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ON CYCLIC POLYGROUPS OF ORDER LESS THAN SIX AND

PERIOD TWO

M.R. Kheradmand a and B. Davvaz b, ∗

Abstract. Cyclic hypergroups are of great importance due to their applications
to many field in mathematics. In this paper, we classify all polygroups of order less
than six where each of its non-identity elements is a generator.

1. Introduction

In 1934, F. Marty [9] introduced algebraic hyperstructures which constitutes a

generalization of the well-known algebraic structures at the eighth Congress of Scan-

dinavian Mathematicians, where he generalized the notion of a group to that of a

hypergroup. A hyperstructure (or hypergroupoid) is a non-empty set together with

a hyperoperation defined on it. Several books have been written till now on hy-

perstructures [3, 4, 5, 12]. Cyclic semihypergroups have been studied by Desalvo

and Freni [7], Vougiouklis [11], