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SOME ĆIRIC TYPE FIXED POINT RESULTS IN

NON-ARCHIMEDEAN MODULAR METRIC SPACES

Hoda Hosseini a, ∗ and Majid Eshaghi Gordji b

Abstract. In this paper, we establish some Ćiric type fixed point theorems in
α−complete and orbitally T−complete non-Archimedean modular metric spaces.
Meanwhile, we present an illustrative example to emphasis the realized improve-
ments. These obtained results extend and improve certain well known results in the
literature.

1. Introduction

Modular metric spaces are a natural generalization of classical modulars over lin-

ear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, Calderon-

Lozanovskii spaces and many others. Modular metric spaces were introduced in

[4, 5]. The introduction of this new concept is justified by the physical interpre-

tation of the modular. Roughly, whereas a metric on a set represents nonnegative

finite distances between any two points of the set, a modular on a set attributes

a nonnegative (possibly, infinite valued) “field of (generalized) velocities”: to each

“time” λ > 0 (the absolute value of) an average velocity ωλ(x, y) is associated in

such a way that in order to cover the “distance” between points x, y ∈ X it takes

time λ to move from x to y with velocity ωλ(x, y). But in this paper, we look at

these spaces as the nonlinear version of the classical modular spaces introduced by

Nakano [18] on vector spaces and modular function spaces introduced by Musielak

[17] and Orlicz [19].
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In recent years, many researchers studied the behavior of the electrorheological

fluids, sometimes referred to as “smart fluids” (for instance lithium polymetachry-

late). An interesting model for these fluids, is obtained by using Lebesgue and

Sobolev spaces, Lp and W 1,p, in the case that p is a function [6].

We remark that the usual approach in dealing with the Dirichlet energy problem

[7, 10] is to convert the energy functional, naturally defined by a modular, to a

convoluted and complicated problem which involves the Luxemburg norm.

In many cases, particularly in applications to integral operators, approximation

and fixed point results, modular type conditions are much more natural as modular

type assumptions can be more easily verified than their metric or norm counterparts.

Recently, there was a strong interest to study the existence of fixed points in the

setting of modular function spaces after the first paper [13] was published in 1990.

For more on metric fixed point theory, the reader may consult the book [11] and for

modular function spaces the book [16].

In this paper we establish some Ćiric type fixed point theorems in α−complete

and orbitally T−complete non-Archimedean modular metric spaces. Meanwhile,

we present an illustrative example to emphasis the realized improvements. These

obtained results extend and improve certain well known results in the literature.

Let X be a nonempty set and ω : (0,+∞)×X ×X → [0,+∞] be a function, for

semplicity we will write

ωλ(x, y) = ω(λ, x, y),

for all λ > 0 and x, y ∈ X.

Definition 1.1 ([4, 5]). A function ω : (0,+∞) × X × X → [0,+∞] is called a

modular metric on X if the following axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

If in the Definition 1.1 we use the condition

(i’) ωλ(x, x) = 0 for all λ > 0 and x ∈ X;

instead of (i) then ω is said to be a pseudomodular metric on X. A modular metric

ω on X is called regular if the following weaker version of (i) is satisfied

x = y if and only if ωλ(x, y) = 0 for some λ > 0.
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Again, ω is called convex if for λ, µ > 0 and x, y, z ∈ X holds the inequality

ωλ+µ(x, y) ≤
λ

λ+ µ
ωλ(x, z) +

µ

λ+ µ
ωµ(z, y).

Remark 1.2. If ω is a pseudomodular metric on a set X, then the function λ →
ωλ(x, y) is nonincreasing on (0,+∞) for all x, y ∈ X. Indeed, if 0 < µ < λ, then

ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y).

Definition 1.3 ([4, 5]). Let ω be a pseudomodular onX and x0 ∈ X fixed. Consider

the two sets

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0) → 0 as λ→ +∞}

and

X∗
ω = X∗

ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) < +∞}.

Xω and X∗
ω are called modular spaces (around x0).

