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FEW RESULTS IN CONNECTION WITH SUM AND PRODUCT
THEOREMS OF RELATIVE (p,q)-¢ ORDER, RELATIVE (p,q)-¢
TYPE AND RELATIVE (p,q)-¢ WEAK TYPE OF MEROMORPHIC
FUNCTIONS WITH RESPECT TO ENTIRE FUNCTIONS

TANMAY BISWAS

ABSTRACT. Orders and types of entire and meromorphic functions have been ac-
tively investigated by many authors. In the present paper, we aim at investigating
some basic properties in connection with sum and product of relative (p, q)-¢ or-
der, relative (p, q)-¢ type, and relative (p, ¢)-¢ weak type of meromorphic functions
with respect to entire functions where p,q are any two positive integers and ¢ :
[0, +00) — (0,+00) is a non-decreasing unbounded function.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

Let f be an entire function defined in the complex plane C. The maximum
modulus function My (r) corresponding to f (see [12]) is defined on |z| = r as
My (r) = max|z| = r|f (z)|. A non-constant entire function f is said have the Prop-
erty (A) if for any o > 1 and for all sufficiently large r, [M; (r)? < My () holds
(see [1]). When f is meromorphic, one may introduce another function 7' (r) known
as Nevanlinna’s characteristic function of f (see [5, p.4]), playing the same role as
My (r). If f is non-constant entire function, then its Nevanlinna’s characteristic
function is strictly increasing and continuous and therefore there exists its inverse
functions Tf_l(r) : (1 (0)],00) = (0,00) with s&%on_l (s) = o0.

However, throughout this paper, we assume that the reader is familiar with
the fundamental results and the standard notations of the Nevanlinna theory of
meromorphic functions which are available in [5, 9, 10, 11] and therefore we do not

explain those in details. Now we define exp® z = exp (exp[k*” :U) and log[k] x =
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log (log[k*” x) for x € [0,00) and k € N where N be the set of all positive integers.

0 = x, log[*” z = expux, expldz = 2 and expl™z = log x.

We also denote log
Further we assume that throughout the present paper p and ¢ always denote positive
integers.

Mainly the growth investigation of meromorphic functions has usually been done
through its Nevanlinna’s characteristic function in comparison with those of expo-
nential function. But if one is paying attention to evaluate the growth rates of any
meromorphic function with respect to an entire function, the notions of relative
growth indicators [8] will come. Extending this notion, Debnath et. al. [4] intro-
duce the definition of relative (p, q)-th order and relative (p, q)-th lower order of a
meromorphic function f with respect to another entire function g respectively in
the light of index-pair ( detail about index-pair one may see [4, 6, 7] ). For details
about it, one may see [4]. Extending this notion, recently Biswas [2] introduced
the definitions of relative (p,q)-¢ order and the relative (p,q)-¢ lower order of a

meromorphic function f with respect to another entire function g as follows:

Definition 1 ([2]). Let ¢ : [0,+00) — (0,4+00) be a non-decreasing unbounded
function. The relative (p, ¢)-¢ order and the relative (p, q)-¢ lower order of a mero-
morphic function f with respect to an entire function g are defined as

log” T, (T (r))
(pa) ,) = limsu J
Py (f.0) i log® ¢ (1)

and

-1
AP (f, ) = h’p_l"i’glflog[jlggq] 90(2)(7"»

If we consider p(r) = r, then the above definition reduce to the definitions of
relative (p,q)-th order and relative (p,q)-th lower order of a meromorphic f with
respect to an entire g, introduced by Debnath et. al. [4].

If the relative (p, q)- order and the relative (p, ¢)-¢ lower order of f with respect
to g are the same, then f is called a function of regular relative (p,q)-¢ growth
with respect to g. Otherwise, f is said to be irregular relative (p, ¢)-¢ growth with
respect to g.

Now in order to refine the above growth scale, one may introduce the definitions
of other growth indicators, such as relative (p, q)-¢ type and relative (p, q)-¢ lower
type of entire or meromorphic functions with respect to another entire function

which are as follows:
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Definition 2 ([2]). Let ¢ : [0,+00) — (0,4+00) be a non-decreasing unbounded
function. The relative (p, q)-¢ type and the relative (p, q)-¢ lower type of a mero-
morphic function f with respect to another entire function g having non-zero finite

relative (p, q)-¢ order p(p ) (f,¢) are defined as:
log” N 7,7t (T (1))

[]Og[Q—l] o (T)} " (10)

P:a) (f o) = limsup

r—00

and
log? = T:71 (T (r))

[10g[q—1] o (7-)} o)

(p 9 (f,¢) = liminf

r—00

Analogously, to determine the relative growth of f having same non zero finite
relative (p, q)-¢ lower order with respect to g, one can introduce the definition of
relative (p,q)-¢ weak type Tép & (f) and the growth indicator T(p 2 (f) of f with
respect to g of finite positive relative (p, q)-¢ lower order )\g 9 (f) in the following

way:

Definition 3 ([2]). Let ¢ : [0,400) — (0,400) be a non-decreasing unbounded
function. The relative (p,q)-¢ weak type T, (p 2 (f,¢) and the growth indicator
9 (f,) of a meromorphic function f Wlth respect to another entire function

¢ having non-zero finite relative (p, q)-¢ lower order )\ ( f, ) are defined as:

log? M T (T (7))

AP (f0)
[log[q‘” v (?“)} ’

9 (f, ) = liminf

T—00

and

log"~ 1 T, (T (r))

75]177‘1) (f7 gp) = lim sup A ¢I>(f ©) ’
— g 7
[log[q U 90(7“)}

7—00

If we consider ¢(r) = r, then aép & (f,r) and Tép & (f,r) are respectively known
as relative (p, ¢)-th type and relative (p, ¢)-th weak type of f with respect to g. For
details about relative (p, q)-th type, relative (p,q)-th weak type etc., one may see
[3].

Here, in this paper, we aim at investigating some basic properties of relative (p, q)-
¢ order, relative (p,q)-¢ type and relative (p,q)-¢ weak type of a meromorphic

function with respect to an entire function under somewhat different conditions.
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Throughout this paper, we assume that all the growth indicators are all nonzero
finite.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([1]). Let f be an entire function which satisfies the Property (A) then

for any positive integer n and for all sufficiently large r,

(M ()" < My (+)
holds where § > 1.

Lemma 2 ([5, p.18]). Let f be an entire function. Then for all sufficiently large
values of r,
Ty (r) <log My (r) < 3T (2r) .

3. MAIN RESULTS

In this section we present some results which will be needed in the sequel.

Theorem 4. Let fi, fo be meromorphic functions and g1 be any entire function
such that at least f1 or fo is of reqular relative (p,q)-p growth with respect to gi.
Also let g1 have the Property (A). Then we have

P‘I)(flifg, )<max{ M)(fhsD) ) (fo, )}

The equality holds when any one of )\é};’q (fi,p) > )\ng’q (fj, ) hold and at least any
one of f; is of regular relative (p, q)-¢ growth with respect to g1 where i,j =1,2 and
i
Proof. The result is obvious when /\(p & (f1 £ fo, ) = 0. So we suppose that
)\gll)’q) (f1 £ f2,¢) > 0. We can clearly assume that >\ (fk ) is finite for k =1, 2.
Now let us consider that max {)\g‘? @) (f1,0), A ( fg, )} = A and f5 be of regular
relative (p, q)-¢ growth with respect to g;.

Now for any arbitrary € > 0 from the definition of )\gf’q) (f1,¢), we have for a

sequence values of r tending to infinity that

Ty, (r) < Ty, [exp[p] [(x\gf’q) (fi,0)+ 5) log[‘ﬂ © (7’)”
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(1) ie., Ty, (1) < Ty, [exp[p] [(A +¢)logld ¢ (r)” .

Also for any arbitrary € > 0 from the definition of p(p ) (f2, ) ( p (P.9) (f2, )),

we obtain for all sufficiently large values of r that

(2) Ty, (1) < Ty, [expl | (A (f2,0) + ) log o (1)
(3) ie., T, (r) < Ty, [exp[p] [(A + &) logld (7“)“ .

Since Tty 4, (r) < Ty, (1) 4+ Ty, (r) + O(1) for all large r, in view of (1) , (3) and

Lemma 2, we obtain for a sequence values of r tending to infinity that

Tp+4, (r) < 2log My, [exp[p] [(A +e) logl o (r)” +0(1)

(4) i.e., Tpap, (1) < 3log My, {exp[p] [(A +¢)logld (r)” )
Therefore in view of Lemma 1 and Lemma 2, we obtain from (4) for a sequence

values of r tending to infinity and ¢ > 1 that

Tpap (1) < %IOg [Mgl [eXpm [<A +¢)log" SD(T)H 9

)
ie., Tpap, (1) < élog Mg, HeXp[p] [(A + ) log!? 90(7“)”0]

ie., Trap, (1) < Ty, [2 {exp[p] {(A +e) log[‘ﬂ ® (r)” ] .
Now we get from above by letting o — 17
logl?! -1 (T
t.e., liminf 8 Lo (Tpyx1, (1))

Since € > 0 is arbitrary,

)\gZ;,Q)(flif%(’p)SA:maX{)\gI;’q)(fh ), Al & D (fa, )}

Similarly, if we consider that fi is of regular relative (p, ¢)-¢ growth with respect

<(A+e) .

to g1 or both f; and fo are of regular relative (p,q)-¢ growth with respect to g1,

then one can easily verify that

(5) AP <flif2,so>sA=max{A<m> (1:9) M (P2 0)

Further without loss of any generality, let )\ ( fl, <p) < )\g’l’ ) (f2,¢)and f = f1£
f2. Then in view of (5) we get that )\(pq) (f, ) < )\pq (fo,¢). As, fo==x(f— f1)
and in this case we obtaln that )\pq> (fg, ¢) < max {/\(pq (f, ), /\gf’Q) (fi,0)}
As we assume that )\ (fl, p) < )\gz;q (f2,¢), therefore we have /\gf’q) (f2,0) <

ALY (£, and hence AL (7, ) = A0 (f2, ) = max {007 (1,0) AL (f2,90) }
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Therefore, )\g’q) (fi £ fa,0) = )\pq (fiyp) | i = 1,2 provided )\ D (f1,0) # )\(pq
(f2,¢) . Thus the theorem is established. ]

Theorem 5. Let fi and fo be any two meromorphic functions and g1 be an entire

function such that such that p(p ) (f1,) and p (fl, ©) exist. Also let g1 have the

Property (A). Then we have
PP (f1 £ fo, ) < maX{ng’q) (f1,0), PP (fo, )} :
The equality holds when p (fl, ) # pg{’q) (f2,¢).

We omit the proof of Theorem 5 as it can easily be carried out in the line of
Theorem 4.

Theorem 6. Let fi be a meromorphic function and g1, go be any two entire func-
tions such that )\gl)’Q) (f1,) and /\g;’q) (f1, ) exist. Also let g1+ go have the Property
(A). Then we have

Ny, (1) = min {0ED (£1,0) LD (f1,) }
The equality holds when )\ (fl, ) # Aé@?’q’ (f1,9).

