}-sets, is given a sufficient condition for the weak $B-.5$-insertion property. Also for a space with the weak $B-.5$-insertion property, we give a necessary and sufficient condition for the space to have the $B-.5$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result and Applications

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:
$A^{\Lambda}=\cap\{O: O \supseteq A, O \in(X, \tau)\}$ and $A^{V}=\cup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}$.
In $[6,16,20], A^{\Lambda}$ is called the kernel of A.
We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:
$G_{\delta}(A)=\cup\left\{O: O \subseteq A, O i s G_{\delta}-s e t\right\}$ and
$F_{\sigma}(A)=\cap\left\{F: F \supseteq A, F i s F_{\sigma}-\right.$ set $\}$.
$F_{\sigma}(A)$ is called the $F_{\sigma}-k e r n e l$ of A.
The following first two definitions are modifications of conditions considered in $[13,14]$.

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1) If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2) If $A \subseteq B$, then $A \bar{\rho} B$.
3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X$: $f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}$ for a real number ℓ, then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main results:
Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ}-kernel sets in X are $F_{\sigma}-$ sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a Baire-. 5 function h defined on X such that $g \leq h \leq f$.

Proof. [19, Theorem 2.1].
Definition 2.5. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ}-set for any real number t.

The abbreviations usc, $l s c$, cus $B .5$ and $c l s B .5$ are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1 ([13, 14]). A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences, we suppose that X is a topological space that whose $F_{\sigma}-$ kernel of sets are F_{σ}-sets.

Corollary 2.1. For each pair of disjoint $F_{\sigma}-$ sets F_{1}, F_{2}, there are two $G_{\delta}-$ sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\emptyset$ if and only if X has the weak $B-.5$-insertion property for (cusB-.5, clsB-.5).

Proof. [19, Corollary 2.1].
Remark 2 ([24]). A space X has the weak c-insertion property for $(l s c, u s c)$ if and only if X is extremally disconnected.

Corollary 2.2. For every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set if and only if X has the weak $B-.5$-insertion property for (clsB-.5, cusB-.5).

Proof. [19, Corollary 2.2].
Theorem 2.2. Let P_{1} and P_{2} be $B-.5-$ property and X be a space that satisfies the weak $B-.5$-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g<f, g$ has property P_{1} and f has property P_{2}. The space X has the $B-.5-$ insertion property for $\left(P_{1}, P_{2}\right)$ if and only if there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a decreasing sequence $\left\{D_{n}\right\}$ of subsets of X with empty intersection and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire-. 5 functions.

Proof. [18, Theorem 2.1].
Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 2.1. The following conditions on the space X are equivalent:
(i) For every G of G_{δ}-set we have $F_{\sigma}(G)$ is a G_{δ}-set.
(ii) For each pair of disjoint G_{δ}-sets as G_{1} and G_{2} we have $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$.

The proof of Lemma 2.1 is a direct consequence of the definition F_{σ}-kernel of sets.

Lemma 2.2. The following conditions on the space X are equivalent:
(i) Every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets of X.
(ii) If F is a $F_{\sigma}-$ set of X which is contained in a $G_{\delta}-$ set G, then there exists a $G_{\delta}-$ set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. [19, Lemma 2.2].
Lemma 2.3. Suppose that X is a topological space such that we can separate every two disjoint F_{σ}-sets by G_{δ}-sets. If F_{1} and F_{2} be two disjoint F_{σ}-sets of X, then there exists a Baire-. 5 function $h: X \rightarrow[0,1]$ such that $h\left(F_{1}\right)=\{0\}$ and $h\left(F_{2}\right)=$ \{1\}.

Proof. [19, Lemma 2.3].
Lemma 2.4. Suppose that X is the topological space such that every two disjoint $F_{\sigma}-$ sets can be separated by $G_{\delta}-$ sets. The following conditions are equivalent:
(i) Every countable convering of G_{δ}-sets of X has a refinement consisting of $G_{\delta}-$ sets such that, for every $x \in X$, there exists a $G_{\delta}-$ set containing x such that it intersects only finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection there exists a decreasing sequence $\left\{G_{n}\right\}$ of $G_{\delta}-$ sets such that, $\bigcap_{n=1}^{\infty} G_{n}=$ \emptyset and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$.