It is clear that Xω ⊂ X∗
ω but this inclusion may be proper in general. Let ω be a

modular on X, from [4, 5], we deduce that the modular space Xω can be equipped

with a (nontrivial) metric, induced by ω and defined by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ} for all x, y ∈ Xω.

If ω is a convex modular on X, according to [4, 5] the two modular spaces coincide,

that is X∗
ω = Xω and this common set can be endowed with the metric d∗ω defined

by

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1} for all x, y ∈ Xω.

These distances will be called Luxemburg distances.

Example 2.1 presented by Abdou and Khamsi [1] is an important motivation for

developing the theory of modular metric spaces. Other examples may be found in

[4, 5].

Definition 1.4. Let Xω be a modular metric space, M a subset of Xω and (xn)n∈N

be a sequence in Xω. Then

(1) (xn)n∈N is called ω-convergent to x ∈ Xω if and only if ω1(xn, x) → 0, as

n→ +∞. x will be called the ω-limit of (xn).

(2) (xn)n∈N is called ω-Cauchy if ω1(xm, xn) → 0, as m,n→ +∞.

(3) M is called ω-closed if the ω-limit of a ω-convergent sequence of M always

belong to M .



218 Hoda Hosseini & Majid Eshaghi Gordji

(4) M is called ω-complete if any ω-Cauchy sequence in M is ω-convergent to a

point of M.

(5) M is called ω-bounded if we have δω(M) = sup{ω1(x, y);x, y ∈M} < +∞.

Recently Paknazar et al. [20] introduced the following type modular metric space.

Definition 1.5. If in the definition 1.1, we replace (iii) by

(iv) ωmax{λ,µ}(x, y) ≤ ωλ(x, z) + ωµ(z, y)

for all λ, µ > 0 and x, y, z ∈ X

then Xω is called non-Archimedean modular metric space. Since (iv) implies (iii),

so every non- Archimedean modular metric space is a modular metric space.

Definition 1.6 ([22]). Let T be a self-mapping on X and let α : X ×X → [0,+∞)

be a function. We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 1.7 ([21]). Let T be a self-mapping on X and α, η : X ×X → [0,+∞)

be two functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X, α(x, y) ≥ η(x, y) =⇒ α(Tx, Ty) ≥ η(Tx, Ty).

Definition 1.8 ([8]). Let (X, d) be a metric space. Let α, η : X×X → [0,+∞) and

T : X → X be functions. We say that T is an α-η-continuous mapping on (X, d) if

for given x ∈ X and sequence {xn} with xn → x as n→ +∞

α(xn, xn+1) ≥ η(xn, xn+1) for alln ∈ N =⇒ Txn → Tx.

Definition 1.9. Let T be a self-mapping on X and let α : X ×X → [0,+∞) be a

function. We say that T is an αm-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tmx, Tmy) ≥ 1 for all m ∈ N.

Definition 1.10. Let Xω be a non-Archimedean modular metric space. Let α, η :

Xω ×Xω → [0,+∞) be two functions and let T : Xω → Xω be a mapping. We say

that T is an α-continuous mapping on Xω, if for given x ∈ Xω and sequence {xn}
with ω1(xn, x) → 0 as n→ +∞

α(xn, xn+1) ≥ 1 for alln ∈ N =⇒ ω1(Txn, Tx) → 0.

If η(x, y) = 1 for all x, y ∈ Xω, then T is called α− ω-continuous.
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Definition 1.11. Let Xω be a non-Archimedean modular metric space and α :

X × X → [0,+∞). The non-Archimedean modular space Xω is said to be α-

complete if and only if every ω−Cauchy sequence {xn} with α(xn, xn+1) ≥ 1 for all

n ∈ N, ω−converges in Xω.

Example 1.12. Let X = [0,+∞) and ωλ(x, y) =
1
λ |x− y| be a modular metric on

Xω. Assume that T : X → X and α : X ×X → [0,+∞) are defined by

Tx =

 x8, if x ∈ [0, 1]

15, if (1,+∞)
, α(x, y) =

 1, if x, y ∈ [0, 1]

0, otherwise.