Proof. The result is obvious when )\g’l’i)gQ (f1, ) = co. So we suppose that /\fhig2 (fi,p) <

oo. We can clearly assume that )\ ( f1,¢) is finite for & = 1,2. Further let
v = mm{ ( fi,0), A ( f1, cp)} . Now for any arbitrary € > 0 from the defini-

tion of )\gzﬂ) (f1,¢), we have for all sufficiently large values of r that
6) T, [exph’] [(Agzm (fi,9) — s) logl? ¢ (r)” < Ty (r) where k=1,2

i.e, Ty, [exp[p] [(\Il — &) logld (r)” < Ty, (r) where k =1,2
Since Ty 44, (1) < Ty, (r) + Ty, (r) + O(1) for all large r, we obtain from above

and Lemma 2 for all sufficiently large values of r that
Tyrags [expl [(0 = 2)logld) o ()] | < 27, () + O(1)

i.€., Ty +g, [exp[p] [(\If —¢) log[q] % (r)” < 3Ty (r).
Therefore in view of Lemma 1 and Lemma 2, we obtain from above for all suffi-

ciently large values of r and any ¢ > 1 that

! expl? (W — ¢)log¥ i (1)

9 log Mg1 +go 9

<Ty (r)
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1
expl! [(W — &) 1og¥ o (r)] ] 7
e... log My, 1, . < T, (1)

expll (W — &) log? i (1)
2

e., log Mg, 44, < Ty, (1)

1
expl?! [(\IJ — &) logld (T)} 7
2

.., Tg+go <Ty, (T.)

As € > 0 is arbitrary, we get from above by letting o — 17
(7) MPDL (1) =2 @ = min LD (f1,0), AED (f1,0)}

Now without loss of any generality, we may consider that )\ ( fi,p) < )\ ( fi,0)
and g = g1 =go2. Then in view of (7) we get that )\gp ) (f1,0) > )\gzl) @) (f1,9) - Further,
91 = (g £ ¢g2) and in this case we obtain that

pq)(fh(p)zmin{)\ép’q)(fh DRy A D (f1, )}

As we assume that )\(p 9 (fl,go) < )\(p 2 (f1,%), therefore We have )\ (fl, p) >
M (f1, ) and hence i (fl, P =XE (1. =min X7 (£1,0), 087 (f1,0)
Therefore, AP 1:|:92 (fr,9)= (fl, ©) | i=1,2 provided )\ (fl, ) # )\(p q)( fi,0).
Thus the theorem follows. 0

Theorem 7. Let fi be a meromorphic function and g1, go be any two entire func-
tions such that fi is of regular relative (p,q)-¢ growth with respect to at least any
one of g1 and g2. If g1 = g2 have the Property (A), then we have

P8 (f1,¢) > min {pﬁfi’q’ (f1,0), p29 (f1, sO)} :

The equality holds when any one of pg’Q) (fi,p) < pg] (fl, ©) hold and at least fi
is of reqular relative (p,q)-¢ growth with respect to any one of g; where i,j = 1,2
and i # j.

We omit the proof of Theorem 7 as it can easily be carried out in the line of
Theorem 6.
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Theorem 8. Let f1, fo be any two meromorphic functions and g1, go be any two

entire functions. Also let g1 £ g2 have the Property (A). Then we have
pg::i?qz (fl + f27 SD)
S max |:m1n{pg1 (f17 ) pgg (f17 )}7m1n{pgl <f2780) pgz (f27 )}:|

when the following two conditzons holds
(1) Any one of pgf’q) (fi,0) < pgj (fl, ) hold and at least fi is of reqular relative

(p, q)-¢ growth with respect to any one of gj fori =1,2,j = 1,2 and i # j; and

(ii) Any one ofol™ (fa,0) < P

(p,q)- growth with respect to any one of gj fori=1, 2, j =1,2 and i 7éj

The equality holds when p (fl, p) < pg1 (f], v) and p (f,, ) < pg2 (f], ®)
hold simultaneously for i =1,2; j = 1,2 and © # j.

(f2,¢) hold and at least fo is of reqular relative

Proof. Let the conditions (i) and (ii) of the theorem hold. Therefore in view of
Theorem 5 and Theorem 7 we get that

max [min {pgf’q) (f1, %) »Pg’Q) (f1, 90)} , Min {Pfﬁm (f2, ) »Pg’Q) (fa, 50)}]
= max {p(gli@ (fi,0), Péfi@ (f2, @)}
(8) g1i92 (flifQ’ ¢) -

Since i (fi, ) < pi® (f,0) and pE? (fi,0) < P (£, ) hold simul-
taneously for ¢ = 1,2; j = 1,2 and i # j, we obtain that

either min{pg1 (f1,9), pg2 (fl7 )}>min{pg1 (fa, )pg2 (f2, )}

min {pﬁﬁ’” (f2, ), pE9 (fz,w)} > min {pf(ﬁ’” (f1,0) , plb (fmp)} holds.

Now in view of the conditions (i) and (77) of the theorem, it follows from above
that

cither pP0 (f1,0) > pPD (fa,0) or pPD (fo,0) > oD (f1,0)

which is the condition for holding equality in (8).

Hence the theorem follows. O

Theorem 9. Let f1, fo be any two meromorphic functions and g1, go be any two

entire functions. Also let g1, g2 and g1 + go satisfy the Property (A). Then we have
E,I;jq:)gg (f1 £ fo, )
> min [max {ALD (f1,9), LD (f2,0) },max ALD (f1,0), ALD (f2, )}
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when the following two conditions holds:

(i) Any one of Agff’q) (fisp) > )\gz;,q) (fj, ) hold and at least any one of f; is of regular
relative (p, q)-¢ growth with respect to g1 fori =1,2, 5 = 1,2 andi # j; and

(ii) Any one of )\pq) (fi,p) > )\g;’Q) (fj,¢) hold and at least any one of f; is of
regular relative (p,q)-p growth with respect to go fori =1,2, 5 = 1,2 and i # j.
The equality holds when )\(pq (f1,0) < (pq (f1,) and )\(gf’Q) (fa,0) < (p 9 (fa, )
hold simultaneously forv=1,2; 7 =1,2 and 1]

Proof. Suppose that the conditions (i) and (i7) of the theorem holds. Therefore in

view of Theorem 4 and Theorem 6, we obtain that

min [max{)\gm (f1, ), o (fg, )},max{/\g;’q) (f1, ), o (f2, )H
= min [)\(p’q)(ﬁif% ), AP (f1 £ fo, )}
9) g1:|:gg (f1 £ f2,0).

Since /\(g];’Q) (fi,p) < )\g’; (p.q) (f1,%) and )\ (fg, p) < /\g;,q) (f2,¢) holds simulta-
neously for ¢ = 1,2; j = 1,2 and i # j, we get that

either max{ A\(Pa) (fi1,0),A (fg, )} <max{)\(pq) (fi,0), A (fg, )} or

max {Aggv@ (f1,0) , A2 (fy, go)} < max {Agl”‘” (f1,0) , AP (f5, gp)} holds.

Since condition (i) and (i¢) of the theorem holds, it follows from above that

either AP9 (fy £ fo,0) < A2V (f1 & fo,0) or APD (fy £ fo,0) < APD (f1 £ fa, )

which is the condition for holding equality in (9).

Hence the theorem follows. O

Theorem 10. Let fi, fo be any two meromorphic functions and g1 be any entire
function such that at least f1 or fa is of reqular relative (p,q)-¢ growth with respect
to g1. Also let g1 satisfy the Property (A). Then we have

D (1 f2,0) < max {APD (f1,0) AP (fo,0) |

The equality holds when any one of )\g’q) (fi,p) > )\g’q) (fj, ) hold and at least any
one of f; is of reqular relative (p,q)-¢ growth with respect to g1 where i,j = 1,2 and

i .
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Proof. Since Ty, .y, (r) < Ty, (r) + Ty, (r) for all large 7, applying the same procedure
as adopted in Theorem 4 we get that

D (fi+ o, p) < max {Agz;@ (f1,9) AL (f2,0)}

Now without loss of any generality, let )\ ( f1, ) p ) (f2,) and f =
fie fo. Then A2D (£,0) < AP (£, ). Further, f=+ and Ty, (r) = Ty (r) +
1

O(1). Therefore Ty, (r) < Ty (r) + Tf, (r) + O(1) and in this case we obtain that
)\gf’q) (fa,0) < rnax{)\ P0) (f.0),Ag pQ) (fl,cp)} AS we assume that )\(p 2 (fl, p) <

APD (£, 5) | therefore we have APD (£, o) < APD (£ 5) and hence AP (£, )
= A0 () = max { A7 (1 0), A0 (1 > }. Therefore. A (- fo. ) =

APD () [ = 1,2 provided ALY (F1.0) # ALY (fo, ).
Hence the theorem follows. O

Next we prove the result for the quotient %, provided % is meromorphic.

Theorem 11. Let fi, fo be any two meromorphic functions and g1 be any entire
function such that at least f1 or fa is of reqular relative (p,q)-¢ growth with respect

to g1. Also let g1 satisfy the Property (A). Then we have

)\gl (;1 )gmax{)\g‘;m(fl’(p)’ (>, (f2, )}’

provided f—; 1s meromorphic. The equality holds when at least fo is of reqular relative

(p,q)-¢ growth with respect to g1 and )\ (fl, ) # )\gff’q) (f2,¢).

Proof. Since T, (r) =T, (r)+O(1)and T, (r) <T, (r)+T, (r), we get in view
f2 Fo f2
of Theorem 4 that ’

(10) gjz & (i;l ) < max {)\gf’q) (fl,SD) ’ g1 (f27 )} .

Now in order to prove the equality conditions, we discuss the following two cases:

CASE 1. Suppose ;1 (= h) satisfies the following condition

D (fr.0) < APV (far ) s

and fy is of regular relative (p, ¢)-¢ growth with respect to g;.
Now if possible, let )\(p 2 <%, (p) < )\gf’q) (f2,¢). Therefore from fi = h- fo we get

that /\gf’q (fi,0) = /\gf’q (fa, ) which is a contradiction. Therefore /\gf’Q) (fl , cp)
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)\gf’q) (fa2, ) and in view of (10), we get that

A9 (1) =389 (12 0).

CAsE II. Suppose % (= h) satisfies the following condition

q)(fh )>)\pq (f27 )7

and fy is of regular relative (p, ¢)-¢ growth with respect to g;.

Now from f1 = h-fy we get that elther)\ pQ) (f1,0) < )\(p 9 ( ,<p> or)\ (fl, p) <
)\gzl”q (f2,¢). But according to our assumption )\gpq (fi,0) £ )\(p q) (f2,¢). There-
fore /\gf’q) (%, 90) > )\gf’q) (f1,¢) and in view of (10), we get that

AP (2¢> — 2D (f1,0).

Hence the theorem follows. OJ

Now we state the following theorem which can easily be carried out in the line of

Theorem 10 and Theorem 11 and therefore its proof is omitted.

Theorem 12. Let f1 and fo be any two meromorphic functions and g1 be any entire
function such that such that p (fl, ®) and p (fl,cp) exist. Also let g1 satisfy
the Property (A). Then we have

pé’f’q)(fl'fmw)SmaX{ng’q)(fl’ 2o (f20) )

The equality holds when ,0 (fl,go) + p (fg,go). Stmilar results hold for the

quotient %, provided % is meromorphic.

