INSERTION OF A CONTRA-BAIRE-1 (BAIRE-.5) FUNCTION

Majid Mirmiran $^{\mathrm{a},*}$ and Binesh Naderi $^{\mathrm{b}}$

ABSTRACT. A necessary and sufficient condition in terms of lower cut sets is given for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that whose F_{σ} -kernel of sets are F_{σ} -sets.

1. Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V—sets. Complements of V—sets, i.e., sets that are intersection of open sets are called Λ —sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [22] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4, 10].

In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 7, 8, 9, 11, 12, 21].

Results of Katětov [13, 14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are

Received by the editors March 01, 2019. Accepted June 12, 2019.

²⁰¹⁰ Mathematics Subject Classification. 26A15, 54C30.

Key words and phrases. insertion, strong binary relation, Baire-.5 function, kernel of sets, lower cut set.

This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

^{*}Corresponding author.

used in order to give a necessary and sufficient condition for the insertion of a Baire.5 function between two comparable real-valued functions on the topological spaces that whose F_{σ} -kernel of sets are F_{σ} -sets.

A real-valued function f defined on a topological space X is called *contra-Baire-1* (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ} -set in X [23].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. g < f) in case $g(x) \leq f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [15].

A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-.5 function also has property P. If P_1 and P_2 are B-.5-properties, the following terminology is used: (i) A space X has the weak B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a Baire-.5 function f such that f and f has property f and f on f such that f and f has property f and f has f and f

In this paper, for a topological space that whose F_{σ} -kernel of sets are F_{σ} -sets, is given a sufficient condition for the weak B – .5-insertion property. Also for a space with the weak B – .5-insertion property, we give a necessary and sufficient condition for the space to have the B – .5-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result and Applications

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

$$A^{\Lambda} = \cap \{O : O \supseteq A, O \in (X, \tau)\}$$
 and $A^{V} = \cup \{F : F \subseteq A, F^{c} \in (X, \tau)\}.$
In [6, 16, 20], A^{Λ} is called the *kernel* of A .

We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$G_{\delta}(A) = \cup \{O : O \subseteq A, OisG_{\delta} - set\}$$
 and

$$F_{\sigma}(A) = \bigcap \{F : F \supseteq A, FisF_{\sigma} - set\}.$$

 $F_{\sigma}(A)$ is called the $F_{\sigma}-kernel$ of A.

The following first two definitions are modifications of conditions considered in [13, 14].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho \nu$ implies $x \rho \nu$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

- 1) If $A_i \rho B_j$ for any $i \in \{1, ..., m\}$ and for any $j \in \{1, ..., n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, ..., m\}$ and any $j \in \{1, ..., n\}$.
 - 2) If $A \subseteq B$, then $A \bar{\rho} B$.
 - 3) If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is a lower indefinite cut set in the domain of f at the level ℓ .

We now give the following main results:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, that F_{σ} -kernel sets in X are F_{σ} - sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1)$ ρ $A(g,t_2)$, then there exists a Baire-.5 function h defined on X such that $g \leq h \leq f$.

Proof. [19, Theorem 2.1].
$$\Box$$

Definition 2.5. A real-valued function f defined on a space X is called *contra-upper semi-Baire-.5* (resp. *contra-lower semi-Baire-.5*) if $f^{-1}(-\infty,t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ} -set for any real number t.

The abbreviations usc, lsc, cusB.5 and clsB.5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1 ([13, 14]). A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences, we suppose that X is a topological space that whose F_{σ} -kernel of sets are F_{σ} -sets.

Corollary 2.1. For each pair of disjoint F_{σ} -sets F_1, F_2 , there are two G_{δ} -sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak B-.5-insertion property for (cus B-.5, cls B-.5).

Proof. [19, Corollary 2.1]. \Box

Remark 2 ([24]). A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 2.2. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set if and only if X has the weak B-.5-insertion property for (cls B-.5, cus B-.5).

Proof. [19, Corollary 2.2]. \Box

Theorem 2.2. Let P_1 and P_2 be B-.5—property and X be a space that satisfies the weak B-.5—insertion property for (P_1,P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the B-.5—insertion property for (P_1,P_2) if and only if there exist lower cut sets $A(f-g,3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f-g,3^{-n+1})$ are completely separated by Baire-.5 functions.

Proof. [18, Theorem 2.1]. \Box

Before stating the consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 2.1. The following conditions on the space X are equivalent:

- (i) For every G of G_{δ} -set we have $F_{\sigma}(G)$ is a G_{δ} -set.
- (ii) For each pair of disjoint G_{δ} -sets as G_1 and G_2 we have $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$.

The proof of Lemma 2.1 is a direct consequence of the definition F_{σ} -kernel of sets.