Then T is an α-continuous mapping. But clearly T is not ω−continuous.

2. Main Results

In this section we establish some Ćiric type fixed point theorems in the setting

of α-complete non-Archimedean modular metric space.

Theorem 2.1. Let Xω be an α-complete non-Archimedean modular metric space

with ω regular. Let T be an α−continuous self-mapping on Xω and there exist

x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω with and for some k ∈ (0, 1)

we have

(2.1)

min{ω1(Tx, Ty), ω1(x, Tx), ω1(y, Ty)} −min{ω1(x, Ty), ω1(y, Tx)} ≤ kω1(x, y)

then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary. We construct an iterative sequence {xn} as

follows

(2.2) xn+1 = Txn, n = 0, 1, 2, . . . .

If there exists a positive integer n0 such that xn0 = xn0+1, then xn0 is a fixed point

of T that completes the proof. Throughout the proof, we assume that xn ̸= xn+1 for

each n = 0, 1, 2, · · · . Letting x = xn and y = xn+1 in (3.3) we obtain the inequality

min{ω1(Txn, Txn+1), ω1(xn, Txn), ω1(xn+1, Txn+1)}

− min{ω1(xn, Txn+1), ω1(xn+1, Txn)} ≤ kω1(xn, xn+1)

which implies that

(2.3) min{ω1(xn, xn+1), ω1(xn+1, xn+2)} ≤ kω1(xn, xn+1).
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Since we assume k ∈ [0, 1), the inequality (2.3) implies that

ω1(xn+1, xn+2) ≤ kω1(xn, xn+1)

for every n = 0, 1, 2, · · · . Thus we get

(2.4) ω1(xn+1, xn+2) ≤ kω1(xn, xn+1) ≤ k2ω1(xn−1, xn) ≤ · · · ≤ kn+1ω1(x0, x1).

We claim that {xn} is a ω-Cauchy sequence. We assume that n ≤ m. Then by using

(2.4) we have

ω1(xn, xm) = ωmax{1,1,...,1}(xn, xm)

≤ ω1(xn, xn+1) + ω1(xn+1, xn+2) + · · ·+ ω1(xm−1, xm)

≤ [kn + kn−2 + · · ·+ km−1]ω1(x0, x1)

= kmω1(x0, x1)
m−n−1∑

i=0

ki

≤ kmω1(x0, x1)
∞∑
i=0

ki

≤ kmω1(x0, x1)
1

1− k
,

since k < 1. Letting n→ ∞ in the inequality above, we derive that

lim
n→∞

ω1(xn, xm) = 0.

Hence {xn} is a ω-Cauchy sequence. Since Xω is α−complete then there exists

z ∈ X such that

(2.5) lim
n→∞

ω1(xn, z) = 0.

Since T is α−continuous, so

(2.6) lim
n→∞

ω1(xn, T z) = ω1(Txn−1, T z) = 0.

Regarding the uniqueness, we derive that Tz = z. �

Example 2.2. Let X = (−∞,−2)∪ [−1, 1]∪(2,+∞). We endow X with the metric

ωλ(x, y) =

{
1
λ max{|x|, |y|}, if x ̸= y
0, x = y
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be a non-Archimedean modular metric on X. Define T : X → X and α : X ×X →
[0,∞) by,

Tx =



√√
2x2 − 1, if x ∈ (−∞,−3]

5
√
x3 − 1, if x ∈ (−3,−2)

1
4x

2, if x ∈ [−1, 1]

6, if x ∈ (1, 4)

10, if x ∈ (4,∞)

α(x, y) =

{
1, if x, y ∈ [−1, 1]
0, otherwise

. Clearly Xω is not a ω−complete modular metric

space. But it is an α-complete modular metric space. In fact if {xn} is a Cauchy

sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N, then {xn} ⊆ [−1, 1] for all n ∈ N.
Now since ([−1, 1], ω) is a ω−complete modular metric space, then the sequence {xn}
converges in [−1, 1] ⊆ X. Let α(x, y) ≥ 1, then x, y ∈ [−1, 1]. On the other hand