Theorem 13. Let fi be a meromorphic function and g1, go be any two entire func-
tions such that )\g’q) (f1,¢) and /\{(};”q) (f1, ) exist. Also let g1-go satisfy the Property
(A). Then we have

LD, (Fra9) = min (AP (£1,0) AZD (f1,0)}

The equality holds when any one of )\é (f1,9) < /\ (fl, ©) hold where i,j = 1,2
and i # j and g; satisfy the Property (A). Szmzlar results hold for the quotient
, provided g; is entire and satisfies the Property (A). The equality holds when

/\(gpq (fi,0) # /\(pq (f1,%) and g1 satisfy the Property (A).
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Proof. Since Ty, .q, (1) < Ty, (r)+ Ty, (r) for all large 7, applying the same procedure
as adopted in Theorem 6 we get that

NP (o) = min LD (£1,0) AED (f1,0) }

Now without loss of any generality, we may con81der that )\(p 9 (f1,0)< )\(p ) (f1,9)
and g = g1 - g2. Then )\gp‘n (fi,9) > A 91 (fl,go) Further, ¢;
Ty, (r) = TL (r) + O(1). Therefore Ty, (r) < Ty (r) + Ty, (r) +

= —2 and and

O(1) and in this
case we obtam that )\ (fl,go) > mm{)\(pq (f1,9), )\(p q) (f1,9) } As we as-
sume that )\(p 9 (fi,p) < )\gg’Q) (f1,%), so we have /\gfq (f1,<p) > /\(pq (f1,%) and
hence AP (f1.0) = ALY (f1.¢) = min {Aé’f’” (fl, ) AL (fl,so)}. Therefore,

M (Fro0) = MY (fr,9) | i = 1,2 provided ALY (f1,0) < ALY (f1,) and g1
satisfy the Property (A). Hence the first part of the theorem follows.

Now we prove our results for the quotient }%7 provided g—; is entire and )\gf”) (f1, %)
+ )\(pq (f1,%). Since T, (r) =T, (r)+O(1) and T, (r) < T, (r)+T, (r), we
g

92 2 92
get in view of Theorem 6 that

(1) X (f1,) > min {AZD (f1.60) AEP (f1.0) }
92

Now in order to prove the equality conditions, we discuss the following two cases:

CASE 1. Suppose ;% (= h) satisfies the following condition

APD (i) > ALY (fi, ).
Now if possible, let )\ (fl, ) > )\g};’q (f1,¢). Therefore from g1 = h- gy we get

92
that )\911) (p.9) (fi,0) = )\(p 9 (f1, %), which is a contradiction. Therefore )\(gﬁlm (f1,0) <
92
)\(gg’q (f1,%) and in view of (11) we get that

g2 (fla@)_)‘ (fl,@)

Cask II. Suppose that Z—; (= h) satisfies the following condition

ARD (fr,0) < ABD (f1,0).
Therefore from g1 = h - g2, we get that either )\ ( fi,0) > A(ﬁ’q) (f1,9) or

92

)\gf’q) (f1,0) > A pq (f1,¢). But according to our assumption )\(p Q) fi.9) # )\(pq
(f1,¢). Therefore )\Eﬁq (f1,0) < )\g[l) @) (f1,¢) and in view of (11), we get that

92

D (fr,0) = AP (f1, ).

92
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Hence the theorem follows. O

Theorem 14. Let f1 be any meromorphic function and g1, g2 be any two entire
functions such that p (fl,cp) and p (fl, p) exist. Further let f1 be of reqular
relative (p,q)-¢ growth with respect to at least any one of g1 and ga. Also let g1 - go
satisfies the Property (A). Then we have

ot (F1o9) = min { o029 (£1,0), o1 (f1,0)}

The equality holds when any one of pgf’q) (fi,0) < pgf (p.) (f1,) hold and at least f1
is of regular relative (p,q)-¢ growth with respect to any one of g; where i,j = 1,2
and i # j and g; satisfies the Property (A).

Theorem 15. Let f; be any meromorphic function and g1, go be any two entire
functions such that p(pq (f1,) and p (fl, ©) exist. Further let f1 be of regular
relative (p, q)-p growth with respect to at least any one of g1 or ga. Then we have
P80 (f1,) 2 min {29 (f1,6) . p2D (f1,0) }

92

provided % is entire and satisfies the Property (A). The equality holds when at least

f1 is of regular relative (p, q)-p growth with respect to ga, pg & (f1,0) # p(p D) (f1,9)
and g1 satisfies the Property (A).

We omit the proof of Theorem 14 and Theorem 15 as those can easily be carried
out in the line of Theorem 13.
Now we state the following four theorems without their proofs as those can easily

be carried out in the line of Theorem 8 and Theorem 9 respectively.

Theorem 16. Let f1, fo be any two meromorphic functions and g1, g be any two

entire functions. Also let g1 - g2 satisfy the Property (A). Then we have

pglgz (fi-f2,0)
< max |min {p% (f1.0) %7 (f1,0) } o min { o2 (2,0) 02 (f2r9) } |

when the following two conditions holds

(1) Any one of pgf’Q) (fi,0) < pgj (fl, @) hold and at least f1 is of regular relative
(p, q)-¢ growth with respect to any one of g; and g; satisfy the Property (A) for i =
1,2,j=1,2 and i # j; and

(i) Any one of p(p ) (f2, ) < pgz; )

(p,q)-¢ growth with respect to any one of g; and g; satisfy the Property (A) for i =

(f2, @) hold and at least fo is of reqular relative
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1,2,j=12andi+#j.

The quality holds when p (fu p) < pgl (f]7 ¢) and p (fza p) < pgz (f]» ©)
holds simultaneously fori=1,2; j =1,2 and i # j.

Theorem 17. Let f1, fo be any two meromorphic functions and g1, go be any two

entire functions. Also let g1 - g2, g1 and go satisfy the Property (A). Then we have

9192(f1 f2,0)
> min [max (\ZD (£1,9), AZD (f2,0) |, max {AED (f1,6), AZD (2, 0) }]

when the following two conditions holds:

(1) Any one of /\(pq (fi,o)> )\gf’q) (fj, ) hold and at least any one of f; is of reqular
relative (p, q)-p growth with respect to gy fori =1,2, 5 = 1,2 and i # j; and

(i) Any one of )\g,q) (fi,p)> )\g’q) (fj, ) hold and at least any one of f; is of regular
relative (p,q)-¢ growth with respect to ga fori =1,2,7=1,2andi#}j.

The equality holds when )\gf’q) (fi,p) < )\ (fl, v) and )\gz Q) (fa,0) < )\g’; 2 (f2, )
holds simultaneously fori=1,2; j =1,2 and i#J.

Theorem 18. Let f1, fo be any two meromorphic functions and g1, go be any two
entire functions such that % is meromorphic and % is entire. Also let % satisfy the

Property (A). Then we have

p(g’iq)@l )
92 2
< max [min {p (f1.9) o7 (F1.0) }min {o0D (F2.0) 057 (F2 ) }]

when the following two conditions holds:

(1) At least f1 is of reqular relative (p, q)-p growth with respect to ga and ,o(p ) (f1, %)
# o (fi,); and

(ii) At least fo is of reqular relative (p, q)-p growth with respect to go and p(p ) (f2, )
# 057 (f2r0).

The equality holds when p (fz, p) < pg1 (fj, ©) and p (fz, ) < p92 (f], ©)
holds simultaneously fori=1,2; j =1,2 and i # j.

Theorem 19. Let f1, fo be any two meromorphic functions and g1, go be any two

entire functions such that % is meromorphic and % is entire. Also let g—;, g1 and

g2 satisfy the Property (A). Then we have
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f
)\gi (f2 )
> min [max {02 (f1,0) AZD (fo.0) o max A8 (f1,0) AL (f2.0) }]

when the following two conditions hold:

(1) At least fo is of reqular relative (p, q)-p growth with respect to g1 and )\gf’q) (f1,9)
£ AP (fa,0); and

(13) At least fa is of reqular relative (p, q)-¢ growth with respect to go and )\g”) (f1, %)
7& )\(p,Q) (f27 )

The equality holds when )\ (fl, p) < )\ (fl, @) and )\éf ) (fa,0) < (p 9 (f2, )
holds simultaneously fori=1,2; 7 =1,2 and B

Next we intend to find out the sum and product theorems of relative (p,q)-¢
type ( respectively relative (p,q)-¢ lower type) and relative (p,q)-¢ weak type of
meromorphic function with respect to an entire function taking into consideration

of the above theorems.

Theorem 20. Let f1, fo be any two meromorphic functions and g1, gg be any two
entire functions. Also let pi® (f1,¢), o (f2,0), ph? (f1.0) and pB? (f2,0) be

all mon zero and finite.
(A) If any one of p (fivp) > pE (f1,0) hold for i, j = 1,2; i # j, and g1 has
the Property (A), then

oD (fL £ fa,0) = oD (fi,0) and TP (fi £ fo,0) =T (fi,0) |i=1,2.

(B) If any one ofp(p ) (fl, ) < pgj ) (f1,¢) hold and at least fi is of regular relative
(p,q)-p growth with respect to any one of g; for i, j = 1,2; i # j and g1 £ go has
the Property (A), then

oD (f1,0) = aPD (fr,0) and 5PD (f1,90) =TPD (f1,0) i = 1,2.

(C) Assume the functions f1, f2,g1 and go satisfy the following conditions:

(1) Any one ofp (fl, ) < pgj (fl, ) hold and at least fi is of reqular relative
(p, q)-¢ growth with respect to any one of g; fori =1,2,j =1,2 and i # j;

(ii) Any one of p(p @) (f2, ) < pgf ) (f2, @) hold and at least fo is of reqular relative
(

(

D, q)-¢ growth with Tespect to any one of g; fori =1, 2 j=12and1i # j;

i41) pgzi ) (fi,p) > pg1 (f], ©) and p (fz, ) > pg2 (f], @) holds simultaneously

fori=1,2;7=1,2 and i # j;
(iv) o (frr0) =
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max{min { o (f1,2) 57 (f1,9) } smin { o7 (f2,0), o2 (fo0) || Lom = 1,2,
and g1 £ g2 has the Property (A);
then

oD (fi % far0) = oD (fi,0) | Lim = 1,2

and
P (f1 £ forp) =789 (fi) | Lm = 1,2.

Proof. From the definition of relative (p, ¢)-¢ type and relative (p, q)-¢ lower type of

meromorphic function with respect to an entire function, we have for all sufficiently

(p,q)
pg; " (fr)
expl?~ 1 {(%5? D (fr, ) +€) [log[q’” sO(T)} S H :

large values of r that

(12) Ty (r) =Ty

(13) Ty, (r) = Ty,

Pg q) f)
o1 (09 )= ) o o4

and for a sequence of values of r tending to infinity, we obtain that

(pq)
=t e"p“’_”{(aéf’q) (i) — <) [logle Y o ()] }

and

[ pg q) fk
(1) Ty, (r) < Ty, exp[p‘”{( 2a) ( f, 90)+6) [log[" U :

where € > 0 is any arbitrary positive number k=1,2and [l =1,2.
CAsE 1. Suppose that ppq) (f1,9) > pg1 (fg, ¢) hold. Also let € (> 0) be arbi-
trary. Since T 44, (r) < Ty, (r) + Ty, (r) + O(1) for all large 7, so in view of (12),

we get for all sufficiently large values of r that

Tpy+p, (1) <

(p,a)

pgy (f1)
explr ! {(aé’f’” (f1,9) +¢) [loglt o ()] ™ }

(p>q)
exp“’”{(ag’w(fzw)Jrs) [log[q*” go(r)]pgl (f2.¢) +0(1)

(16) T, (L+4).