Proof. (i) \Rightarrow (ii). suppose that $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. Then $\left\{F_{n}^{c}: n \in \mathbb{N}\right\}$ is a countable covering of $G_{\delta}-$ sets. By hypothesis (i) and Lemma 2.2, this covering has a refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ such that every V_{n} is a $G_{\delta}-$ set and $F_{\sigma}\left(V_{n}\right) \subseteq F_{n}^{c}$. By setting $F_{n}=\left(F_{\sigma}\left(V_{n}\right)\right)^{c}$, we obtain a decreasing sequence of G_{δ}-sets with the required properties.
(ii) \Rightarrow (i). Now if $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets, we set for $n \in \mathbb{N}, F_{n}=\left(\bigcup_{i=1}^{n} H_{i}\right)^{c}$. Then $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. By (ii) there exists a decreasing sequence $\left\{G_{n}\right\}$ consisting of G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$. Now we define the subsets W_{n} of X in the following manner:
W_{1} is a G_{δ}-set of X such that $G_{1}^{c} \subseteq W_{1}$ and $F_{\sigma}\left(W_{1}\right) \cap F_{1}=\emptyset$.
W_{2} is a G_{δ}-set of X such that $F_{\sigma}\left(W_{1}\right) \cup G_{2}^{c} \subseteq W_{2}$ and $F_{\sigma}\left(W_{2}\right) \cap F_{2}=\emptyset$, and so on. (By Lemma 2.2, W_{n} exists).

Then since $\left\{G_{n}^{c}: n \in \mathbb{N}\right\}$ is a covering for $X,\left\{W_{n}: n \in \mathbb{N}\right\}$ is a covering for X consisting of G_{δ}-sets. Moreover, we have
(i) $F_{\sigma}\left(W_{n}\right) \subseteq W_{n+1}$
(ii) $G_{n}^{c} \subseteq W_{n}$
(iii) $W_{n} \subseteq \bigcup_{i=1}^{n} H_{i}$.

Now suppose that $S_{1}=W_{1}$ and for $n \geq 2$, we set $S_{n}=W_{n+1} \backslash F_{\sigma}\left(W_{n-1}\right)$.
Then since $F_{\sigma}\left(W_{n-1}\right) \subseteq W_{n}$ and $S_{n} \supseteq W_{n+1} \backslash W_{n}$, it follows that $\left\{S_{n}: n \in \mathbb{N}\right\}$ consists of G_{δ}-sets and covers X. Furthermore, $S_{i} \cap S_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$
\left.\begin{array}{lll}
S_{1} \cap H_{1}, & S_{1} \cap H_{2} & \\
S_{2} \cap H_{1}, & S_{2} \cap H_{2}, & S_{2} \cap H_{3} \\
S_{3} \cap H_{1}, & S_{3} \cap H_{2}, & S_{3} \cap H_{3},
\end{array} S_{3} \cap H_{4}\right)
$$

and continue ad infinitum. These sets are G_{δ}-sets, cover X and refine $\left\{H_{n}: n \in \mathbb{N}\right\}$. In addition, $S_{i} \cap H_{j}$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_{n} \cap H_{m}$, then $S_{n} \cap H_{m}$ is a G_{δ}-set containing x that intersects at most finitely many of sets $S_{i} \cap H_{j}$. Consequently, $\left\{S_{i} \cap H_{j}: i \in \mathbb{N}, j=\right.$ $1, \ldots, i+1\}$ refines $\left\{H_{n}: n \in \mathbb{N}\right\}$ such that its elements are G_{δ}-sets, and for every point in X we can find a G_{δ}-set containing the point that intersects only finitely many elements of that refinement.

Remark 3 ([12, 13]). A space X has the c-insertion property for $(u s c, l s c)$ if and only if X is normal and countably paracompact.

Corollary 2.3. X has the $B-.5$-insertion property for (cusB - .5, cls $B-.5$) if and only if every two disjoint $F_{\sigma}-$ sets of X can be separated by $G_{\delta}-$ sets, and in addition, every countable covering of G_{δ}-sets has a refinement that consists of $G_{\delta}-$ sets such that, for every point of X we can find a G_{δ}-set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_{1} and F_{2} are disjoint F_{σ}-sets. Since $F_{1} \cap F_{2}=\emptyset$, it follows that $F_{2} \subseteq F_{1}^{c}$. We set $f(x)=2$ for $x \in F_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin F_{1}^{c}$, and $g=\chi_{F_{2}}$.

Since F_{2} is a F_{σ}-set, and F_{1}^{c} is a G_{δ}-set, g is cus $B-.5, f$ is $c l s B-.5$ and furthermore $g<f$. Hence by hypothesis there exists a Baire- .5 function h such that,
$g<h<f$. Now by setting $G_{1}=\{x \in X: h(x)<1\}$ and $G_{2}=\{x \in X: h(x)>1\}$. We can say that G_{1} and G_{2} are disjoint G_{δ}-sets that contain F_{1} and F_{2}, respectively. Now suppose that $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. Set $F_{0}=X$ and define for every $x \in F_{n} \backslash F_{n+1}, f(x)=\frac{1}{n+1}$. Since $\bigcap_{n=0}^{\infty} F_{n}=\emptyset$ and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_{n} \backslash F_{n+1}, f$ is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then $\{x \in X: f(x)>r\}=X$ is a $G_{\delta}-$ set and if $r>0$ then by Archimedean property of \mathbb{R}, we can find $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Now suppose that k is the least natural number such that $\frac{1}{k+1} \leq r$. Hence $\frac{1}{k}>r$ and consequently, $\{x \in X: f(x)>r\}=X \backslash F_{k}$ is a G_{δ}-set. Therefore, f is $c l s B-.5$. By setting $g=0$, we have g is cus $B-.5$ and $g<f$. Hence by hypothesis there exists a Baire- .5 function h on X such that, $g<h<f$.