Tw ∈ [−1, 1] for all w ∈ [−1, 1]. Then α(Tx, Ty) ≥ 1. That is T is an α-admissible

mapping. Let {xn} be a sequence, such that xn → x as n→ ∞ and α(xn+1, xn) ≥ 1

for all n ∈ N. Then {xn} ⊆ [−1, 1] for all n ∈ N. So {Txn} ⊆ [−1, 1]. Now, since T

is continuous on [−1, 1], then Txn → Tx as n → ∞. That is T is an α-continuous

mapping. Clearly α(0, T0) ≥ 1. Let α(x, y) ≥ 1. Then x, y ∈ [−1, 1].

min{ω1(Tx, Ty), ω1(x, Tx), ω1(y, Ty)} −min{ω1(x, Ty), ω1(y, Tx)}

= min{max{1
4
x2,

1

4
y2},max{x, 1

4
x2},max{y, 1

4
y2}}

−min{max{x, 1
4
y2},max{y, 1

4
x2}}

≤ min{max{1
4
x2,

1

4
y2},max{x, 1

4
x2},max{y, 1

4
y2}}

≤ min{max{1
4
x2,

1

4
y2},max{x, 1

4
x2},max{y, 1

4
y2}}

≤ max{1
4
x2,

1

4
y2}

≤ 1

4
max{|x|, |y|}

≤ 1

4
ω1(x, y).

Hence all conditions of theorem 2.1 hold and T has a fixed point.
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Theorem 2.3. Let Xω be an α-complete non-Archimedean modular metric space

with ω regular. Let T be an α−continuous and αm−admissible self-mapping on Xω

and ε > 0. Suppose that there exists a point x0 ∈ X such that ω1(x0, T
n(x0)) < ε

for some n ∈ N and α(x0, T (x0)) ≥ 1. If for all x, y ∈ Xω with 0 < ω1(x, y) < ε and

for some k ∈ (0, 1) we have,

(2.7) min{ω1(x, T (x)), ω1(T (x), T (y)), ω1(T (y), y)} ≤ kω1(x, y),

then, T has a periodic point.

Proof. Set M = {n ∈ N : ω1(x, T
n(x)) < ε : for x ∈ X}. By the assumption of

the theorem M ̸= ∅. Let m = minM and x ∈ X such that ω1(x, T
m(x)) < ε.

Suppose that m = 1, that is, ω1(x, T (x)) < ε. By applying (3.4), one can get

min{ω1(x, T (x)), ω1(T (x), T (T (x))), ω1(T (T (x)), T (x))} ≤ kω1(x, T (x)).

The case ω1(x, T (x)) ≤ kω1(x, T (x)) provides a contraction due to the fact that

k < 1. Thus, ω1(T (x), T (T (x))) = ω1(T (x), T
2(x)) ≤ kω1(x, T (x)). As in the

proof of theorem 2.1, one can consider the iterative sequence xn+1 = T (xn) and

α(x0, T (x0)) ≥ 1, and observe that Tz = z for some z ∈ X.

Suppose m ≥ 2. This is equivalent to stating that the condition

(2.8) ω1(T (y), y) ≥ ε

holds for each y ∈ X. Then, from ω1(x, T
m(x)) < ε and (3.4) it follows that

min{ω1(x, T (x)), ω1(T (x), T (T
m(x))), ω1(T (T

m(x)), Tm(x))} ≤ kω1(x, T
m(x)).

Since Tm(x) ∈ X, one has ω1(T (T
m(x)), Tm(x)) = ω1(T (w), w) when we rename

Tm(x) = w. Regarding (2.8), we obtain ω1(T (w), w) = ω1(T (T
m(x)), Tm(x)) ≥ ε

and ω1(T (x), x) ≥ ε. Thus,

min{ω1(x, T (x)), ω1(T (x), T (T
m(x))), ω1(T (T

m(x)), Tm(x))} = ω1(T (x), T
m+1(x)).

In particular,

ω1(T (x), T
m+1(x)) ≤ kω1(x, T

m(x)).