Tg 1

where A = and in view of

(p,q) ’
Ty, {eXp[p1]{<U§Ii’q)(f1,<,0)+€> [bg[qﬂ] w(r)]pgl (f1,%#) H

pgl) ) (fi,0) > pgj ) (f2,¢), and for all sufficiently large values of r, we can make
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the term A sufficiently small . Hence for any aw = 1 4 ¢, it follows from (16) for all

sufficiently large values of r that

(anQ) f
explt 1 { (o (1) +€) [logr 1 o )] ™

SJP,Q) f
explt 1 { (o (1) +€) [logr 1 o )] ™

Hence making o« — 1+, we get in view of Theorem 5, p(pq (f1, )>,0§£ ) (fa, )

Tflifz (T) < Tgl : (1 + 51)

i.€., Tflifg (7”) < Tgl - Q.

and above for all sufficiently large values of r that

loglP™ T (Ty, 4y, (7))

lim sup ) < 5, (f1, )
T H(fHrEf20)
o [lOg[q—l] (lp(r)rgl (hifee
(17) ie, 0!V (fu£ fo,0) < ofD (fl, @) -

Now we may con51der that f = fi £ fa. Since p ( fi, o) > pgf ) (f2,¢) hold.

Then ot (f,¢) = of? (f1 = fa.¢) < of” (f1, ). Further, let fi = (f £ fo).
Therefore in VleW of Theorem 5 and pp ) (f1,0) > pgfq ( f2,%), we obtain that

Pgl (f7 )>P91 (f2, ) holds. Hence in view of (1 )o'gl (f1, )<qu (f.0) =
Uéf ) (f1 £ f2,¢) . Therefore

D(fr0) = oD (fr,0) = oD (fr £ fo,0) = o9 (f1,0).

Slmllarly, if we consider p(p ) (fi,0) < pg1 ( f2,¢), then one can easily verify

that o7 ? (f1 % fo.0) = oV (fo, 9).
CASE 1I. Let us consider that pé’f’q) (fi, ) > pg1 (fg, ©) hold. Also let £ (> 0)
are arbitrary. Since T 4y, (1) < Ty, (r) + T, (1) + O(1) for all large r, from (12)

and (15), we get for a sequence of values of r tending to infinity that

Tritg, (rn) <

(18) Ty, (1+B).

(p,a)
pgi " (f1.9)
expl?~! {(Ugf’q) (f1, ) +€> {log[q’” so(rn)} S }

(p,a)
Ty, [exp[pl] { (ng;»q)(f27w)+€) [1Og[q71] (p(rn)]f’m (f2,9¢) +o(1)

where B =

o , and in view of

a)
Ty, [exp[P11{(a§ﬁ‘q)(f1,s0)+a) [logla=1 (7, )] 791 (f”’)}

pgl (fl, @) > pgl (fg, ¢), we can make the term B sufficiently small by taking n

sufficiently large and therefore using the similar technique for as executed in the proof
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of Case I we get from (18) that 5{(}: D (fi % forp) = agl (fl, ) when p(p D (f1,0) >
pgfq (f2,¢) hold. Likewise, if we c0n81der p (P.q) (fi,0) < pg]i )
easily verify that Eg‘? ) (fi£ fa,9) = agl (fg, ©).
Thus combining Case I and Case II We obtain the ﬁrst part of the theorem.
CAse III. Let us consider that p (fl, v) < ,092 (f1, ) with at least fi

is of regular relative (p,q)-¢ growth with respect to go. We can make the term

(pq
Ty, [eXp[P—l] { (UEII;’Q)(ﬁ,cp)—&) [10g[9—l] o(rn )]Pgl ) (f1.0)

(p,q)
Ty, [exp[@—l]{( (p,q) (f1,0)— 5) [logq 1] o(rn )]P92 (fl#’)}

ing n sufficiently large, since p_gf’q (f1,0) < pg’q) (f1,¢) . Hence C < €.
As Ty 4g, (r) < Ty, (1) + Ty, (1) + O(1) for all large 7, we get that

(p;2)
N — P (flﬁo)
Tyi+g, (exp[p 1 {<U§€7q) (f1,0) — E) [log[q 1] ) (Tn)} . }) <

(f2,¢) , then one can

+0(1)
C =

sufficiently small by tak-

_ _ P (F10)
Ty, |exp?™ {(Ué’f’q) (f1,9) —8) [log[" ”90(7%)] " } +
(r,q)
B _ pg " (f1,)
Ty, [expl ”{(aéﬁ’"’) (f1,) — ) [tog"™ o ()| ™" } +0(1).

Therefore for any a = 1+ €1, we obtain in view of C' < ¢;, (13) and (14) for a

sequence of values of r tending to infinity that

_ _ Pq (fl#’)
Tyratan (exp@ u{(agm (frg) —<) [loglr Vo (r)]| ™ }) < o}, (ra)

Now making ae — 14, we obtain from above for a sequence of values of r tending
to infinity that

log[p U 1:|:ngf1 (rn)

] ng[)gQ (f1.0)
g9

(U§€)7q) (fi, ) — E) [log[‘lfl] o (ry)

Since € > 0 is arbitrary, we find that

(19) élng (f1. ) > U(p D (f1,9).

Now we may consider that g = g; &+ go. Also p (fl, p) < pgq (f1,¢) and at
least f7 is of regular relative (p, q)-¢ growth with respect to go. Then ag(,p ) (fi,0) =

g’i)m (fi,¢) > o4 va) (., go) Further let g1 = (9 = g2). Therefore in view of The-

orem 7 and pfy? (fr,sﬂ) < p? (f1,¢), we obtain that p” (f1,¢) < p? (1, )
as at least fi is of regular relative (p,q)-¢ growth with respect to go. Hence in
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view of (19), O'gl (fl7 ) > o(p’q) (fl,gp) = O'gl:tgz (f1,¢) . Therefore agp’q) (fr,0) =
o (f1.9) = o, () = agl '(frr0):
Similarly if we consider p ( fi,9) > pg;’q) ( f1 ) with at least f1 is of regular
relative (p, q)-¢ growth with respect to g1, then Ugligz (fi,0) = ng (fl, ®).
CAst IV. In this case suppose that p (fl,cp) < pgg ) (f1,¢) with at least

f1 is of regular relative (p,q)-¢ growth with respect to gs. we can also make the

(p.q)
Ty, {exp[P” (T8 (f1.0)—2) [loglt =1 ()] 110 b po(1)

term D = sufficiently small by

(p.q)
A R T

taking r sufficiently large as p(p ) (f1,0) < pg2 (fl, ). So D < g1 for sufficiently
large 7. As Ty 44, (1) < Ty, (r) + Ty, (r) + O(1) for all large r, therefore from (13),
we get for all sufficiently large values of r that

T)itg, (eXp[p 1] {< (fh ) — ) [log[q_” gp(r)rgl (11, w)}) <

explP—1! { ( (p.9) (f1,0) — ) [log[q_” o (1")} pi (fmp)}

Ty,

(p,a)
_ pgy (f1,9)
Ty, |expl?—! {( D (f1.6) — ) [log" o (1) } +0(1)
(p,a,t) L
. B = _ P (f1,)
.., Tg+g, <exp[p 1 {(Ug’;’q’t)L (f1.0) — 5) {10g[q U ‘P(T)} " })
(20) <(T+e)Ty (r),

and therefore using the similar technique for as executed in the proof of Case III

we get from (20) that Egl’f:)gz (f1,0) = ag’ a) (f1, %) where p(p a) (f1,0) < pE};’ ) (f1,9)
and at least fi is of regular relative (p,q)-¢ grovvth with respect to go.

Likewise if we consider p ( fi, o) > pg )

( fl, <p) with at least f1 is of regular
relative (p, q)-¢ growth with respect to gi, then & crglig2 (f1,0) = 092 (fl, ©).
Thus combining Case III and Case IV, we obtain the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem 8 and the

first part and second part of the theorem. Hence its proof is omitted. O

Theorem 21. Let f1, fo be any two meromorphic functions and g1, go be any two
entire functions. Also let \EV (f1,0), M (f2,0), A5 (F1,0) and MG (f2. )
be all nonzero and finite.
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(A) Any one of )\g’q) (fi,p) > Agf’q) (fj, ) hold and at least any one of f; is of
regqular relative (p,q)-p growth with respect to g1 for i, j = 1,2; i # j, and g1 has
the Property (A), then

D(fr £ forp) = 70D (firp) and TV (fr £ fo,0) =TV (fir o) [i = 1,2.

(B) Any one of)\(pq(f )<)\ (fl,cp) hold for i, j = 1,2; 1 # j and g1 + g2
has the Property (A), then

g1igz (f1.9) = (f’q) (f1,9) and Tglj:gQ (f1,0) = 7§€,q) (fi,p)|i=1,2.

(C) Assume the functions fi, fg,gl and go satisfy the following conditions:

(1) Any one ofpgf’q) (fi,p) > pg1 (f]7 ©) hold and at least any one of f; is of reqular
relative (p, q)-¢ growth with respect to g1 fori, j =1,2 and i # j;

(ii) Any one of pgg’q) (fisp) > ng (fj, ¢) hold and at least any one of f; is of
regular relative (p, q)-p growth with respect to go fori, j = 1,2 and i # j;

(131) pgf ) (fi,0) < pgf ) (f1,) and p(pq (fa,0) < pgfq (fa, ) holds simultaneously
fori, 7 =1,2 and i # j;

(i) M (fi, ) =

min [max{A<“> (1,90 ARD (fa0) b omax AR (£1,0) AR (F2 0 }] | L =
1,2 and g1 & g2 has the Pmperty (A)

then we have

2D (i £ fo,0) = 70D (fi0) [ Lm =1,2
and

7P (i % fo,0) = 72D (f1,0) [ Lm = 1,2.

Proof. For any arbitrary positive number £(> 0), we have for all sufficiently large

values of r that

[ AP (f0) | ]
(21) Ty () < Ty, |explr” ”{( ? (fi0) +2) [loglt o ()] ,

[ AP (frp) | ]
(22) Ty (1) 2 T, exp“””{(%(f’q) (fis9) =) [loglt o ()] ’

and for a sequence of values of r tending to infinity we obtain that

e (29 ) - ) s ] 57

(23) Ty (r) 2 Ty,
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and

(24) Ty, (r) < Ty,

/\(PaQ)(f 7()0)
explP 1! {(Tg(f”q) (fi, ) + 5) [log[qﬂ] o (7")} S ;

where k =1,2 and [ = 1, 2.

