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THE ARTINIAN QUOTIENT OF CODIMENSION n+ 1

Yong-Su Shin

Abstract. We investigate all kinds of the Hilbert function of the Artinian quotient
of the coordinate ring of a linear star configuration in Pn of type (n+1) (or (n+1)-
general points in Pn), which generalizes the result [7, Theorem 3.1].

1. Introduction

Let R = k[x0, x1, . . . , xn] be an (n+ 1)-variable polynomial ring over a field k of

characteristic 0 and I be a homogeneous ideal of R. A standard graded k-algebra
A = R/I = ⊕i≥0Ai has the weak Lefschetz property (WLP) if there is a linear form

ℓ such that the multiplication by ×ℓ : Ai → Ai+1 has maximal rank for every i ≥ 0,

and A has the strong Lefschetz property (SLP) if ×ℓd : Ai → Ai+d has maximal rank

for every i ≥ 0 and d ≥ 1. The Hilbert function of A = R/I, HA : N → N, is defined
by HA(t) = dimkRt − dimk It. If I := IX is the ideal of a subscheme X in Pn, then

we denote the Hilbert function of X by HX(t) := H(R/IX, t).

In [1], the authors found the graded minimal free resolution of a star configuration

in Pn of codimention 2 before the general case (see Definition 2.1 in Section 2).

In 2014 [5], Park and Shin gave a general definition of a star configuration in Pn

of codimension r, and found the minimal graded free resolution of a general star

configuration in Pn.

In [7], the author found the Hilbert function of the Artinian quotient of 3-general

points in P2 (or a linear star configuration in P2 of type 3) and proved that the

Artinian quotient has the SLP. In this paper we focus on the following question.
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Question 1.1. Let X be a set of (n + 1)-general points in Pn (or a linear star

configuration in Pn) and Y be a star configuration in Pn of type t ≥ n+ 1.

(a) What is the Hilbert function of the Artinian quotient R/(IX + IY)?

(b) Does the Artinian quotient R/(IX + IY) have the SLP?

In this paper, we find a complete answer to Question 1.1. In other words, we

show that the Artinian quotient R/(IX + IY) has a specific type of Hilbert function

and the SLP (see Theorem 3.2), which generalizes the result [7, Theorem 3.1] (see

Corollary 3.3).

2. A Star Configuration in Pn

We first recall the definition of a star configuration in Pn in [5], and then introduce

some related results.

Definition 2.1. Let R = k[x0, x1, . . . , xn] be a polynomial ring over a field k. For

positive integers r and s with 1 ≤ r ≤ min{n, s}, suppose F1, . . . , Fs are general

forms in R of degrees d1, . . . , ds, respectively. We call the variety X defined by the

ideal ∩
1≤i1<···<ir≤s

(Fi1 , . . . , Fir)

a star-configuration in Pn of type (r, s). In particular, if F1, . . . , Fs are general linear

forms in R, then we call X a linear star-configuration in Pn of type (r, s).

If n = r, then we call X a star configuration in Pn of type s instead of type (n, s).

The following corollary is the results of Carlini, Guardo, and Van Tuyl [2, The-

orem 2.5], Geramita, Harbourne, and Migliore [3, Proposition 2.9], and Park and

Shin [5, Corollary 2.4].

Corollary 2.2. Let X be a linear star configuration in Pn of type s with s ≥ n ≥ 2.

Then X has generic Hilbert function i.e.,

HX(i) = min

{
deg(X),

(
i+ n

n

)}
for every i ≥ 0.

Proposition 2.3 ([6, Proposition 2.6]). Let X be a star configuration in Pn of type

s with s ≥ n ≥ 2. Then

σX =
[∑s

i=1 di
]
− (n− 1),
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where

σX = min{ i | HX(i− 1) = HX(i)}.

We recall the result in [4].

Proposition 2.4 ([4, Proposition 5.3]). Let X be a set of (n + 1)-general points

in Pn, and let A be the Artinian quotient of a coordinate ring of X having Hilbert

function of the form

HA : 1 n+ 1 · · · n+ 1 hs · · · ht,

where 2 ≤ s ≤ t. Then A has the SLP.

3. The Artinian Quotient of a Linear Star Configuration in Pn

of Type (n+ 1)

In this section, we find the Hilbert function of the Artinian quotient of coordinate

rings of a linear star configuration in Pn of type (n+1) and a general star configura-

tion in Pn of type t with t ≥ (n+1). We can prove the main theorem (Theorem 3.2)

using [5, Theorem 3.4], but we introduce an easier proof here without the theorem.

Lemma 3.1. Let X be a set of (n + 1)-general points in Pn (or a linear star con-

figuration in Pn of type (n + 1)) and Y be a star configuration in Pn of type t with

t ≥ n + 1 defined by forms of degree d1 ≥ d2 ≥ · · · ≥ dt. Define d =
∑t

i=n di and

A := R/(IX + IY). Then

HA(d+ 1) = 0.

Proof. Recall that IY has a minimal generator in degree d. Hence

HY(d) ≤
(
n+ d

d

)
− 1, and thus, HY(d+ 1) ≤

(
n+ d

d

)
− (n+ 1).

Since X is a set of (n+ 1)-general points in Pn, we get that

HX∪Y(d+ 1) = (n+ 1) +HY(d+ 1) = HX(d+ 1) +HY(d+ 1).