Recursively, one can get

ω1(T
2(x), Tm+2(x)) ≤ ω1(T (x), T

m+1(x)) ≤ k2ω1(x, T
m(x)).

Proceeding in this way, for each s ∈ N, one can obtain

ω1(T
s(x), Tm+s(x)) ≤ ω1(T

s−1(x), Tm+s−1(x)) ≤ · · · ≤ ksω1(x, T
m(x)).
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Thus, for the recursive sequence xn+1 = Tm(xn) where x0 = x,

ω1(xn, xn+1) = ω1(T
nm(x0), T

(n+1)m(x0))

= ω1(T
nm(x0), T

m+nm(x0))

≤ knmω1(x0, T
m(x0)).

So we can write,

ω1(xn, xn+s) ≤ [ω1(xn, xn+1) + ω1(xn+1, xn+2) + · · ·+ ω1(xn+s−1, xn+s)]

=
[
knm + k(n+1)m + ...+ k(n+p−1)m

]
p(x0, T

m(x0)(2.9)

= knm
[
1 + km + ...+ k(s−1)m

]
ω1(x0, T

m(x0))

≤ knm

1− km
ω1(x0, T

m(x0))

Let ε > 0 be given. Choose a natural number n0 such that knm

1−kmω1(x0, T
m(x0)) < ε

for all n,m > n0. Thus, for any s ∈ N

(2.10) ω1(xn, xn+s) < ε

for all n > n0. So {xn} is an ω-Cauchy sequence in Xω.

On the other hand we know that α(x0, T
m(x0)) ≥ 1. Since T is αm-admissible

mapping we deduce that α(x1, x2) = α(Tm(x0), T
2m(x0)) ≥ 1. Continuing this

process, we get

(2.11) α(xn, xn+1) = α(Tm(x0), T
(n+1)m(x0)) ≥ 1

for all n ∈ N ∪ {0}.
Now since Xω is α−complete then there exists z ∈ z such that ω1(xn, z) = 0.

Since T is α−continuous then

(2.12) lim
n→∞

ω1(Txn, T z) = 0.

Also since T is α−admissible mapping, then (2.11) implies

(2.13) α(Txn, Txn+1) ≥ 1.

Again since T is α−continuous then (2.12) and (2.13) implies,

lim
n→∞

ω1(T
2xn, T

2z) = 0.

Continuing this process, we get

lim
n→∞

ω1(T
mxn, T

mz) = lim
n→∞

ω1(xn+1, T
mz) = 0.

So Tmz = z. �
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Theorem 2.4. Let Xω be an α-complete non-Archimedean modular metric space

with ω regular. Let T be an α−continuous self-mapping on Xω and there exist

x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω and for some k ∈ (0, 1) we

have

min{[ω1(x, T (x))]
2, ω1(x, y)ω1(T (x), T (y)), [ω1(T (y), y)]

2}

≤ kω1(x, T (x))ω1(T (y), y),(2.14)

then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in Xω by

xn = Tnx0 = Txn−1 for all n ∈ N. If xn+1 = xn for some n ∈ N, then x = xn is a

fixed point for T and the result is proved. Hence we suppose that xn+1 ̸= xn for all

n ∈ N. Since T is α-admissible mapping with respect to η and α(x0, Tx0) ≥ 1, we

deduce that α(x1, x2) = α(Tx0, T
2x0) ≥ 1. Continuing this process, we get

α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0}. Then from (3.5) we get

min{[ω1(xn−1, T (xn−1))]
2, ω1(xn−1, xn)ω1(T (xn−1), T (xn)), [ω1(T (xn), xn)]

2}
(2.15)

≤ kω1(xn−1, T (xn−1))ω1(T (xn), xn).

Since k < 1, the case ω1(xn−1, xn)ω1(xn, xn+1) ≤ kω1(xn−1, xn)ω1(xn, xn+1) yields

contradiction. Thus, one gets

ω1(xn, xn+1) ≤ kω1(xn−1, xn).