Lemma 2.2. The following conditions on the space X are equivalent:

- (i) Every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets of X.
- (ii) If F is a F_{σ} -set of X which is contained in a G_{δ} -set G, then there exists a G_{δ} -set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Lemma 2.3. Suppose that X is a topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 be two disjoint F_{σ} -sets of X, then there exists a Baire-.5 function $h: X \to [0,1]$ such that $h(F_1) = \{0\}$ and $h(F_2) = \{1\}$.

Proof. [19, Lemma 2.3].
$$\Box$$

- **Lemma 2.4.** Suppose that X is the topological space such that every two disjoint F_{σ} -sets can be separated by G_{δ} -sets. The following conditions are equivalent:
- (i) Every countable convering of G_{δ} -sets of X has a refinement consisting of G_{δ} -sets such that, for every $x \in X$, there exists a G_{δ} -set containing x such that it intersects only finitely many members of the refinement.
- (ii) Corresponding to every decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection there exists a decreasing sequence $\{G_n\}$ of G_{δ} -sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$, $F_n \subseteq G_n$.
- Proof. (i) \Rightarrow (ii). suppose that $\{F_n\}$ is a decreasing sequence of F_{σ} -sets with empty intersection. Then $\{F_n^c : n \in \mathbb{N}\}$ is a countable covering of G_{δ} -sets. By hypothesis (i) and Lemma 2.2, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a G_{δ} -set and $F_{\sigma}(V_n) \subseteq F_n^c$. By setting $F_n = (F_{\sigma}(V_n))^c$, we obtain a decreasing sequence of G_{δ} -sets with the required properties.
- (ii) \Rightarrow (i). Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of G_{δ} —sets, we set for $n \in \mathbb{N}, F_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{F_n\}$ is a decreasing sequence of F_{σ} —sets with empty intersection. By (ii) there exists a decreasing sequence $\{G_n\}$ consisting of G_{δ} —sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}, F_n \subseteq G_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is a G_{δ} -set of X such that $G_1^c \subseteq W_1$ and $F_{\sigma}(W_1) \cap F_1 = \emptyset$.

 W_2 is a G_{δ} -set of X such that $F_{\sigma}(W_1) \cup G_2^c \subseteq W_2$ and $F_{\sigma}(W_2) \cap F_2 = \emptyset$, and so on. (By Lemma 2.2, W_n exists).

Then since $\{G_n^c : n \in \mathbb{N}\}$ is a covering for X, $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of G_{δ} —sets. Moreover, we have

- (i) $F_{\sigma}(W_n) \subseteq W_{n+1}$
- (ii) $G_n^c \subseteq W_n$
- (iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now suppose that $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus F_{\sigma}(W_{n-1})$.

Then since $F_{\sigma}(W_{n-1}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of G_{δ} —sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$S_1 \cap H_1, \quad S_1 \cap H_2$$

 $S_2 \cap H_1, \quad S_2 \cap H_2, \quad S_2 \cap H_3$

$$S_3 \cap H_1$$
, $S_3 \cap H_2$, $S_3 \cap H_3$, $S_3 \cap H_4$

and continue ad infinitum. These sets are G_{δ} —sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a G_{δ} -set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \ldots, i+1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are G_{δ} -sets, and for every point in X we can find a G_{δ} -set containing the point that intersects only finitely many elements of that refinement.

Remark 3 ([12, 13]). A space X has the c-insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 2.3. X has the B – .5-insertion property for (cus B – .5, cls B – .5) if and only if every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets, and in addition, every countable covering of G_{δ} -sets has a refinement that consists of G_{δ} -sets such that, for every point of X we can find a G_{δ} -set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_1 and F_2 are disjoint F_{σ} —sets . Since $F_1 \cap F_2 = \emptyset$, it follows that $F_2 \subseteq F_1^c$. We set f(x) = 2 for $x \in F_1^c$, $f(x) = \frac{1}{2}$ for $x \notin F_1^c$, and $g = \chi_{F_2}$.

Since F_2 is a F_{σ} -set, and F_1^c is a G_{δ} -set, g is cusB - .5, f is clsB - .5 and furthermore g < f. Hence by hypothesis there exists a Baire-.5 function h such that,

g < h < f. Now by setting $G_1 = \{x \in X : h(x) < 1\}$ and $G_2 = \{x \in X : h(x) > 1\}$. We can say that G_1 and G_2 are disjoint G_{δ} —sets that contain F_1 and F_2 , respectively. Now suppose that $\{F_n\}$ is a decreasing sequence of F_{σ} —sets with empty intersection. Set $F_0 = X$ and define for every $x \in F_n \setminus F_{n+1}$, $f(x) = \frac{1}{n+1}$. Since $\bigcap_{n=0}^{\infty} F_n = \emptyset$ and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_n \setminus F_{n+1}$, f is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then $\{x \in X : f(x) > r\} = X$ is a G_{δ} —set and if r > 0 then by Archimedean property of \mathbb{R} , we can find $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Now suppose that k is the least natural number such that $\frac{1}{k+1} \leq r$. Hence $\frac{1}{k} > r$ and consequently, $\{x \in X : f(x) > r\} = X \setminus F_k$ is a G_{δ} —set. Therefore, f is cls B - .5. By setting g = 0, we have g is cus B - .5 and g < f. Hence by hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