By equation (3.1), HA(d+ 1) = 0, as we wished. �

Theorem 3.2. Let X be a set of (n + 1)-general points in Pn (or a linear star

configuration in Pn of type (n + 1)) and Y be a star configuration in Pn of type t

with t ≥ n + 1 defined by forms of degree d1 ≥ d2 ≥ · · · ≥ dt with d1 > 1. Define
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d =
∑t

i=n di. Then the Artinian quotient A := R/(IX + IY) has the SLP having

Hilbert function

HA : 1 n+ 1 · · · n+ 1
d-th
hd 0,

where

(i) hd = 0 if either d1 = · · · = ds > ds+1 ≥ · · · ≥ dt with s ≥ n+ 1 or

d1 = · · · = du > du+1 = · · · = ds ≥ ds+1 ≥ · · · ≥ dt with 1 ≤ u ≤ (n− 1) <

s ≤ t and
(

s−u
(n−1)−u

)
≥ n+ 1,

(ii) hd = 1 if d1 = · · · = dn > dn+1 ≥ · · · ≥ dt, and

(iii) hd = 2n − s − 1 if d1 = · · · = du > du+1 = · · · = ds ≥ ds+1 ≥ · · · ≥ dt with

1 ≤ u ≤ (n− 1) < s ≤ t and
(

s−u
(n−1)−u

)
≤ n+ 1.

Proof. We first find the Hilbert function of A in degrees d− 1 and d. Note that by

[5, Theorem 3.4] IY has no minimal generators in degree d− 1, and thus, IX∪Y has

no minimal generators in degree d− 1, as well. Hence

HY(d− 1) = HX∪Y(d− 1) =

(
n+ (d− 1)

n

)
.

Using the exact sequence

(3.1) 0 → R/IX∪Y → R/IX ⊕R/IY → R/(IX + IY) → 0,

we have that HA(d− 1) = n+ 1. We now find HA(d).

(a) Let d1 = · · · = ds > ds+1 ≥ · · · ≥ dt with s ≥ n+ 1. First, since d1 ≥ · · · ≥
dt, we see that, by [5, Theorem 3.4], the initial degree of IY is d. Recall that

X is a set of (n+ 1)-general points in Pn and
(

s
n−1

)
≥ n+ 1. Hence

HY(d) =

(
n+ d

n

)
−
(

s

n− 1

)
, and so, HX∪Y(d) =

(
n+ d

n

)
−
(

s

n− 1

)
+(n+1).

By equation (3.1), HA(d) = 0.

(b) Let d1 = · · · = dn > dn+1 · · · ≥ dt. Recall that IY has
(

n
n−1

)
= n-minimal

generators in degree d. Since X is a set of (n+ 1)-general points in Pn,

HY(d) =

(
n+ d

n

)
− n, and thus, HX∪Y(d) =

(
n+ d

n

)
.

By equation (3.1), HA(d) = 1.

(c) Let d1 = · · · = du > du+1 = · · · = ds > ds+1 ≥ · · · ≥ dt with 1 ≤ u ≤
(n− 1) < s ≤ t. Then IY has

(
s−u

(n−1)−u

)
-minimal generators in degree d. So

HY(d) =

(
n+ d

n

)
−
(

s− u

(n− 1)− u

)
.
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HX∪Y(d) =


HY(d) + (n+ 1), if

(
s− u

(n− 1)− u

)
> n+ 1,(

n+ d

n

)
, if

(
s− u

(n− 1)− u

)
≤ n+ 1.

By equation (3.1),

HA(d) =


0, if

(
s− u

(n− 1)− u

)
> n+ 1,

2n− s− 1, if

(
s− u

(n− 1)− u

)
≤ n+ 1.

By Lemma 3.1, the Hilbert function of A is as follows.

(i) If d1 = · · · = ds > ds+1 ≥ · · · ≥ dt with s ≥ n + 1 or d1 = · · · = du >

du+1 = · · · = ds ≥ ds+1 ≥ · · · ≥ dt with 1 ≤ u ≤ (n − 1) < s ≤ t and(
s−u

(n−1)−u

)
> n+ 1, then

HA : 1 n+ 1 · · · n+ 1
d-th
0 .

(ii) If d1 = · · · = dn > dn+1 ≥ · · · ≥ dt, then

HA : 1 n+ 1 · · · n+ 1
d-th
1 0.

(iii) d1 = · · · = du > du+1 = · · · = ds ≥ ds+1 ≥ · · · ≥ dt with 1 ≤ u ≤ (n− 1) <

s ≤ t and
(

s−u
(n−1)−u

)
≤ n+ 1, then

HA : 1 n+ 1 · · · n+ 1
d-th

2n− s− 1 0.

Therefore, by Proposition 2.4, A has the SLP. This completes the proof. �

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3 ([7, Theorem 3.1]). Let X be a linear star configuration in P2 of

type 3 and Y be a star configuration in P2 of type t with t ≥ 3 defined by forms of

degree d1 ≥ d2 ≥ · · · ≥ dt with d1 > 1. Define d =
∑t

i=2 di. Then the Artinian star

configuration quotient A := R/(IX + IY) has the SLP with Hilbert function

HA : 1 3 · · · 3
d-th
hd 0,

where

hd =


0, for d1 = · · · = ds > ds+1 ≥ · · · ≥ dt with s ≥ 3,

1, for d1 = d2 > d3 ≥ · · · ≥ dt, and

2, for d1 > d2 ≥ · · · ≥ dt.
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