Recursively, one can observe that

ω1(xn, xn+1) ≤ kω1(xn−1, xn) ≤ k2ω1(xn−2, xn−1) ≤ · · · ≤ knω1(x0, T (x0)).

By a routine calculation performed as in the proof of theorem 2.1, one can show

that T has a fixed point. �

Theorem 2.5. Let X be a non-empty set endowed with two modular metrics ω and

ρ. Let T be a mapping of X into itself. Suppose that

(i) Xω is α-complete non-Archimedean modular metric space with ω regular,

(ii) ω1(x, y) ≤ ρ1(x, y) for all x, y ∈ X,

(iii) T is α−continuous with respect to ω,
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(iv) T satisfies:

min{[ρ1(T (x), T (y))]2, ρ1(x, y)ρ1(T (x), T (y)), [ρ(y, T (y))]2}(2.16)

≤ kρ1(x, T (x))ρ1(y, Ty)

for all x, y ∈ X, where 0 ≤ k < 1.

Then T has a fixed point in X.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in Xω by

xn = Tnx0 = Txn−1 for all n ∈ N. As in the proof of theorem 2.1 we have

α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0}. Then by applying (3.6) one can get

(2.17)
min{[ρ1(T (xn−1), T (xn))]

2, ρ1(xn−1, xn)ρ1(T (xn−1), T (xn)), [ρ1(xn, T (xn))]
2}

≤ kρ1(xn−1, T (xn−1))ρ1(xn, T (xn)).

Because of the inequality

kρ1(xn−1, T (xn−1))ρ1(xn, T (xn)) ≤ kρ1(xn−1, T (xn−1))ρ1(xn, T (xn)),

the expression in (2.17) is equivalent to ρ1(xn, xn+1) ≤ kρ1(xn−1, xn). Recursively

one can obtain

(2.18) ρ1(xn, xn+1) ≤ kρ1(xn−1, xn) ≤ · · · ≤ knρ1(x0, x1).

Therefore we obtain that,

(2.19) ρ1(xn, xn+s) ≤
kn

1− k
ρ1(x0, x1).

for any s ∈ N. Taking (ii) of the theorem into the account, one can get

(2.20) ω1(xn, xn+p) ≤
kn

1− k
ρ1(x0, x1).

Thus, {xn} is a ω-Cauchy sequence with respect to ω. As in the proof of theorem

2.1 we deduce that T has a fixed point. �

Theorem 2.6. Let Xω be an α-complete non-Archimedean modular metric space

with ω regular. Let T be an α−continuous self-mapping on Xω and there exist

x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω and for some k ∈ (0, 1) we

have

(2.21)
min{ω1(x, T (x)), ω1(T (x), T (y)), ω1(T (y), y)}
−min{ω1(x, T (y)), ω1(T (x), y)} ≤ kω1(x, y)

then T has a fixed point.
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Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in Xω by

xn = Tnx0 = Txn−1 for all n ∈ N. As in the proof of theorem 2.1 we have

α(xn, xn+1) ≥ 1

for all n ∈ N ∪ {0}. Then by using (3.7), one can obtain,

min{ω1(xn−1, T (xn−1)), ω1(T (xn−1), xn), ω1(xn, T (xn))}

−min{ω1(xn−1, T (xn)), ω1(T (xn−1), xn)}

= min{ω1(xn, xn+1), ω1(xn−1, xn)}

≤ kω1(xn−1, xn).

Thus,

ω1(xn, xn+1) ≤ kω1(xn−1, xn).

Recursively, one can observe that

ω1(xn, xn+1) ≤ kω1(xn−1, xn) ≤ k2ω1(xn−2, xn−1) ≤ · · · ≤ knω1(x0, x1).

As in the proof of theorem 2.1 we deduce that T has a fixed point. �

3. Some Results on T -orbitally Complete Modular
Metric Spaces

In [3] introduced the notions of orbitally continuous self mappings and orbitally

T−complete metric spaces. Now we extend these notions to non-Archimedean mod-

ular metric space.

Definition 3.1. Let Xω be a non-Archimedean modular metric space.

