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UTILIZING ISOTONE MAPPINGS UNDER

MIZOGUCHI-TAKAHASHI CONTRACTION TO PROVE

MULTIDIMENSIONAL FIXED POINT THEOREMS WITH

APPLICATION

Amrish Handa

Abstract. We study the existence and uniqueness of fixed point for isotone map-
pings of any number of arguments under Mizoguchi-Takahashi contraction on a
complete metric space endowed with a partial order. As an application of our result
we study the existence and uniqueness of the solution to integral equation. The
results we obtain generalize, extend and unify several very recent related results in
the literature.

1. Introduction

The concept of multidimensional fixed/coincidence point was introduced by Roldan

et al. in [16], which is an extension of Berzig and Samet’s notion given in [2]. For

more details one can consult [1, 5− 10, 12, 14− 21].

Recently Ciric et al. [4] proved coupled fixed point theorems for mixed monotone

mappings satisfying a generalized Mizoguchi-Takahashi condition in the setting of

ordered metric spaces. Main results of Ciric et al. [4] extended and generalized the

results of Gnana-Bhaskar and Lakshmikantham [3], Du [11] and Harjani et al. [13].

In this paper, we study the existence and uniqueness of fixed point for isotone

mappings of any number of arguments under Mizoguchi-Takahashi contraction on a

complete metric space endowed with a partial order. As an application we study the

existence and uniqueness of the solution to integral equation. Our results improve,

generalize and sharpen the results of Ciric et al. [4], Du [11], Harjani et al. [13] and

several classical and very recent related results in the literature in metric spaces.
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2. Preliminaries

First of all, we recall the following notions. If X is a non-empty set, then we

denote X ×X × ... ×X (n times) by Xn, where n ∈ N with n ≥ 2. If elements x,

y of a partially ordered set (X, ≼) are comparable that is, x ≼ y or y ≼ x, then we

will write x ≍ y. Let {A, B} be a partition of the set Λn = {1, 2, ..., n}, that is, A
and B are non-empty subsets of Λn such that A ∪B = Λn and A ∩B = ∅. We will

denote

ΦA, B = {σ : Λn → Λn : σ(A) ⊆ A and σ(B) ⊆ B}

Φ
′
A, B = {σ : Λn → Λn : σ(A) ⊆ B and σ(B) ⊆ A}.

Henceforth, let σ1, σ2, ..., σn be n mappings from Λn into itself and let Υ be the

n−tuple (σ1, σ2, ..., σn). Let F : Xn → X and g : X → X be two mappings. For

brevity, g(x) will be denoted by gx.

A partial order ≼ on X can be extended to a partial order ⊑ on Xn in the

following way. If (X, ≼) be a partially ordered space, x, y ∈ X and i ∈ Λn, then

(2.1) x ≼i y ⇒
{
x ≼ y, if i ∈ A,
x ≽ y, if i ∈ B.

Consider the following partial order on the product space Xn,

(2.2) Y ⊑ V ⇔ yi ≼i vi,

for all Y = (y1, y2, ..., yi, ..., yn) and V = (v1, v2, ..., vi, ..., vn) ∈ Xn. Two points

Y and V are comparable, if Y ⊑ V or V ⊑ Y. Obviously, (Xn, ⊑) is a partially

ordered set.

Definition 2.1 ([15, 17, 18]). A point (x1, x2, ..., xn) ∈ Xn is called a Υ−fixed

point of the mapping F : Xn → X if

(2.3) F (xσi(1), xσi(2), ..., xσi(n)) = xi, for all i ∈ Λn.

If we represent a mapping σ : Λn → Λn throughout its ordered image, that is,

σ = (σ(1), σ (2), ..., σ (n)), then

(i) Gnana-Bhaskar and Lakshmikantham’s coupled fixed points occur when n =

2, σ1 = (1, 2) and σ2 = (2, 1),

(ii) Berinde and Borcut’s tripled fixed points are associated with n = 3, σ1 = (1,

2, 3), σ2 = (2, 1, 2) and σ3 = (3, 2, 1),
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(iii) Karapinar’s quadruple fixed points are considered when n = 4, σ1 = (1, 2,

3, 4), σ2 = (2, 3, 4, 1), σ3 = (3, 4, 1, 2) and σ4 = (4, 1, 2, 3).