By setting $G_{n}=\left\{x \in X: h(x)<\frac{1}{n+1}\right\}$, we have G_{n} is a $G_{\delta}-$ set. But for every $x \in F_{n}$, we have $f(x) \leq \frac{1}{n+1}$ and since $g<h<f, 0<h(x)<\frac{1}{n+1}$, i.e., $x \in G_{n}$ therefore $F_{n} \subseteq G_{n}$ and since $h>0$ it follows that $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$. Hence by Lemma 2.4 , the conditions hold.

On the other hand, since every two disjoint F_{σ}-sets can be separated by G_{δ}-sets, by Corollary $2.1, X$ has the weak $B-.5$-insertion property for (cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with $g<f$, such that, g is cus $B-.5$ and f is clsB-.5. For every $n \in \mathbb{N}$, set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\}
$$

Since g is cus $B-.5$, and f is $c l s B-.5, f-g$ is $c l s B-.5$. Hence $A\left(f-g, 3^{-n+1}\right)$ is a F_{σ}-set of X. Consequently, $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of F_{σ}-sets and furthermore since $0<f-g$, it follows that

$$
\bigcap_{n=1}^{\infty} A\left(f-g, 3^{-n+1}\right)=\emptyset
$$

Now by Lemma 2.4, there exists a decreasing sequence $\left\{D_{n}\right\}$ of $G_{\delta}-$ sets such that $A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$ and $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$. But by Lemma 2.3, $A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ of F_{σ}-sets can be completely separated by Baire-. 5 functions. Hence by Theorem 2.2, there exists a Baire-. 5 function h defined on X such that, $g<h<f$, i.e., X has the $B-.5$-insertion property for $(c u s B-.5, c l s B-.5)$.

Remark 4 ([14]). A space X has the c-insertion property for (lsc,usc) iff X is extremally disconnected and if for any decreasing sequence $\left\{G_{n}\right\}$ of open subsets of
X with empty intersection there exists a decreasing sequence $\left\{F_{n}\right\}$ of closed subsets of X with empty intersection such that $G_{n} \subseteq F_{n}$ for each n.

Corollary 2.4. For every G of $G_{\delta}-$ set, $F_{\sigma}(G)$ is a $G_{\delta}-$ set and in addition for every decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets with empty intersection, there exists a decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection such that for every $n \in \mathbb{N}, G_{n} \subseteq F_{n}$ if and only if X has the $B-.5$-insertion property for (clsB .5, cusB - .5).

Proof. Since for every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set, by Corollary $2.2, X$ has the weak $B-.5$-insertion property for (clsB-.5, cus $B-.5$). Now suppose that f and g are real-valued functions defined on X with $g<f, g$ is $c l s B-.5$, and f is cus $B-.5$. Set $A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x)<3^{-n+1}\right\}$. Then since $f-g$ is cus $B-.5,\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection. By hypothesis, there exists a decreasing sequence $\left\{D_{n}\right\}$ of F_{σ}-sets with empty intersection such that, for every $n \in \mathbb{N}, A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$. Hence $X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are two disjoint $G_{\delta}-$ sets and therefore by Lemma 2.1, we have

$$
F_{\sigma}\left(A\left(f-g, 3^{-n+1}\right)\right) \cap F_{\sigma}\left(\left(X \backslash D_{n}\right)\right)=\emptyset
$$

and therefore by Lemma 2.3, $X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separable by Baire- .5 functions. Therefore by Theorem 2.2, there exists a Baire- .5 function h on X such that, $g<h<f$, i.e., X has the $B-.5$-insertion property for (cls $B-$.5, cusB - .5).

On the other hand, suppose that G_{1} and G_{2} are two disjoint G_{δ}-sets. Since $G_{1} \cap G_{2}=\emptyset$, we have $G_{2} \subseteq G_{1}^{c}$. We set $f(x)=2$ for $x \in G_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin G_{1}^{c}$ and $g=\chi_{G_{2}}$.