CASE 1. Let )\Eﬁ’q) (f1,) > /\_S,I;’q) (f2, ) with at least fy is of regular relative
(p, q)-¢ growth with respect to gi. Also let € (> 0) be arbitrary. Since T, +, (1) <
Ty, (r)+ T}y, (r)+O(1) for all large r, we get from (21) and (24) , for a sequence {ry,}

of values of r tending to infinity that

Tpixf, (rn) <

(25) Ty, (1+E).

P q)
(flﬁo)
expl { (729 (f1,9) + ) [loglt (Tn)] }

Ty,

(p a)
exp[p_l]{(Té’i’q)(fz,so)#) [loga= 1 ()] 9127 1 Lo (1)

(P a)
explp—1] { (Tg(zf’(n (fl,ap)Jrs) [log[‘Z—l] o(rn )])\ (10) }]

Agf’q) (f1) > )\g’Q) (f2), we can make the term FE sufficiently small by taking n
sufficiently large. Now with the help of Theorem 4 and using the similar technique
of Case I of Theorem 20, we get from (25) that

(26) TPD (fi £ fa,0) < TED (f1,00).

Further, we may consider that f = f; £+ fo. Also suppose that )\gf’Q) (fi,0) >
Ag’f’q) (f2,¢) and at 1east f2 is of regular relative (p, q)-¢ growth with respect to g;.
Then 7377 (f,¢) = 7" (flj:fQ, ©) < 7D (1. o). Now let f = (f % f»). There-
fore in view of Theorem 4, /\ ( fi,0) > Ag’; ) (fa, ) and at least fy is of regular
relative (p, q)-¢ growth with respect to g1, we obtam that )\ (f, ) > )\gf 2 (f2, )
holds. Hence in view of (26), Téf ) (fl, @) < Tg (f, ) = Tgl (f1 + f2,¢) . There-

f0r679PQ)(f p) = Tgfq)(fh ):>Tg1 (flj:f% >—Tg1 (fla ®).

Similarly, if we consider /\gf ) (fi,9) < )\gq (f2,¢) with at least f is of reg-

where E = and in view of

Ty,

ular relative (p,q)- go growth with respect to g1 then one can easily verify that
T (1% far0) = 70? (fr ).

CASE II. Let us consider that )\gf 2 (fi,p) > )\ (fg, v) with at least fa is of
regular relative (p,q)-¢ growth with respect to g;. Also let € (> 0) be arbitrary.
As Ty 14, (1) < Tp, (1) + T, () + O(1) for all large 7, we obtain from (21) for all
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sufficiently large values of r that

Tp+p, (1) <

27) T, (1+F).

exp?”! {( (g (f1.9) +e> [IOg[q—l]W(T)rg’q)(fl,so)}

(p,q)
explP=1] { (?Ef{’q) (fz,¢)+e) [logla=1 p(r)] i ¢

( )
Ty [exp“"”{( 5D (fr10)+¢ ) [logli =1 o(r)] 1 A, “’)H
)\gf’q) (fi,0) > Ag’fm (f2,%), we can make the term F' sufficiently small by taking

r sufficiently large and therefore for similar reasoning of Case I we get from (27)
that ?g;;,q) (fr £ fa,p) = Tgl (fl, ) when )\gﬁ) ) (fi, ) > )\ (fg, ¢) and at least
fa is of regular relative (p, q)- <p growth with respect to g.

Likewise, if we consider )\ ( fi,e) < )\g(fl)’q) (f2,) with at least fi is of reg-

ular relative (p,q)-¢ growth Wlth respect to g1 then one can easily verify that

72D (fr £ fo,0) =78 (far ) -

Thus combining Case I and Case II, we obtain the first part of the theorem.
CASE III. Let us consider that )\g,q) (f1,9) < Ag pq (f1,). Therefore we can

( q)
explP—1] { (Tg(l?q)(fh@),g) [log[qfll <p(r)] (f1:%) +o(1)

Tyy |:eXP[p1] { (Tg(g’q)(fl,‘ﬁ)*a) [log[q 1] (r)] (fl #) }:|

small by taking r sufficiently large since )\(p 2 (fi,p) < )\ (fl, ©). So G < e7.
Since Ty 44, (1) < Ty, (r) + Ty, (r) + O(1) for all large 7, we get from (22) for all

sufficiently large values of r that

2B (f1,0)
Tyrgn (exp[p—” {(Tgw (f1.9) <) [log" ™ o ()] <
APD(11,0)
expl?~! { (729 (f1,9) = &) [loglt Y o ()] ™ +

AL (1)
explP ! { (729 (1,9) = ) [log™Y o ()] ™

. APD (£1,0)
i€, Tyrtgn (exp[P—ﬂ {(Tg),q) (f1,) — 5) [log[q—l] © (7«)} 1

(28) < (L4e) Ty (r).

T, f2,9) +Oo(1)

where F' = , and in view of

Tg 2

make the term G = sufficiently

Tg 1

7,, +o()
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Therefore in view of Theorem 6 and using the similar technique of Case III of
Theorem 20, we get from (28) that

(29) 1:|:g2 (fr, @) = 7P (f1, ).

Further, we may consider that ¢ = g1 &= ¢go. As )\gﬁ)’q (f1,0) < pQ) (f1,9), s
2 (f1,0) = 7! 1ng (f1,0) > T(p’q) (f1, Lp) Further let g1 = (g + gg) Therefore in
view of Theorem 6 and )\( 9 < /\ we obtaln that AP0 <
f f17 @ g f17 2

)\(pq (f1, cp) holds Hence in view of (29) 79(1 (f1,0) > Té (fr,9) = g(f’lez (f1,9) -
Therefore 7" (f1,0) = 740" (f1,0) = 78, (f1,0) = 70 (f1,)-

Likewise, 1f We consider that )\(p 2 (f1,0) > (p 9 (f1,¢), then one can easily

verify that T, 1:|:92 (f1,9) = ng (fl, ©).
CASE IV. In this case further we consider )\ (fl, p) < /\ggq (fl, ¢). Further

Ty, l:exp[Pl] {( P, q)(f1 ©)— )[bg[qfl] o(rn )] D (f1.0) }:| +0(1)

(p )
Tyy |:eXP[pl] { (Tg(g’q)(flﬁﬂ)—a) [log[q U p(rm )]A (fl»sﬁ)}

sufficiently small by taking n sufficiently large, since )\ ( fi,p) < g’q) (f1,9) .
Therefore H < ¢ for sufficiently large n. As Ty, 44, (1) < Tg1 (r)+ Ty, (r)+0O(1) for

all large r, we obtain from (22) and (23), we obtain for a sequence {r,} of values of

we can make the term H =

r tending to infinity that

A (1)
Ty +g, (exp[p_” {(Téﬁ”q) (fi, ) — 5) [log[q‘” sO(T‘n)] " <

AP D (f1,0)
Ty, |exp! {(Té’f") (f1,9) =) [10g" ™ o ()| ™" +
ARV (f1.0)
Ty, |explP™ { (ffff’q) (fi, ) — 6) [log["‘” o (Tn)} +0(1)

/\<p7q>(f1790)
i.e., Tyt (exp[p 1] {( (f1 ) — ) [log[qfl]sﬁ’(rn)} "

(30) < (A +e)Ty (r),
and therefore using the similar technique for as executed in the proof of Case IV of
Theorem 20, we get from (30) that 7Pa) (fi,p) = 7'5,1 (fl, ¢) when )\gl) ) (fi,p) <

91i92
ALY (f1,0).
Similarly, if We consider that /\( 9 (f1,¢) > )\g’@ (f1,%), then one can easily

verify that Tglig2 (f1,9) = Tg2 (fl7 ©).



338 TANMAY Biswas

Thus combining Case IIT and Case IV, we obtain the second part of the theorem.
The proof of the third part of the Theorem is omitted as it can be carried out in

view of Theorem 9 and the above cases. O

In the next two theorems we reconsider the equalities in Theorem 4 to Theorem

7 under somewhat different conditions.

Theorem 22. Let f1, fo be any two meromorphic functions and g1, go be any two
entire functions.
(A) The following condition is assumed to be satisfied:

(i) Bither o” (f1,0) # o0? (fa,0) or 58 (f1.0) # T8 (far ) holds and gy
has the Property (A), then

PPV (fL % fa,0) = pPD (f1,0) = pPD (f, ).
(B) The following conditions are assumed to be satisfied:
(i) Bither ot (f1,0) # 0™ (f1.0) or 3 (f1,9) # 5" (f1,0) holds and g +
g2 has the Property (A);
(13) f1 is of regular relative (p,q)-¢ growth with respect to at least any one of g1 or

g2, then
Pglng (fr.0) = PPV (f1,0) = plbD (f1, ).

Proof. Let f1, fa, g1 and go be any four entire functions satisfying the conditions of
the theorem.

Case 1. Suppose that o (f1,) = ok (f2,9) (0 < pX7 (fl,so) i (f2.0)
< oo) Now 1n Vlew of Theorem 5 it is easy to see that ,0 (f1 + fo,p) <

Pg1 (fl, ©) = P91 (f2, ¢) . If possible let
(31) PPV (f1 £ fo,0) < pPV (f1,0) = p2D (f2, ).

Let aéf’q) (f1,9) # agl’ (fg,go). Then in view of the first part of Theorem 20
and (31) we obtain that O'( (fr,0) = Ugl (f1 :l: fo F fo, ) = 091 (fz, ) which
is a contradiction. Hence p(pq (fi £ fo,0) = pg1 (fl, ) = pg1 (fg, ¢) . Similarly
with the help of the ﬁrst part of Theorem 20, one can obtain the same conclusion
under the hypothesis U ( fi,0) # a ( f2,%) . This proves the first part of the
theorem.

CASE II. Let us consider that p(p 2 (fi,p) = pg2 (fl,ap) (0 < p (fl,ap)
pg2 (fl, ) < 00), fi1is of regular relative (p, q)-¢ growth with respect to at least
any one of g1 or g2 and (g1 £ g2) and g; £ g2 satisfy the Property (A). Therefore in
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view of Theorem 7, it follows that pgl:tgz (f1,0) > p (fl7 ) = pg2 (fl, v) and if
possible let

(32) pgligg (f1:9) > p2? (f1,0) = P2 (f1,0)

Let us consider that a ( fi,0) # Jg’q) (f1,%) . Then. in view of the proof of the

second part of Theorem 20 and (32) we obtain that Ug(;]f 2 (f1, ) Ugi)gﬁgz (f17 80)
(p.a)

og," (f1, ) which is a contradiction. Hence pglim (f1,9) = pg1 (fl, ) = pg2 (fl, ©) .
Also in view of the proof of second part of Theorem 20 one can derive the same con-

clusion for the condition a(p 2 (f1,9) # a_f,’;q) (f1,¢) and therefore the second part
of the theorem is established. O

Theorem 23. Let fi, fo be any two meromorphic functions and g1, g2 be any two
entire functions.

(A) The following conditions are assumed to be satisfied:

(1) (f1 = f2) is of reqular relative (p,q)-p growth with respect to at least any one of

g1 and g2, and g1, g2 , g1 + g2 h(we the Property (A)

(ii) Bither o'V (f1 £ fa.0) # 0 (f1 £ fa, 0) or T (fl + f2a ) £ 78? (fi £ fo, 0);
(iii) Bither ot (f1,0) # o“’ Y (f2.9) or aé? DV (f1.0) £ TR (fap):

(iv) Bither o™ (f1,0) # o™ (fa.90) or 757 (1,0) # TE™ (fo.9); then

pPD (% far0) = pPD (1, 0) = p&D (fa,0) = pD (f1,0) = pBD (fa, ).