• A map T : X → X is called orbitally continuous if

lim
i→∞

ω1(z, T
nix) = 0 ⇒ lim

i→∞
ω1(Tz, TT

nix) = 0.

For each x ∈ Xω we put O(x) = {x, Tx, T 2x, · · · , } where O(x) is orbit of x. We

say Xω is orbitally T -complete non-Archimedean modular metric space if O(x), is

ω−complete for every x ∈ Xω.

Now we are ready to prove some results in the setting of non-Archimedean mod-

ular metric spaces.
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Theorem 3.2. Let T : Xω → Xω be an orbitally continuous mapping on a non-

Archimedean modular metric space Xω with ω regular. Suppose that T satisfies the

condition

(3.1) min{ω1(x, T (x)), ω1(T (x), T (y)), ω1(T (y), y)} < ω1(x, y)

for all x, y ∈ X, x ̸= y. If the sequence {Tn(x0)} has a cluster point z ∈ X for some

x0 ∈ X, then z is a fixed point of T .

Proof. Suppose Tm(x0) = Tm−1(x0) for some m ∈ N, then Tn(x0) = Tm(x0) = z

for all n ≥ m. It is clear that z is a required point.

Suppose Tm(x0) ̸= Tm−1(x0) for all m ∈ N. Since {Tn(x0)} has a cluster point

z ∈ X, one can write limi→∞ ω1(T
ni(x0), z) = 0. By replacing x and y with Tn−1(x0)

and Tn(x0), respectively, in (3.1),

min{ω1(T
n−1(x0), T (T

n−1(x0))), ω1(T (T
n−1(x0)), T (T

n(x0))),(3.2)

ω1(T (T
n(x0)), T

n(x0))}

< ω1(T
n−1(x0), T

n(x0)).

The inequality ω1(T
n−1(x0), T

n(x0)) < ω1(T
n−1(x0), T

n(x0)) does not hold. Thus

(3.2) is equivalent to ω1(T
n(x0), T

n+1(x0)) < ω1(T
n−1(x0), T

n(x0)) which shows

that the sequence

(3.3) {ω1(T
n(x0), T

n+1(x0))}∞1
is decreasing and bounded below. Hence {ω1(T

n(x0), T
n+1(x0))}∞1 is convergent.

By T -orbital continuity,

lim
i→∞

ω1(T
ni+1(x0), T (z)) = 0.

Then we have

ω1(T
ni+1(x0), T

ni(x0)) ≤ ω1(T
ni(x0), z) + ω1(z, T (z)) + ω1(T

ni+1(x0), T (z))

and

ω1(z, T (z)) ≤ ω1(z, T
ni(x0)) + ω1(T

ni+1(x0), T
ni(x0)) + ω1(T

ni+1(x0), T (z)).

Now by taking limit as i→ ∞ in the above inequalities we get

(3.4) lim
i→∞

ω1(T
ni+1(x0), T

ni(x0)) = ω1(z, T (z)).

Using {ω1(T
ni(x0), T

ni+1(x0))}∞1 ⊂ {ω1(T
n(x0), T

n+1(x0))}∞1 and (3.4), we have

(3.5) lim
n→∞

ω1(T
n+1(x0), T

n(x0)) = ω1(z, T (z)).
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Considering the fact {ω1(T
ni+1(x0), T

ni+2(x0))}∞1 ⊂ {ω1(T
n(x0), T

n+1(x0))}∞1
together with limi→∞ Tni+1(x0) = Tz, limi→∞ Tni+2(x0) = T 2z and (3.5) show

that

(3.6) ω1(Tz, T
2z) = ω1(z, Tz).

Assume that Tz ̸= z, that is ω1(z, Tz) > 0. So one can replace x and y with z

and Tz, respectively in(3.1) to obtain

(3.7) min{ω1(z, T (z)), ω1(T (z), T (T (z))), ω1(T (T (z)), T (z))} < ω1(z, T (z)).

which yields that ω1(Tz, T
2z) < ω1(z, Tz). But this contradicts (3.6). Similarly if

ω1(Tz, z) > 0 we can show the contradiction. Thus Tz = z. �

Theorem 3.3. Let Xω be an orbitally T - complete non-Archimedean modular metric

space with ω regular. Let T be an orbitally continuous self-mapping on Xω and there

exist x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω and for some k ∈ (0, 1)

we have

min{ω1(Tx, Ty), ω1(x, Tx), ω1(y, Ty)} −min{ω1(x, Ty), ω1(y, Tx)} ≤ kω1(x, y)

then T has a fixed point.