These cases consider A as the odd numbers in {1, 2, ..., n} and B as its even

numbers. However, Berzig and Samet [2] use A = {1, 2, ..., m}, B = {m+ 1, ..., n}
and arbitrary mappings.

Definition 2.2 ([16]). Let (X, ≼) be a partially ordered space. We say that F has

the mixed monotone property if F is monotone non-decreasing in arguments of A

and monotone non-increasing in arguments of B, that is, for all x1, x2, ..., xn, y,

z ∈ X and all i

y ≼ z ⇒ F (x1, ..., xi−1, y, xi+1, ..., xn) ≼i F (x1, ..., xi−1, z, xi+1, ..., xn).

Definition 2.3 ([18, 21]). Let (X, d) be a metric space and define ∆n, ρn : Xn ×
Xn → [0, +∞), for Y = (y1, y2, ..., yn), V = (v1, v2, ..., vn) ∈ Xn, by

∆n(Y, V ) =
1

n

n∑
i=1

d(yi, vi) and ρn(Y, V ) = max
1≤i≤n

d(yi, vi).

Then ∆n and ρn are metric on Xn and (X, d) is complete if and only if (Xn, ∆n)

and (Xn, ρn) are complete. It is easy to see that

∆n(Y
k, Y ) → 0 ⇔ d(yki , yi) → 0 (as k → ∞)

and ρn(Y
k, Y ) → 0 ⇔ d(yki , yi) → 0 (as k → ∞), i ∈ Λn,

where Y k = (yk1 , y
k
2 , ..., y

k
n) and Y = (y1, y2, ..., yn) ∈ Xn.

Definition 2.4 ([21]). Let (X, ≼) be a partially ordered set and T be a self-mapping

on Xn. It is said that T has an isotone property if, for any Y1, Y2 ∈ Xn, we have

Y1 ≼ Y2 ⇒ T (Y1) ≼ T (Y2).

Lemma 2.1 ([18, 20, 21]). Let (X, d, ≼) be a partially ordered metric space and

let F : Xn → X and g : X → X be two mappings. Let Υ = (σ1, σ2, ..., σn) be an

n−tuple of mappings from Λn into itself verifying σi ∈ ΦA, B if i ∈ A and σi ∈ Φ
′
A, B

if i ∈ B. Define FΥ, G : Xn → Xn, for all y1, y2, ..., yn ∈ X, by

FΥ(y1, y2, ..., yn) =

 F (yσ1(1), yσ1(2), ..., yσ1(n)),
F (yσ2(1), yσ2(2), ..., yσ2(n)),

..., F (yσn(1), yσn(2), ..., yσn(n))

 ,

and G(y1, y2, ..., yn) = (gy1, gy2, ..., gyn).
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(1) If F has the mixed (g, ≼)−monotone property, then FΥ is monotone (G,

⊑)−non-decreasing.

(2) If F is d−continuous, then FΥ is also ∆n−continuous and ρn−continuous.

(3) If g is d−continuous, then G is ∆n−continuous and ρn−continuous.

(4) A point (y1, y2, ..., yn) ∈ Xn is a Υ−fixed point of F if and only if (y1, y2,

..., yn) is a fixed point of FΥ.

(5) A point (y1, y2, ..., yn) ∈ Xn is a Υ−coincidence point of F and g if and only

if (y1, y2, ..., yn) is a coincidence point of FΥ and G.

(6) If (X, d, ≼) is regular, then (Xn, ∆n, ⊑) and (Xn, ρn, ⊑) are also regular.

(7) If there exists y10, y
2
0, ..., y

n
0 ∈ X verifying yi0 ≼i F (y

σi(1)
0 , y

σi(2)
0 , ..., y

σi(n)
0 ),

for i ∈ Λn, then there exists Y0 ∈ Xn such that Y0 ⊑ FΥ(Y0).

(8) If F is a mixed monotone mapping, then FΥ is an isotone mapping.

(9) If for each i ∈ Λn and yi, vi ∈ X there exists zi ∈ X which is ≼i −comparable

to yi and vi, then there exists Z ∈ Xn which is ⊑ −comparable to Y and V.