(B) The following conditions are assumed to be satisfied:

(1) f1 and fo are of regular relative (p,q)-p growth with respect to at least any one
of g1 or go, cmd g1+ g2 has the Property (A);

(ii) Bither o8), (f1,0) # o), (f2.0) or Ufffigz (f1, ) 75 Uglztgg (f2.0);

(iti) Either o (f1,¢) # o“’ D (f1.0) ora@? (f1.9) £ 5" (f1.9);

(i) Bither o () # 08 (o 5) or 789 (1 9) # 789 (o) then

pPD (% far0) = pPD (1, 0) = pPD (fa,0) = pBD (f1,0) = pBD (fa, ).

We omit the proof of Theorem 23 as it is a natural consequence of Theorem 22.

Theorem 24. Let f1, fo be any two meromorphic functions and g1,g2 be any two
entire functions.

(A) The following conditions are assumed to be satisfied:

(1) At least any one of f1 or fo is of reqular relative (p,q)-p growth with respect to
g1;
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(i) Bither 747" (f1,9) # 730" (2.9 or 70" (f1,0) # 7" (fa,p) holds and gy
has the Property (A), then

AP (1 £ fo,0) = APD (f1,0) = APD (f5,0) .

(B) The following conditions are assumed to be satisfied:
(1) f1, g1 and ga be any three entire functions such that )\(p 2 (f1,) and )\gm (f1, %)
exists;

(i) Bither 74" (f1,0) # 738" (f1.0) or 78 (f1.0) # 78" (f1,0) holds and g +
g2 has the Property (A), then

APD (Fr,0) = ABD (f1,0) = ABD (f1, ).

Proof. Let f1, f2, g1 and go be any four entire functions satisfying the conditions of
the theorem.

Case L. Let A\P9 (£1,0) = APD (£5,0) (0 < APD (f1,0) , AP (£5,0) < o0)
and at least f1 or fo and (f1 &+ f2) are of regular relative (p, q)- cp growth with re-
spect to g1. Now, in view of Theorem 4, it is easy to see that )\ ( fit fo,0) <
)\gf’q) (f1,0) = )\gf ) (f2, ) . If possible let

(33) APD (£ £ fo,0) < APD (f1,0) = APD (f5, ).

Let Tgp (p.q) (fi,0) # Tg (fg, ¢) . Then in view of the proof of the first part of The-
orem 21 and (33) we obtain that T(p 9 (fl, p) = Tgl (f1 + f2 F fo,0) = Tg(f D (f2,9)
which is a contradiction. Hence )\ (f1 + fa,p) = )\pq (fi,9) = Ag pq (f2, ) -
Similarly in view of the proof of the ﬁrst part of Theorem 21 , one can estabhsh the
same conclusion under the hypothesis T(p 9 (f1,¢) # ?gf’q) (f2,¢) . This proves the
first part of the theorem.

CAsE I1. Let us consider that

APD (f1,0) = APD (f1,0) (0 < APD (f1,0) ABD (f1,0) <

Therefore in view of Theorem 6, it follows that /\gligg (fi,p) > g}f’q (fi,p) =
APD (£, 5 and if possible let
(34) MLy (@) > M5 (fr0) = A2 (f1.0)

Suppose Tg ( fi,0) # Tg ) ( f1,¢) . Then in view of the second part of Theorem

21 and (34), we obtain that Tg( (fi,p) = éff;zq:gz (fi,p) = qu (f1,%) which is

a contradiction. Hence )‘gligz (f1,0) = )\gf’q) (f1,0) = Aé@’ @) (f1,) . Analogously

with the help of the second part of Theorem 21, the same conclusion can also be
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derived under the condition T ( f1,0) # 7' ( f1,¢) and therefore the second
part of the theorem is estabhshed. ]

Theorem 25. Let f1, fo be any two meromorphic functions and g1, go be any two
entire functions.

(A) The following conditions are assumed to be satisfied:

(1) At least any one of fi or fa is of reqular relative (p,q)-p growth with respect to
g1 and gs. Also g1, 92, g1 £ g2 have satisfy the Property (A);

(ii) Either Tg (f1 + fo,p) # Tégq (f1 £ f2,) or
V(i far0) TRV (f1 £ for0);

(i) Enhew <f1, )#Téfq (for) or 78 (fl,cp)#f ) (far )
(iv >Ezthew "(f1,0) # 78D (fo )wé’;‘”( 1,9) 78D (fa,0); then

APD(fr £ for0) = APD (f1,0) = APD (f2,0) = ALD (f1,0) = XD (£, ).

(B) The following conditions are assumed to be satisfied:
(1) At least any one of f1 or fa are of regular relative (p,q)-¢ growth with respect to
g1 £ g2, and gl + g9 has satisfy the Property (A);

(ii >Ezthemigg (F1 ) # 7, ligg (F2r0) or T D), (fl,ga)#rgligg (f2.) holds;
(i) Either Tg <f1, 0) # Téé’ D (frr0) or THD (f1,0) # T (f1,0) holds;
(iv) Ezthew ) (f2r) # 787 (f2r) or 7D (o) £ 7ED () holds, then

AL (1 Farp) = A2D (f1,0) = AED (fo,0) = A2D (f1,0) = A2V (f3, ).

We omit the proof of Theorem 25 as it is a natural consequence of Theorem 24.

Theorem 26. Let f1, fo be any two meromorphic functions and g1, 92 be any two

entire functions. Also let o (f1,0), ph (fo,0), P57 (f1,0) and pE? (fa,0) be
all non zero and finite.

(A) Assume the functions fi, fg (md g1 satisfy the following conditions:

(1) Any one of,o(pq) (fi,p) > pg1 (f],go) hold fori, j = 1,2 and i # j;
(13) g1 satisfies the Property (A), then

D(fi- forp) = o0 (fip) and TR (fi- fo,0) =T8? (fir) i = 1,2.

Similarly,
f fi :
23 (f1 >:U§’f"” (firg) and 730 <f ’“’) o (fie) i =12
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holds provided (7) f—; is meromorphic, (ii) pg1 (fl, ) > p,(ﬁq (fi,p) 14, 1,2, 5 =
1,254 # j and (4i1) g1 satisfy the Property (A).

(B) Assume the functions 91,92 cmd f1 satisfy the following conditions:

(1) Any one of pg’q) (fi,0) < pg] (fl, @) hold and at least fi is of regular relative
(p, q)-¢ growth with respect to any one of g; fori, j = 1,2 and i # j, and g; satisfies
the Property (A);

(7i) g1 - g2 satisﬁes the Property (A), then

091 92 (fl?‘)o) = Us(yf’q) (fl,SO) and U§€Z2 (fla‘p) = ng’q) (fh‘P) ’ i = 172

Similarly,
o8 (F1,0) = o0 (f1,0) and TEY (f1,0) =77 (f1, ) i = 1,2
92 92

holds provided () % is entire and satisfy the Property (A), (ii) At least f1 is of

reqular relative (p,q)-¢ growth with respect to go, (iii) pgf ) (fi,0) < pgJ (fl, ©) |
i=1,2,5=1,2;1 # j and (iv) g1 satisfy the Property (A).
(C) Assume the functions f1, fo, g1 and g2 satisfy the following conditions:

(1) g1 - g2 satisfies the Property (A);

ii) Any one of p(p 2 (fi,0) < péf @

P, q)-p growth with respect to g; fori =1,2,j = 1,2 and i # j;

(

(

(131) Any one of,o(pq (f2, ) < pgjq
(

(i

D, q)-p growth with respect togj fori =1,2,5 = 1 2 and i % j;

) pf(fl)q (fisp) > pgl (f], ¢) and ppq) (fis o) > p92 (f]7 ©) holds simultaneously
fori=1,2;j=1,2 and i # j;
(v) P (fi, ) =
max{min { o (f1.0) . o5 (f1,0) } min {pE? (F2,0) 057 (for0) || 1m0 = 1,25
then

(f1,¢) hold and at least f1 is of reqular relative
(f2,¢) hold and at least fo is of regular relative

(2%

O—.glljgg (fl f27 ) (f17 ) andag]j%l (fl f27 )_Eg]ﬁlQ)(fl730)‘lvm:172
Similarly,

a(gﬁ’Q) (?,gp) —qu)(fl, ®) andap‘Z)<§1 >=U§I:r’bq) (f,o) |l m=1,2.
2 2

92 92

holds provided % is meromorphic function and % is entire function which satisfy
the following conditions:

(1) g—; satisfies the Property (A);

(13) At least f1 is of reqular relative (p, q)-¢ growth with respect to g2 and p(p ) (f1, %)
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7é pgg’q) (fla 90);

(mz) At least fo is of regular relative (p, q)-¢ growth with respect to ga and p(p ) (f2,9)
# i (f2,0);

(iv) qu (fir0) < P (f5,0) and pE? (fiv @) < pf (f3,) holds simultaneously
fori=1,2;j=1,2 and i # j;

(v) P (fi, ) =

max{min { o (f1,) %7 (f1,0) }smin { o7 (2,9, 057 (for0) }| [ Lm = 1,2.

Proof. Let us suppose that p (f1,9), o ? (f2.0), pie® (f1, ) and p%? (f2,)
are all non zero and ﬁmte

CasE 1. Suppose that p (fl, ) > pg1 (fg, ©). Also let g1 satisfy the Property
(A). Since T},.5, (r) < Ty, (r) + T}, () for all large 7, therefore applying the same
procedure as adopted in Case I of Theorem 20 we get that

(35) D(fr- farp) < o@D (f1,0).

Further without loss of any generality, let f = fi1-fo and p ( f2, cp) < pg1 ( fi,9)
= pg1 (f, ¢). Then in view of (35) , we obtain that 0 (f, ) = O'gl (f1 f2,0)
agl (fl, ). Also f1 = —2 and Ty, (1) = T%( T) —|— O(1). Therefore Ty, (r) <

2

IN

Ty (r)+T4, (r)+ O( ) and in this case also we obtain from (35) that agq (fi,p) <
fl)

aéff”(f, ©) = oV (fi - fo, ). Hence o (f,0) = oD (f1,0) = oLV (f1 - fz,_>
_ng (fl,%p)

Similarly, if we con51der p(p ) (fi,p) < pg1 ( f2,¢), then one can verify that
ot (1 fo0) = o7 (fa.0)

Next we may suppose that f= f L With fl, f2 and f are all meromorphic functions.

SUB CASE IA Let p (fg, gp) < pg1 (fl, ¢). Therefore in view of Theorem 12,
PR (fo,0) < pgl '(f1.9) = PV (£.9). We have fi = f - fo. So, i (f1,¢) =
0 (1) o (10).

SUB CASE IB Let p(p ) (f2, ) > pg1 (fl, ©). Therefo re in view of Theorem 12,
PR (f1:9) < PR (f2,0) = P07 (fr0). Simce Ty (r) = T (1) +O(1) = Tpo () +
0(1), So ot (4,¢) = off" <f2, “

Cask II. Let pPQ) (f1,0) > pg1 (fz, ©). Also let g1 satisfy the Property (A).