By setting $G_n = \{x \in X : h(x) < \frac{1}{n+1}\}$, we have G_n is a G_{δ} -set. But for every $x \in F_n$, we have $f(x) \leq \frac{1}{n+1}$ and since g < h < f, $0 < h(x) < \frac{1}{n+1}$, i.e., $x \in G_n$ therefore $F_n \subseteq G_n$ and since h > 0 it follows that $\bigcap_{n=1}^{\infty} G_n = \emptyset$. Hence by Lemma 2.4, the conditions hold.

On the other hand, since every two disjoint F_{σ} -sets can be separated by G_{δ} -sets, by Corollary 2.1, X has the weak B-.5-insertion property for (cus B-.5, cls B-.5). Now suppose that f and g are real-valued functions on X with g < f, such that, g is cus B-.5 and f is cls B-.5. For every $n \in \mathbb{N}$, set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}.$$

Since g is cus B-.5, and f is cls B-.5, f-g is cls B-.5. Hence $A(f-g,3^{-n+1})$ is a F_{σ} -set of X. Consequently, $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of F_{σ} -sets and furthermore since 0 < f-g, it follows that

$$\bigcap_{n=1}^{\infty} A(f-g, 3^{-n+1}) = \emptyset.$$

Now by Lemma 2.4, there exists a decreasing sequence $\{D_n\}$ of G_{δ} -sets such that $A(f-g,3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \emptyset$. But by Lemma 2.3, $A(f-g,3^{-n+1})$ and $X \setminus D_n$ of F_{σ} -sets can be completely separated by Baire-.5 functions. Hence by Theorem 2.2, there exists a Baire-.5 function h defined on X such that, g < h < f, i.e., X has the B-.5-insertion property for (cus B - .5, cls B - .5).

Remark 4 ([14]). A space X has the c-insertion property for (lsc, usc) iff X is extremally disconnected and if for any decreasing sequence $\{G_n\}$ of open subsets of

X with empty intersection there exists a decreasing sequence $\{F_n\}$ of closed subsets of X with empty intersection such that $G_n \subseteq F_n$ for each n.

Corollary 2.4. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set and in addition for every decreasing sequence $\{G_n\}$ of G_{δ} -sets with empty intersection, there exists a decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection such that for every $n \in \mathbb{N}, G_n \subseteq F_n$ if and only if X has the B-.5-insertion property for (clsB-.5, cusB-.5).

Proof. Since for every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set, by Corollary 2.2, X has the weak B-.5-insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with g < f, g is clsB-.5, and f is cusB-.5. Set $A(f-g,3^{-n+1})=\{x\in X:(f-g)(x)<3^{-n+1}\}$. Then since f-g is cusB-.5, $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of G_{δ} -sets with empty intersection. By hypothesis, there exists a decreasing sequence $\{D_n\}$ of F_{σ} -sets with empty intersection such that, for every $n\in \mathbb{N}, A(f-g,3^{-n+1})\subseteq D_n$. Hence $X\setminus D_n$ and $A(f-g,3^{-n+1})$ are two disjoint G_{δ} -sets and therefore by Lemma 2.1, we have

$$F_{\sigma}(A(f-g,3^{-n+1})) \cap F_{\sigma}((X \setminus D_n)) = \emptyset$$

and therefore by Lemma 2.3, $X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separable by Baire-.5 functions. Therefore by Theorem 2.2, there exists a Baire-.5 function h on X such that, g < h < f, i.e., X has the B – .5-insertion property for (cls B - .5, cus B - .5).

On the other hand, suppose that G_1 and G_2 are two disjoint G_{δ} -sets. Since $G_1 \cap G_2 = \emptyset$, we have $G_2 \subseteq G_1^c$. We set f(x) = 2 for $x \in G_1^c$, $f(x) = \frac{1}{2}$ for $x \notin G_1^c$ and $g = \chi_{G_2}$.