3. Main Results

Ciric et al. [4] introduced the family Ψ of all functions ψ : [0, +∞) → [0, +∞)

satisfying
(iψ) ψ is non-decreasing,
(iiψ) ψ(t) = 0 ⇔ t = 0,
(iiiψ) lim supt→0+

t
ψ(t) <∞.

Also Φ denote the family of all functions φ : [0, +∞) → [0, 1) which satisfies

limr→t+ φ(r) < 1 for all t ≥ 0.

Theorem 3.1. Let (X, d, ≼) be a partially ordered complete metric space and

T : X → X be a non-decreasing mapping for which there exist ψ ∈ Ψ and φ ∈ Φ

such that

(3.1) ψ(d(Tx, Ty)) ≤ φ(ψ(d(x, y)))ψ(d(x, y)),

for all x, y ∈ X with x ≼ y. Suppose either

(a) T is continuous or

(b) (X, d, ≼) is regular.

If there exists x0 ∈ X such that x0 ≍ Tx0, then T has a fixed point. Moreover,

if for each x, y ∈ X there exists z ∈ X which is ≼ −comparable to x and y then the

fixed point is unique.



UTILIZING ISOTONE MAPPINGS UNDER MIZOGUCHI-TAKAHASHI CONTRACTION 293

Proof. Let x0 ∈ X be such that x0 ≍ Tx0. Take x1 ∈ X be such that x1 = Tx0,

that is, x0 ≍ x1. Take x2 = Tx1, we have Tx0 ≍ Tx1, that is, x1 ≍ x2. Again, we

have Tx1 ≍ Tx2. Proceeding by induction, we obtain a sequence {xn}n≥0 such that

xn+1 = Txn and xn ≍ xn+1 for each n ≥ 0, that is,

(3.2) x0 ≍ x1 ≍ x2... ≍ xn ≍ ...,

that is,

(3.3) x0 ≼ x1 ≼ x2 ≼ ... ≼ xn ≼ ... or x0 ≽ x1 ≽ x2 ≽ ... ≽ xn ≽ ...

If xn = xn+1 for some n ≥ 0, then T has a fixed point and the proof is complete.

Assume that xn ̸= xn+1 for all n ≥ 0. Then, by using (3.1) and by the monotonicity

of ψ, we have

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn))

≤ φ(ψ(d(xn−1, xn)))ψ(d(xn−1, xn)),

which, by the fact that φ < 1, implies

(3.4) ψ((d(xn, xn+1))) ≤ ψ(d(xn−1, xn)).

Thus (3.4) exhibit that the sequence {ψ(d(xn, xn+1))} is non-increasing. Therefore,

there exists some δ ≥ 0 such that

(3.5) lim
n→∞

ψ(d(xn, xn+1)) = δ.

Since φ ∈ Φ, we have limr→δ+ φ(r) < 1 and φ(δ) < 1. Then there exist α ∈ [0, 1)

and ε > 0 such that φ(r) ≤ α for all r ∈ [δ, δ + ε). From (3.5), we can take n0 ≥ 0

such that δ ≤ ψ(d(xn, xn+1)) ≤ δ+ε for all n ≥ n0. Then from contractive condition

(3.1) and by the monotonicity of ψ, for all n ≥ n0, we have

ψ(d(xn, xn+1)) = ψ(d(Txn−1, Txn))

≤ φ(ψ(d(xn−1, xn)))ψ(d(xn−1, xn))

≤ αψ(d(xn−1, xn)).

Thus, we have

(3.6) ψ(d(xn, xn+1)) ≤ αψ(d(xn−1, xn)), for all n ≥ n0.

Letting n→ ∞ in the above inequality and using (3.5), we obtain that δ ≤ αδ. Since

α ∈ [0, 1), δ = 0. Thus

(3.7) lim
n→∞

ψ(d(xn, xn+1)) = 0.



294 Amrish Handa

Since {ψ(d(xn, xn+1))} is a non-increasing sequence and ψ is non-decreasing, {d(xn,
xn+1)} is also a non-increasing sequence of positive numbers. This implies that there

exists θ ≥ 0 such that

(3.8) lim
n→∞

d(xn, xn+1) = θ.