As Ty,.4, (r) < Ty, (r)+ T}, (r) for all large r, therefore applying the same procedure
as explored in Case II of Theorem 20, one can easily verify that 0(p 2 (fi-fa,0) =
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E(g]j’Q) (f1, %) and a(p 9 <f ,(p) = J(]f ) (fi,) | i = 1,2 under the conditions specified
in the theorem.

Similarly, if we consider p(p ) (f1,0) < pg1 ( f2, ) then one can verify that
S (i for0) = TR (for0) and 58V (£,0) = 78D (f2.0).

Therefore the first part of theorem follows from Case I and Case II.

CAsE III. Let g; - go satisfy the Property (A) and p(p ) (fi,0) < pg ) (f1, ) with
at least fi is of regular relative (p, ¢)-¢ growth with respect to gs. Since Ty, .g, (1) <
Ty, (1) + Ty, (r) for all large 7, therefore applying the same procedure as adopted in
Case IIT of Theorem 20 we get that

(36) oD (f1,0) > o®9 (f1, ).

Further without loss of any generality, let g = g1-g2 and ,o ( fi,0) = pgf”) (f1,9)
< p92 (fl,cp) Then in view of (36), we obtain that a (f p) = aéf 3)2 (f1
> crp‘I) (f1,¢). Also g1 = —2 and Ty, (r) = T1 (r) + O(1). Therefore Ty, (r

92

)
Ty (r) + Ty, (r) + O( ) and in this case we obtain from (36) that agq (fi,p) >
) =

oPD (f1,0) = o9 (f1,¢). Hence oP? (f1,0) = ¥V (f1,0) = oD (f1, ¢

0—5(]}10 @ (fl? (/7)

Similarly, if we consider p ( fi,0) > sz ( f1,) with at least f1 is of regular
relative (p, q)-¢ growth with respect to g1, then one can verify that agl o ( fi, o) =
(p q) (f1, ).
Next we may suppose that g = gl with g1, g2, ¢ are all entire functions satisfying
the conditions specified in the theorem
SUB CASE I114. Let ,O(p ) (f1, ) < pg2 (f1,<p) Therefore in view of Theorem

15, p V(f1,0) = pEY (f1,9) < p2? (fr,0). We have g1 = g - ga. So o b” (f1,¢)
D (f, 90)—0571 (f1, ).

SuB Cask IIIp. Let p (fl, ) > pgz (fl, ¢). Therefore in view of Theorem
15, 0" (f1.9) = pib” (1.0) < A7 (fri). Since Ty (r) = T1 () + O(1) =

TZ%(T)*FO() SOO’pq)(flaSO)_UQQ (flv )

92
CASeE IV. Suppose g; - g2 satisfy the Property (A). Also let p (fl, p) <
pg’(n (f1,¢) with at least fi is of regular relative (p,q)-¢ growth with respect to
g2. As Ty, .g, (1) < Ty, (r) + Ty, (r) for all large r, the same procedure as explored in
Case IV of Theorem 20, one can easily verify that agl . (fl, ) = agl (fl, v) and

a(gzi @) (f1,0) = O'g @) (f1,¢) | i = 1,2 under the conditions specified in the theorem.

92
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(p,q)

Likewise, if we consider p(p ) (f1,) > pg. " (f1,¢) with at least f; is of regular

relative (p, q)-¢ growth with respect to g1, then one can verify that agﬁ 3)2 (fi,p) =
Eg 2 (f1,%) and a (fl, Y) = ag2 (fl, ¢). Therefore the second part of theorem
follows from Case 1M1 and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 16 and Theorem 18 and the above cases. O

Theorem 27. Let f1, fo be any two meromorphic functions and g1, go be any two
entire functions. Also let )\gfqu (f1,0), A (fg, ®), )\g’q) (f1,¢) and )\g’q) (f2,9)
be all non zero and finite.

(A) Assume the functions fi, fo and g1 satisfy the following conditions:

(1) Any one of Agf’q) (fisp) > (p 9 (fj, ) hold and at least any one of f; is of reqular
relative (p, q)-p growth with respect to g1 fori, j =1,2 and i # j;

(13) g1 satisfies the Property (A), then

D(fi- forp) =780 (firp) and TED(fi- fo,0) =TV (fir o) | i =1,2.

Similarly,

it (? ”0) Y (fip) and 7 (;1 )—Téfi’q’ (fivp) i =1,2

holds provided f—; is meromorphic, at least fo is of regular relative (p,q)-p growth
with respect to g1 where g1 satisfy the Property (A) and )\gﬁ’Q) (fi, o) > )\gf’q) (fj,®)
|i=1,2;7=1,2;i # j.

(B) Assume the functions g1, g2 and f1 satisfy the following conditions:

(1) Any one of )\gf’q) (fi,0) < /\g’Q) (f1,) hold for i, j = 1,2, 1 # j; and g; satisfy
the Property (A)

(ii) g1 - g2 satisfy the Property (A), then

Tg(fZQ (flago)_qu (f17 ) and 7-9192 <f17 )_?g?’q) (fl,SO) |Z:172

Similarly,

T8V (fr,0) = 7PV (fr,90) and TEY (f1,0) =78V (fr,9) | i = 1,2

92 92

holds provided Z—; is entire and satisfy the Property (A), g1 satisfy the Property (A)
and APV (f1,0) < APV (fr0) i = 1,2, = 1,20 # J.

(C) Assume the functions f1, fa, g1 and g2 satisfy the following conditions:

(1) g1 - g2, g1 and g2 are satisfy the Property (A);

(13) Any one of APQ) (fisp) > )\éﬁ)’q) (fj, ) hold and at least any one of f; is of
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reqular relative (p,q)-p growth with respect to gy fori =1,2, 7 = 1,2 and i # j;
(ii1) Any one of /\g’;’q) (fi,) > /\E,Z’q) (fj, ) hold and at least any one of f; is of
reqular relative (p,q)-¢ growth with respect to ga for i = 1 2,j=12and1i# j;
() APD (f1,0) < AP (f1,0) and ALY (fa,0) < APV (fa,0) holds simultane-
ously fori=1,2; j=1,2 and i # j;

(v) A () =

wmin [max{A (1,90 ARD (far0) by max AL (£1,0) MED (P20 ]| | Lm0 =
1,2; then

78D (fr- far0) = 72D (fi ) and TED, (fi - farp) = 78D (fr,0) [ L,m = 1,2.

Similarly,

Tf(il),q) ('ﬁ?@) :Tg(siq) (flvso) and'T (fl ) _qu (fla ) |l’m: 1’2
f2 2 f2

92
holds provided % is meromorphic and g—; s entire functions which satisfy the fol-
lowing conditions:
(7) g—;, g1 and gy satisfy the Property (A);
(ii) At least fo is of regular relative (p, q)-¢ growth with respect to g1 and )\gl)’Q) (f1,9)

# M (fa0);
(7i1) At least fo is of reqular relative (p, q)-p growth with respect to go and )\(p 9 (f1,9)

7é Ag;q) (f27 ()0)7

(@) M (1.9) < ALY (Fr,9) and AED (Fa,0) < MG (fartp) holds simultane-
ously fori=1,2; j=1,2 and i # j;

( ) (p7€I) (fl) )

min [max{)\(pq) (fi1,0), A pq> (f2, )},max{)\g’Q) (f1,0), A pq) (f2, )H | I,m =
1,2.

Proof. Let us consider that )\ pQ) (fi,0), A (p 9 (f2,0), A (pq (fl, ¢) and )\(p e (fa, )
are all non zero and finite.

CasE I. Suppose )\gz;,q) (f1,¢) > )\gl)’q) (f2, @) with at least fo is of regular relative
(p, q)-¢ growth with respect to g1 and g; satisfy the Property (A). Since T¥,.y, (1) <
Ty, (r) 4Ty, (r) for all large r, therefore applying the same procedure as adopted in
Case I of Theorem 21 we get that

(37) T(M) (f1- fa, ) < qu (f1, ).

Further without loss of any generality, let f = f1-fs and )\ ( fa, ) ( f1,9)
= )\(glj ) (f,). Then in view of (37), we obtain that T(pq (f, p) = Tgf Q) (f1 f2, )
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< 70D (fr9). Also fi = £ and Ty, (r) = Ty (r) + O(1). Therefore Ty, (r) <
2

Ty (r) + Ty, (1) + O( ) and in this case we obtain from the above arguments that

it (f09) < 70 (£.0) = 70 (- forg). Honee 12 (£9) = 72 () =

8D (o) = 7 (1.9)

Similarly, if we consider )\ ( fi,o) < Aé’j’Q) (f2, ) with at least fi is of reg-
ular relative (p,q)- go growth Wlth respect to g1, then one can easily verify that
70D (f1- far0) = 787 (far ) -

Next we may suppose that f = f L with f1, fo and f are all meromorphic functions
satisfying the conditions spec:1ﬁed in the theorem.

SuB CASE I4. Let )\( )(f ©) < A (pq (f1,¢). Therefore in view of Theorem
1289 (3,0) < A29 (11,9) = ALY (7, 0). We have fi = £ - fo. S0 78 (f1,9)
9 (,¢) = 7 (fz,go)

SUB CASE Ip. Let )\ (fQ,ga) > >\ (fl, ¢). Therefore in view of Theorem
11, AP (fi,9) < “) (forp) = A(pQ) (f.¢). Since Ty (r) = Ty (r) + O(1) =

Ty, (r) +0(1), S0 7t (£.0) —Tgi’” (f2.%).

CASE II. Let )\g‘? ) (fi,p) > /\ (fz, @) with at least fy is of regular rel-
ative (p,q)-p growth with respect to g; where g1 satisfy the Property (A). As
T4, (r) < T4, (r)+TY, (r) for all large r, so applying the same procedure as adopted
111 Case IT of Theorem 21 we can easily verify that T(p 2 (f1- fa,0) = Tgl (fl, ¢) and
Tgl (fl, ) = T(p 2 (f1,¢) | i = 1,2 under the conditions specified in the theorem.

92

Similarly, if we consider /\ ( fi,o) < 91’ ( f2,) with at least fj is of reg-
ular relative (p,q)- gp growth Wlth respect to g1, then one can easily verify that
TRV (f1r- for ) =70 (2 0) -

Therefore the first part of theorem follows Case I and Case II.

CasE III. Let )\gz; ) (fr,0) < )\ (fl, ¢) and g1 -g2 satisfy the Property (A).Since
Tyr.g, (1) < Ty, (r)+ Ty, (r) for all large r, therefore applying the same procedure as
adopted in Case III of Theorem 21 we get that

(38) Tgl 92 (fla ) < ng?q) (f17 90) :

Further without loss of any generality, let g = g1-g2 and )\ ( fi,0) = ( f1,9)
< )\QJZQ) (f1,). Then in view of (38), we obtain that T(pq (fi,p) = Tgf‘glg (f1,9)
> Tg (fl,cp) Also g1 = 2 and Ty, (r) = T (r) + O(1). Therefore Ty, (r) <

92

Ty(r) + Ty, (r) + O(1) and in this case we obtain from above arguments that
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< ) 2 1 (f19) = 7l (fy). Hence 7 (fi,0) = 70 (f1,9) =
i (fl, 0) = < (fmp)

If /\g]fq (f1, ) > )\ggq (f1,%), then one can easily verify that Tgl ot (fl, ) =
7_92 (f17 )

Next we may suppose that g = 91 with g1, g2, g are all entire functions satisfying
the conditions specified in the theorem.