Then since G_2 is a G_{δ} -set and G_1^c is an F_{σ} -set, we conclude that g is cls B-.5 and f is cus B-.5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function h on X such that, g < h < f. Now we set $F_1 = \{x \in X : h(x) \leq \frac{3}{4}\}$ and $F_2 = \{x \in X : h(x) \geq 1\}$. Then F_1 and F_2 are two disjoint F_{σ} -sets containing G_1 and G_2 , respectively. Hence $F_{\sigma}(G_1) \subseteq F_1$ and $F_{\sigma}(G_2) \subseteq F_2$ and consequently $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$. By Lemma 2.1, for every G of G_{δ} -set, the set $F_{\sigma}(G)$ is a G_{δ} -set.

Now suppose that $\{G_n\}$ is a decreasing sequence of G_{δ} —sets with empty intersection.

We set $G_0 = X$ and $f(x) = \frac{1}{n+1}$ for $x \in G_n \setminus G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_n \setminus G_{n+1}$, f is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then $\{x \in X : f(x) < r\} = \emptyset$ is a G_{δ} -set and if r > 0 then by Archimedean property of \mathbb{R} , there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k} > r$. Now if $\frac{1}{k+1} < r$ then $\{x \in X : f(x) < r\} = G_k$ is a G_{δ} -set and if $\frac{1}{k+1} = r$ then $\{x \in X : f(x) < r\} = G_{k+1}$ is a G_{δ} -set. Hence f is a cus B - .5 on f. By setting f and f in addition f is a f in addition f in addition f in f is a f in f in

Set $F_n = \{x \in X : h(x) \leq \frac{1}{n+1}\}$. This set is an F_{σ} -set. But for every $x \in G_n$, we have $f(x) \leq \frac{1}{n+1}$ and since g < h < f, $h(x) < \frac{1}{n+1}$, which means that $x \in F_n$ and consequently $G_n \subseteq F_n$.

By definition of F_n , $\{F_n\}$ is a decreasing sequence of F_{σ} -sets and since h > 0, $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Thus the conditions hold.

Acknowledgement. This research was partially supported by Centre of Excellence for Mathematics(University of Isfahan).

References

- 1. A. Al-Omari & M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2009), no. 2, 213-230.
- 2. F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly **78** (1971), 1007-1010.
- 3. M. Caldas & S. Jafari: Some properties of contra- β -continuous functions. Mem. Fac. Sci. Kochi. Univ. **22** (2001), 19-28.
- 4. J. Dontchev: The characterization of some peculiar topological space via $\alpha-$ and $\beta-$ sets. Acta Math. Hungar. **69** (1995), no. 1-2, 67-71.
- 5. J. Dontchev: Contra-continuous functions and strongly S-closed space. Intrnat. J. Math. Math. Sci. 19 (1996), no. 2, 303-310.
- 6. J. Dontchev & H. Maki: On sg-closed sets and semi $-\lambda$ -closed sets. Questions Answers Gen. Topology **15** (1997), no. 2, 259-266.
- 7. E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004), 127-137.
- 8. E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (2008), no. 1, 37-45.
- 9. A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (2010), no. 1-2, 55-64.

- M. Ganster & I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (1990), no. 3-4, 299-301.
- S. Jafari & T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001), 153-167.
- 12. S. Jafari & T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002), 115-128.
- M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951), 85-91.
- 14. M. Katětov: Correction to 'On real-valued functions in topological spaces'. Fund. Math. **40** (1953), 203-205.
- 15. E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976), 181-190.
- 16. S.N. Maheshwari & R. Prasad: On R_{Os} -spaces, Portugal. Math. 34 (1975), 213-217.
- 17. H. Maki: Generalized Λ -sets and the associated closue operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986), 139-146.
- 18. M. Mirmiran: Insertion of a function belonging to a certain subclass of \mathbb{R}^X . Bull. Iran. Math. Soc. **28** (2002), no. 2, 19-27.
- 19. M. Mirmiran & B. Naderi: Strong insertion of a contra-Baire-1 (Baire-.5) function between two comparable real-valued functions. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. **26** (2019), no, 1, 1-12.
- 20. M. Mrsevic: On pairwise R and pairwise R_1 bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie **30** (1986), 141-145.
- A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005), 471-477.
- 22. M. Przemski: A decomposition of continuity and α -continuity. Acta Math. Hungar. **61** (1993), no. 1-2, 93-98.
- 23. H. Rosen: Darboux Baire-.5 functions. Proc. Amer. Math. Soc. **110** (1990), no. 1, 285-286.
- 24. M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math. 1 (1949), 176-189.

^aDEPARTMENT OF MATHEMATICS, UNIVERSITY OF ISFAHAN, ISFAHAN 81746-73441, IRAN *Email address*: mirmir@sci.ui.ac.ir

^bSchool of Managment and Medical Information, Medical University of Isfahan, Iran *Email address*: naderi@mng.mui.ac.ir