Proof. Define, α : X ×X → [0,+∞) by

α(x, y) =

{
3, if x, y ∈ O(w)
0, otherwise

where O(w) is an orbit of a point w ∈ Xω. Then Xω is an α-complete non-

Archimedean modular metric space. Indeed if {xn} be an ω−Cauchy sequence where

α(xn, xn+1) ≥ 1 for all n ∈ N, then {xn} ⊆ O(w). Now since Xω is an orbitally T -

complete modular metric space, then {xn} converges. That is Xω is an α-complete

modular metric space. Also suppose that α(x, y) ≥ 1, then x, y ∈ O(w). Hence

Tx, Ty ∈ O(w). That is α(Tx, Ty) ≥ 1. Thus T is an α-admissible mapping. Now

we show that T is α-continuous. In fact if xn → x as n→ ∞ and α(xn, xn+1) ≥ 1 for

all n ∈ N. So xn ∈ O(w) for all n ∈ N. Then there exists sequence (ki)i∈N of positive

integer such that xn = T kiw → x as i→ ∞. Now since T is an orbitally continuous

map, then Txn = T (T kiw) → Tx as i → ∞ as required. Hence all conditions of

theorem 2.1 hold and T has a fixed point. �

Similarly we can deduce the following theorems.
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Theorem 3.4. Let Xω be an orbitally T -complete non-Archimedean modular metric

space with ω regular. Let T be an orbitally continuous on Xω and ε > 0. Suppose

that there exists a point x0 ∈ X such that ω1(x0, T
n(x0)) < ε for some n ∈ N and

α(x0, T (x0)) ≥ 1. If for all x, y ∈ Xω with 0 < ω1(x, y) < ε and for some k ∈ (0, 1)

we have

min{ω1(x, T (x)), ω1(T (x), T (y)), ω1(T (y), y)} ≤ kω1(x, y),

then T has a periodic point.

Theorem 3.5. Let Xω be an orbitally T -complete non-Archimedean modular metric

space with ω regular. Let T be an orbitally continuous self-mapping on Xω and there

exist x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω and for some k ∈ (0, 1)

we have

min{[ω1(x, T (x))]
2, ω1(x, y)ω1(T (x), T (y)), [ω1(T (y), y)]

2} ≤ kω1(x, T (x))ω1(T (y), y),

then T has a fixed point.

Theorem 3.6. Let X be a non-empty set endowed with two modular metrics ω and

ρ. Let T be a mapping of X into itself. Suppose that

(i) Xω is orbitally T -complete non-Archimedean modular metric space with ω

regular,

(ii) ω1(x, y) ≤ ρ1(x, y) for all x, y ∈ X,

(iii) T is orbitally continuous with respect to ω,

(iv) T satisfies:

min{[ρ1(T (x), T (y))]2, ρ1(x, y)ρ1(T (x), T (y)), [ρ(y, T (y))]2}

≤ kρ1(x, T (x))ρ1(y, Ty)

for all x, y ∈ X, where 0 ≤ k < 1.

Then T has a fixed point in X.

Theorem 3.7. Let Xω be an orbitally T -complete non-Archimedean modular metric

space with ω regular. Let T be an orbitally continuous self-mapping on Xω and there

exist x0 ∈ Xω such that α(x0, Tx0) ≥ 1. If for all x, y ∈ Xω and for some k ∈ (0, 1)

we have

min{ω1(x, T (x)), ω1(T (x), T (y)), ω1(T (y), y)}

−min{ω1(x, T (y)), ω1(T (x), y)} ≤ kω1(x, y)

then T has a fixed point.
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