SUB CASE IIl4. Let )\gzl;q (fi,p) < )\g(f;’q) (f1,%). Therefore in view of Theorem
13, AP? (f1,0) = AP? (f1,9) < ALY (f1,0). We have g1 = g g2. So 707 (f1,0)
= g(pq) (f1,%) —Tg?q (f1,)-

92

SuB CASE IIIg. Let )\(p 2 (f1,0) > /\g;’q) (f1,¢). Therefore in view of Theorem
13, AP (f1,0) = A2V (f1,0) < APD(f1,9). Since T, (r) = T1 (r) + O(1) =
g

T (1) +O(1), sor D (f1,0) = 78D (1, ).

CASE 1IV. Suppose /\(pq (fi,p) < A(;;q (f1,%) and g1 - g2 satisfy the Property
(A). Since Ty, .g, (1) < Ty, (1) + T}, (r) for all large r, then adopting the same proce-
dure as of Case IV of Theorem 21, we obtain that 7'91 o (fl, ) = Tgl (fl, ¢) and

Tflq)(fl, 0) =7 (f,0) |i=1,2.

Slmllarly 1f we consider that )\(p 2 (f1,0) > )\ ( f1,%), then one can easily
verify that 791 92 (fh p) = 7'92 (f17 ®).

Therefore the second part of the theorem follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 17 , Theorem 19 and the above cases. O

Theorem 28. Let fi, fo be any two meromorphic functions and g1, g2 be any two
entire functions.

(A) The following condition is assumed to be satisfied:

(i) Either o™ (f1,0) # 0 (fa,0) or 57 (f1,0) # T (fap) holds;
(ii) g1 satisfies the Property (A), then

PR (fi- Jor0) = P (f1.90) = P (for ).
(B) The followmg conditions are assumed to be satisfied:

(i) Either o™ (f1,¢) # 0™ (f1.9) or 7 (f1.0) # T (f1.0) holds;
(13) f1 is of reqular relative (p,q)-¢ growth with respect to at least any one of g1 or

g2. Also g1 - g2 satisfy the Property (A). Then we have
Pglgz (fh )_pgl (f1> >_pgz (f1> )
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Proof. Let f1, fo be any two meromorphic functions and g;, g2 be any two entire
functions satisfying the conditions of the theorem.

Case L Suppose that i (f1,0) = o™ (f2,0) (0 < it (f1,0) P " (far0) <
00) and g1 satisfy the Property (A). Now in view of Theorem 12, it is easy to see

that p? (f1 - far ) < P (fr,9) = pE? (f2,0) . If possible let
(39) pED (fr fa,0) < oD (f1,0) = P (f2,0)

Let ag}fq (fi,p) # O'(p 9 (f2,). Now in view of the ﬁrst part of Theorem 26
and (39) we obtain that 0(1 )(fl,go) = ag(,l 9 (@f,gp) = agl (fz, ¢) which is a

contradiction. Hence ,o(p ) (f1- fo,0) = pg1 ( fi,9) = pgll) ) (f2, %) . Similarly with

the help of the ﬁrst part of Theorem 26, one can obtain the same conclusion under

the hypothesis & a ( fi,0) # Egl)’q) (f2, ) . This prove the first part of the theorem.
Cask 1I. Let us consider that

pgl (fl’ )_pgz (fl? )(0<:0 (fh )pgg (f17 ) )

f1 is of regular relative (p, q)-¢ growth with respect to at least any one of g; or go.
Also 91 go satisfy the Property (A) Therefore in view of Theorem 14, it follows
that pgf Z)z (f1,0) > p 9 (fi,0) = p;; ) (f1, ) and if possible let

(40) pglg2(f17 ) p,q (fly )_pg2 (fly )

Further suppose that O‘ ( fi,0) # a ( f1,¢) . Therefore in view of the proof
of the second part of Theorem 26 and (40), we obtain that O'(p 9 (fi,0) = agfi %)2 (f1,9)

92
= a_((]2 (f1, %) which is a contradiction. Hence

pg%-?]z(fla )_pgl (f17 )_pg2 (f17 )

Likewise in view of the proof of second part of Theorem 26, one can obtain the same
conclusion under the hypothesis ng ) (f1,0) # a(p 2 (f1,¢) . This proves the second
part of the theorem. O

Theorem 29. Let fi, fo be any two meromorphic functions and g1, g2 be any two

entire functions.

(A) The following conditions are assumed to be satisfied:

(2) (f1- f2) is of regular relative (p,q)-p growth with respect to at least any one g1

or ga;

(1) (91 - g2), g1 and go all satisfy the Property (A)

(itd) Bither of?™ (f1 - fa0) # 0™ (f1 - for0) or R (f1 - fai0) #5457 (1 fo )



350 TANMAY Biswas

(' )Eitherggjl)q (f17 )750-91 (f27 ) or Ugl (flaQ)O) #U(pq (fZaQ)O);
(v) Either oy? (f1,9) # 05" (fa. ) or 55? (f1,0) # T (f,0); then

P, (fr- F2r0) = o2 (fro0) = pBD (fo,0) = pBD (1, 0) = pB7 (f2:0)
(B) The following conditions are assumed to be satisfied:
(1) (g1 - g2) satisfies the Property (A);
(13) f1 and fa are of regular relative (p,q)-p growth with respect to at least any one
g1 or g2;
(iii) Bither ogrid) (f1,¢) # 091 92 ) (fa. ) or 091 92 ) (fr9) £ 0g1 92 ) (f2,0);
(iv) Bither o3 (f1,9) # 0¥ (f1.¢) or o (f1.¢) # 757 (. 0)
(v) Bither o5 (f2,0) # 0™ (f2.0) or Th (f2,0) # TH™ (fa.9): then

P (fr- far ) = P2 (fr,0) = p&D (fa,0) = p2D (f1,0) = p2D (fo, ) .

We omit the proof of Theorem 29 as it is a natural consequence of Theorem 28.

Theorem 30. Let fi, fo be any two meromorphic functions and g1, g2 be any two
entire functions.

(A) The following conditions are assumed to be satisfied:

(1) At least any one of fi or fo is of reqular relative (p,q)-p growth with respect to
915

(id) If either 75" (f1,0) # 70 (far9) or Tk (f1,0) # 7h® (o, p) holds.
(7i1) g1 satisfies the Property (A), then

D(fr- f2r ) = APV (f1,0) = APV (f2,0)

(B) The following conditions are assumed to be satisfied:
(1) f1 is any meromorphic function and g1, g2 are any two entire functions such that

)\(p’Q) (f1,9) and )\gq (f1,) exist and g1 -gg satisfy the Property (A);
(13) If either Tg (fl, ) # Tg ) (f1,) or Tgl (fl, ©) £ T, T (fl, ©) holds, then

APD (f1,0) = APD (f1,0) = ABD (1)

Proof. Let fi, fo be any two meromorphic functions and ¢;, go be any two entire
functions satisfy the conditions of the theorem.

Case L Let AP (f1,0) = ALY (f2.0) (0 < ALY (f1,0) , ALY (f2, ) < 20), o1
satisfies the Property (A) and at least fi or fa be of regular relatlve (p7 ) © growth
with respect to g1. Now in view of Theorem 10 it is easy to see that )\ ( fi- fa,0)
< )\pq (fi,p) = )\ngq (f2, ). If possible let

(41) APD) (£ fo,0) < APD (f1,0) = APD (f5, ).
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Also let Tg ( fi,0) # Tg(f ) (f2,¢) . Then in view of the proof of first part of
Theorem 27 and (41), we obtain that

(f17 )_T(pQ) <flf-2f27§0> _T(pq (f?a )

which is a contradiction. Hence Agf’q) (f1-fa,p) = Agf’q) (fi1,9) = )\_Efl)’q) (f2,9) .

Analogously, in view of the proof of first part of Theorem 27 and using the same

technique as above, one can easily derive the same conclusion under the hypothesis

Tgl ( fi,9) # T(p 2 (f2, ). Hence the first part of the theorem is established.
CASE II. Let us consider that

D (f1.0) = MV (f1,9) (0 < ALY (fr,0) ARD (f1,0) < 00

and 91 g2 satisfy the Property (A). Therefore in view of Theorem 13, it follows that
MED (fo0) = MY <f1, @) = My (f1,) and if possible let

(42) My (fr,0) > APD (f1,0) = A2D (f1, ).
Further let Tg ( fi,0) # ngg ) (f1,¢) . Then in view of second part of Theorem
27 and (42), we obtain that
pq) (fl,SO) - 7_91 92 (flvgo) = qu) (fla )

92

which is a contradiction. Hence )\91 g (f1,0) = (p ) (fi,p)= (p ) ( fl, ) Similarly
by second part of Theorem 27, we get the same conclusion When 7' ( fi,0) #

ng ) (f1,) and therefore the second part of the theorem follows. O

Theorem 31. Let fi, fo be any two meromorphic functions and g1, g2 be any two
entire functions.

(A) The following conditions are assumed to be satisfied:

(1) g1 92, g1 and g satisfy the Property (A);

(ii) At least any one of f1 or fa is of reqular relative (p,q)-p growth with respect to
g1 and ga;

(i) Bither Tg (f1 fr.0) # rg%’ D(fr- fa) or FRD (fr fo,0) #THD (1 fr )
(iv) Bither Tg D (f1,9) # rg D (fa,) or Téfi ‘”( @) # 7™ (f20);

(v) Bither 2™ (f1,9) # 78 (f2,0) or 75 (f1,0) # 7ED (fo,0); then

APD (F1- farp) = APD (f1,0) = ABD (f5,0) = APD (f1,0) = ABD (fy, ).

(B) The following conditions are assumed to be satisfied:
(1) g1 - g2 satisfies the Property (A);
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(ii) At least any one of f1 or fa is of reqular relative (p,q)-p growth with respect to
91925

(7i1) FEither Tgf ;73 (f1,0) # Téff}g (fa,0) or Tgl g2 (fl, ) # T(glf 3)2 (fa, ) holds;

(iv) Bither il (f1,) # Tg D (fr, ) or Tg1 (fl,sO) #78Y (f1,) holds;

(v) If either qu (f2, ) # 7'92 )(fg, ®) or Tgl (fg, ©)£T ng )(f2,<p) holds, then

APD (fr- farp) = AP (£1,0) = ABD (£5,0) = ABD (£1,0) = A2D (f,,¢).

We omit the proof of Theorem 31 as it is a natural consequence of Theorem 30.

Remark 32. If we take f—; instead of f; - fo and 9; instead of g1 - go where % is
meromorphic and g; is entire function, and the other conditions of Theorem 28,
Theorem 29, Theorem 30 and Theorem 31 remain the same, then conclusion of

Theorem 28, Theorem 29, Theorem 30 and Theorem 31 remains valid.
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