Since ψ is non-decreasing, we have

ψ(d(xn, xn+1)) ≥ ψ(θ).

Letting n → ∞ in this inequality and by using (3.7), we get 0 ≥ ψ(θ). It follows,

by (iiψ), that θ = 0. Thus, by (3.8), we obtain

(3.9) lim
n→∞

d(xn, xn+1) = 0.

Suppose that d(xn, xn+1) = 0, for some n ≥ 0. Then, we have xn = xn+1 = Txn,

that is, xn is a fixed point of T. Now, suppose that d(xn, xn+1) ̸= 0, for all n ≥ 0.

Let

an = ψ(d(xn, xn+1)), for all n ≥ 0.

From (3.6), we have

an ≤ αan−1, for all n ≥ n0.

Then, we have

(3.10)
∞∑
n=0

an ≤
n0∑
n=0

an +
∞∑

n=n0+1

αn−n0an0 <∞.

On the other hand, by (iiiψ), we have

(3.11) lim sup
n→∞

d(xn, xn+1)

ψ (d(xn, xn+1))
<∞.

Thus, by (3.10) and (3.11), we have
∑
d(xn, xn+1) < ∞. It follows that {xn} is a

Cauchy sequence in X. As X is complete and so there exists x ∈ X such that

(3.12) lim
n→∞

xn = x.

Suppose that (a) holds, that is, T is continuous. Then x = limn→∞ xn+1 =

limn→∞ Txn = Tx, that is, x is a fixed point of T.

Suppose now that (b) holds. Since xn → x, xn ≍ x, therefore by (3.1) and by the

monotonicity of ψ, we obtain

ψ(d(xn+1, Tx)) = ψ(d(Txn, Tx)) ≤ φ(ψ(d(xn, x)))ψ(d(xn, x)),

which, by the fact that φ < 1, implies

ψ(d(xn+1, Tx)) ≤ ψ(d(xn, x)).
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Since ψ is non-decreasing, we have

d(xn+1, Tx) ≤ d(xn, x).

Taking n → ∞ in the above inequality and by using (3.12), we get d(x, Tx) = 0,

that is, x is a fixed point of T.

Finally, we will prove the uniqueness of the fixed point. Suppose T has another

fixed point y. From the assumption, there exists z ∈ X such that x ≍ z and y ≍ z.

If z = x or z = y, it is trivial. So let us now suppose that z ̸= x and z ̸= y. Take

z0 = z and z1 ∈ X such that z1 = Tz0. Then we have z0 ≍ x, which implies that

Tz0 ≍ Tx, that is, z1 ≍ x. Again, we have Tz1 ≍ Tx, that is, z2 ≍ x. Inductively,

we can obtain zn+1 = Tzn and zn ≍ x. Assume x ̸= zn for all n ≥ 0. Similarly, we

have zn ≍ y and zn ̸= y for all n ≥ 0. By (3.1) and by the monotonicity of ψ, we

obtain

ψ(d(zn+1, x)) = ψ(d(Tzn, Tx))

≤ φ(ψ(d(zn, x)))ψ(d(zn, x)),

which, by the fact that φ < 1, implies

(3.13) ψ(d(zn+1, x)) ≤ ψ(d(zn, x)).

Thus (3.13) display that {ψ(d(zn, x))} is a non-increasing sequence. Hence there

exists some ∆ ≥ 0 such that

(3.14) lim
n→∞

ψ(d(zn+1, Tx)) = ∆.

Since φ ∈ Φ, we have limr→∆+ φ(r) < 1 and φ(∆) < 1. Then there exist β ∈ [0, 1)

and ε > 0 such that φ(r) ≤ β for all r ∈ [∆, ∆+ε). From (3.14), we can take n0 ≥ 0

such that ∆ ≤ ψ(d(zn+1, Tx)) ≤ ∆+ ε for all n ≥ n0. Then from (3.1) and by the

monotonicity of ψ, for all n ≥ n0, we have

ψ(d(zn+1, x)) = ψ(d(Tzn, Tx))

≤ φ(ψ(d(zn, x)))ψ(d(zn, x))

≤ βψ(d(zn, x)).