Then since G_{2} is a G_{δ}-set and G_{1}^{c} is an F_{σ}-set, we conclude that g is $c l s B-.5$ and f is cus $B-.5$ and furthermore $g<f$. By hypothesis, there exists a Baire-. 5 function h on X such that, $g<h<f$. Now we set $F_{1}=\left\{x \in X: h(x) \leq \frac{3}{4}\right\}$ and $F_{2}=\{x \in X: h(x) \geq 1\}$. Then F_{1} and F_{2} are two disjoint F_{σ}-sets containing G_{1} and G_{2}, respectively. Hence $F_{\sigma}\left(G_{1}\right) \subseteq F_{1}$ and $F_{\sigma}\left(G_{2}\right) \subseteq F_{2}$ and consequently $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$. By Lemma 2.1, for every G of $G_{\delta}-$ set, the set $F_{\sigma}(G)$ is a G_{δ}-set.

Now suppose that $\left\{G_{n}\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection.

We set $G_{0}=X$ and $f(x)=\frac{1}{n+1}$ for $x \in G_{n} \backslash G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_{n} \backslash G_{n+1}, f$ is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then $\{x \in X: f(x)<r\}=\emptyset$ is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k}>r$. Now if $\frac{1}{k+1}<r$ then $\{x \in X: f(x)<r\}=G_{k}$ is a G_{δ}-set and if $\frac{1}{k+1}=r$ then $\{x \in X: f(x)<r\}=G_{k+1}$ is a $G_{\delta}-$ set. Hence f is a cus $B-.5$ on X. By setting $g=0$, we have conclude, g is $c l s B-.5$ on X and in addition $g<f$. By hypothesis there exists a Baire- .5 function h on X suvh that, $g<h<f$.

Set $F_{n}=\left\{x \in X: h(x) \leq \frac{1}{n+1}\right\}$. This set is an $F_{\sigma}-$ set. But for every $x \in G_{n}$, we have $f(x) \leq \frac{1}{n+1}$ and since $g<h<f, h(x)<\frac{1}{n+1}$, which means that $x \in F_{n}$ and consequently $G_{n} \subseteq F_{n}$.

By definition of $F_{n},\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets and since $h>$ $0, \bigcap_{n=1}^{\infty} F_{n}=\emptyset$. Thus the conditions hold.

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

1. A. Al-Omari \& M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2009), no. 2, 213-230.
2. F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971), 10071010.
3. M. Caldas \& S. Jafari: Some properties of contra- β-continuous functions. Mem. Fac. Sci. Kochi. Univ. 22 (2001), 19-28.
4. J. Dontchev: The characterization of some peculiar topological space via α - and β-sets. Acta Math. Hungar. 69 (1995), no. 1-2, 67-71.
5. J. Dontchev: Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci. 19 (1996), no. 2, 303-310.
6. J. Dontchev \& H. Maki: On sg-closed sets and semi- λ-closed sets. Questions Answers Gen. Topology 15 (1997), no. 2, 259-266.
7. E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004), 127-137.
8. E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (2008), no. 1, 37-45.
9. A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (2010), no. 1-2, 55-64.
10. M. Ganster \& I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (1990), no. 3-4, 299-301.
11. S. Jafari \& T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001), 153-167.
12. S. Jafari \& T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002), 115-128.
13. M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
14. M. Katětov: Correction to 'On real-valued functions in topological spaces'. Fund. Math. 40 (1953), 203-205.
15. E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976), 181-190.
16. S.N. Maheshwari \& R. Prasad: On $R_{O s}$-spaces, Portugal. Math. 34 (1975), 213-217.
17. H. Maki: Generalized Λ-sets and the associated closue operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
18. M. Mirmiran: Insertion of a function belonging to a certain subclass of \mathbb{R}^{X}. Bull. Iran. Math. Soc. 28 (2002), no. 2, 19-27.
19. M. Mirmiran \& B. Naderi: Strong insertion of a contra-Baire-1 (Baire-.5) function between two comparable real-valued functions. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 26 (2019), no, 1, 1-12.
20. M. Mrsevic: On pairwise R and pairwise R_{1} bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (1986), 141-145.
21. A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005), 471-477.
22. M. Przemski: A decomposition of continuity and α-continuity. Acta Math. Hungar. 61 (1993), no. 1-2, 93-98.
23. H. Rosen: Darboux Baire-. 5 functions. Proc. Amer. Math. Soc. 110 (1990), no. 1, 285-286.
24. M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math. 1 (1949), 176-189.
${ }^{a}$ Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
Email address: mirmir@sci.ui.ac.ir
${ }^{\mathrm{b}}$ School of Managment and Medical Information, Medical University of Isfahan, Iran
Email address: naderi@mng.mui.ac.ir

[^0]: Received by the editors March 01, 2019. Accepted June 12, 2019.
 2010 Mathematics Subject Classification. 26A15, 54C30.
 Key words and phrases. insertion, strong binary relation, Baire-. 5 function, kernel of sets, lower cut set.
 This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).
 *Corresponding author.