Thus

ψ(d(zn+1, x)) ≤ βψ(d(zn, x)), for all n ≥ n0.



296 Amrish Handa

Letting n→ ∞ in the above inequality and by using (3.14), we obtain ∆ ≤ β∆. As

β ∈ [0, 1) and so ∆ = 0. Thus by (3.14), we get

(3.15) lim
n→∞

ψ(d(zn+1, x)) = 0.

Since {ψ(d(zn+1, x))} is a non-increasing sequence and ψ is non-decreasing, {d(zn+1,

x)} is also a non-increasing sequence of positive numbers. This implies that there

exists ξ ≥ 0 such that

(3.16) lim
n→∞

d(zn+1, x) = ξ.

Since ψ is non-decreasing, we have

ψ(d(zn+1, x)) ≥ ψ (ξ) .

Letting n → ∞ in this inequality and by using (3.15), we get 0 ≥ ψ(ξ). It follows,

by (iiψ), that ξ = 0. Thus, by (3.16), we get

lim
n→∞

d(zn+1, x) = 0,

which implies that, we get x = limn→∞ zn+1. Similarly, we can show that y =

limn→∞ zn+1. Thus x = y, that is, the fixed point of T is unique. �

Example 3.1. Suppose thatX = R, furnished with the usual metric d : X×X → [0,

+∞) with the natural ordering of real numbers ≤ . Let T : X → X be defined as

Tx = ln (1 + x) , for all x ∈ X.

Define ψ : [0, +∞) → [0, +∞) by

ψ(t) =

{
ln(1 + t), for t ̸= 1,

3
4 , for t = 1,

and φ : [0, +∞) → [0, 1) defined by

φ(t) =
ψ(t)

t
, for all t ≥ 0.

First, we shall show that the contractive condition (3.1) holds for the mapping T.

Let x, y ∈ X such that x ≼ y, we have
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d(Tx, Ty) = |Tx− Ty|

= |ln (1 + x)− ln (1 + y)|

=

∣∣∣∣ln 1 + x

1 + y

∣∣∣∣
=

∣∣∣∣ln(1 + x− y

1 + y

)∣∣∣∣
≤ ln (1 + |x− y|)

≤ ln(1 + d(x, y)),

which implies that

ψ(d(Tx, Ty)) = ln(d(Tx, Ty) + 1)

≤ ln(1 + ln(1 + d(x, y)))

≤ ln(1 + ln(1 + d(x, y)))

ln(1 + d(x, y))
ln(1 + d(x, y))

≤ φ(ψ(d(x, y)))ψ(d(x, y)).

This exhibit that the contractive condition (3.1) holds. In addition, all the other

conditions of Theorem 3.1 are satisfied and z = 0 is a unique fixed point of T.

If we put φ(t) = 1− φ̃(t)
t for all t ≥ 0 in Theorem 3.1, then we get the following

result:

Corollary 3.2. Let (X, d, ≼) be a partially ordered complete metric space and

T : X → X be a non-decreasing mapping for which there exist ψ ∈ Ψ and φ̃ ∈ Φ

such that

ψ(d(Tx, Ty)) ≤ ψ(d(x, y))− φ̃(ψ(d(x, y))),

for all x, y ∈ X with x ≼ y. Suppose either

(a) T is continuous or

(b) (X, d, ≼) is regular.

If there exists x0 ∈ X such that x0 ≍ Tx0, then T has a fixed point. Moreover,

if for each x, y ∈ X there exists z ∈ X which is ≼ −comparable to x and y then the

fixed point is unique.

If we put ψ(t) = 2t for all t ≥ 0 in Theorem 3.1, then we get the following result:

Corollary 3.3. Let (X, d, ≼) be a partially ordered complete metric space and

T : X → X be a non-decreasing mapping for which there exists φ ∈ Φ such that

d(Tx, Ty) ≤ φ(2d(x, y))d(x, y),
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for all x, y ∈ X with x ≼ y. Suppose either

(a) T is continuous or

(b) (X, d, ≼) is regular.

If there exists x0 ∈ X such that x0 ≍ Tx0, then T has a fixed point. Moreover,

if for each x, y ∈ X there exists z ∈ X which is ≼ −comparable to x and y then the

fixed point is unique.

If we put φ(t) = k where 0 < k < 1, for all t ≥ 0 in Corollary 3.3, then we get

the following result:

Corollary 3.4. Let (X, d, ≼) be a partially ordered complete metric space and

T : X → X be a non-decreasing mapping such that

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X with x ≼ y, where 0 < k < 1. Suppose either

(a) T is continuous or

(b) (X, d, ≼) is regular.

If there exists x0 ∈ X such that x0 ≍ Tx0, then T has a fixed point. Moreover,

if for each x, y ∈ X there exists z ∈ X which is ≼ −comparable to x and y then the

fixed point is unique.

4. Multidimensional Fixed Point Results

Next we give an n−dimensional fixed point theorem for mixed monotone map-

pings. For brevity, (y1, y2, ..., yn), (v1, v2, ..., vn) and (y10, y
2
0, ..., y

n
0 ) will be denoted

by Y, V and Y0 respectively.

Theorem 4.1. Let (X, d, ≼) be a complete partially ordered metric space. Let Υ =

(σ1, σ2, ..., σn) be an n−tuple of mappings from Λn into itself verifying σi ∈ ΨA,B

if i ∈ A and σi ∈ Ψ
′
A,B if i ∈ B. Let F : Xn → X be a mixed monotone mapping for

which there exist ψ ∈ Ψ and φ ∈ Φ such that

ψ(d(F (y1, y2, ..., yn), F (v1, v2, ..., vn)))(4.1)

≤ φ

(
ψ

(
max
1≤i≤n

d(yi, vi)

))
ψ

(
max
1≤i≤n

d(yi, vi)

)
,

for all y1, y2, ..., yn, v1, v2, ..., vn ∈ X with yi ≼i vi, for i ∈ Λn. Also, suppose

that either F is continuous or (X, d, ≼) is regular. If there exists y10, y
2
0, ..., y

n
0 ∈

X verifying yi0 ≼i F (y
σi(1)
0 , y

σi(2)
0 , ..., y

σi(n)
0 ), for i ∈ Λn, then F has a Υ−fixed
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point. Moreover, if for each i ∈ Λn and yi, vi ∈ X there exists zi ∈ X which is

≼i −comparable to yi and vi. Then F has a unique Υ−fixed point.

Proof. For fixed i ∈ A, we have yσi(t) ≼t vσi(t) for t ∈ Λn. Thus by using (4.1), we

have

ψ(d(F (yσi(1), yσi(2), ..., yσi(n)), F (vσi(1), vσi(2), ..., vσi(n))))

≤ φ(ψ( max
1≤i≤n

d(yi, vi)))ψ( max
1≤i≤n

d(yi, vi)),(4.2)

for all i ∈ A. Similarly, for fixed i ∈ B, we have yσi(t) ≽t vσi(t) for t ∈ Λn. It follows

from (4.1) that

ψ(d(F (yσi(1), yσi(2), ..., yσi(n)), F (vσi(1), vσi(2), ..., vσi(n))))

≤ ψ(d(F (vσi(1), vσi(2), ..., vσi(n)), F (yσi(1), yσi(2), ..., yσi(n))))

≤ φ(ψ( max
1≤i≤n

d(yi, vi)))ψ( max
1≤i≤n

d(yi, vi)),(4.3)

for all i ∈ B. By (2.1), (2.2), (4.2), (4.3) and by the monotonicity of ψ, we have

ψ(ρn(FΥ(Y ), FΥ(V ))) ≤ φ(ψ(ρn(Y, V )))ψ(ρn(Y, V )),

for all Y, V ∈ Xn with Y ⊑ V. Thus it is only required to apply Theorem 3.1 to the

mappings T = FΥ in the ordered metric space (Xn, ρn, ⊑) and taking all items of

Lemma 2.1. �

In a similar way, one can state the results identical to Corollary 3.2, Corollary

3.3 and Corollary 3.4.

5. Applications

In this section, we present an application to our results. Consider the integral

equation

(5.1) u(t) =

∫ T

0
K(t, s, u(s))ds+ g(t), t ∈ [0, T ],

where T > 0. We introduce the following space:

C[0, T ] = {u : [0, T ] → R : u is continuous on [0, T ]},

endowed with the metric

d(x, y) = sup
t∈[0, T ]

|x(t)− y(t)| , for each x, y ∈ C[0, T ].
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It is noticeable that (C[0, T ], d, ≼) is a regular complete metric space. Furthermore,

C[0, T ] can be furnished with the partial order ≼ as follows:

x ≼ y ⇐⇒ x(t) ≤ y(t), for each x, y ∈ C[0, T ] and t ∈ [0, T ].

Theorem 5.1. We assume that the following hypotheses hold:

(i) K : [0, T ]× [0, T ]× R → R and g : R → R are continuous,

(ii) for all s, t, u, v ∈ C[0, T ] with v ≼ u, we have

K(t, s, v(s)) ≤ K(t, s, u(s)),

(iii) there exists a continuous function G : [0, T ]× [0, T ] → [0, +∞) such that

|K(t, s, x)−K(t, s, y)| ≤ G(t, s) ln (1 + |x− y|) ,

for all s, t ∈ C[0, T ] and x, y ∈ R with x ≽ y,

(iv) supt∈[0, T ]
∫ T
0 G(t, s)2ds ≤ 1

T .

Then the integral equation (5.1) has a solution u∗ ∈ C[0, T ].

Proof. Define ψ : [0, +∞) → [0, +∞) by

ψ(t) =

{
ln(t+ 1), for t ̸= 1,

3
4 , for t = 1,

and φ : [0, +∞) → [0, 1) as follows

φ(t) =
ψ(t)

t
, for all t ≥ 0.

and also define F : C[0, T ] → C[0, T ] by

Fu(t) =

∫ T

0
K(t, s, u(s))ds+ g(t), for t ∈ [0, T ] and u ∈ C[0, T ].

We first prove that F is non-decreasing. Assume that v ≼ u. From (ii), for all s,

t ∈ [0, T ], we have K(t, s, u(s)) ≤ K(t, s, v(s)). Thus, we get

Fv(t) =

∫ T

0
K(t, s, v(s))ds+ g(t) ≤

∫ T

0
K(t, s, u(s))ds+ g(t) = Fu(t).
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Now, for all u, v ∈ C[0, T ] with v ≼ u, due to (iii) and by using Cauchy-Schwarz

inequality, we formulate that

|Fu(t)− Fv(t)|

≤
∫ T

0
|K(t, s, u(s))−K(t, s, v(s))| ds

≤
∫ T

0
G(t, s) ln (1 + |u(s)− v(s)|) ds

≤
(∫ T

0
G(t, s)2ds

) 1
2
(∫ T

0
(ln (1 + |u(s)− v(s)|))2 ds

) 1
2

.

Thus

(5.2) |Fu(t)− Fv(t)| ≤
(∫ T

0
G(t, s)2ds

) 1
2
(∫ T

0
(ln (1 + |u(s)− v(s)|))2 ds

) 1
2

.

Taking (iv) into account, we estimate the first integral in (5.2) as follows:

(5.3)

(∫ T

0
G(t, s)2ds

) 1
2

≤ 1√
T
.

For the second integral in (5.2) we proceed in the following way:

(5.4)

(∫ T

0
(ln (1 + |u(s)− v(s)|))2 ds

) 1
2

≤
√
T ln(1 + d(u, v)).

Combining (5.2), (5.3) and (5.4), we conclude that

|Fu(t)− Fv(t)| ≤ ln(1 + d(u, v)).

It yields

d(Fu, Fv) ≤ ln(1 + d(u, v)),

which implies that

ψ(d(Fu, Fv)) = ln(d(Fu, Fv) + 1)

≤ ln(1 + ln(1 + d(u, v)))

≤ ln(1 + ln(1 + d(u, v)))

ln(1 + d(u, v))
ln(1 + d(u, v))

≤ φ(ψ(d(u, v)))ψ(d(u, v)).

for all u, v ∈ C[0, T ] with v ≼ u. Hence, all the hypotheses of Theorem 3.1 are

satisfied. Thus, F has a fixed point u∗ ∈ C[0, T ] which is a solution of (5.1).
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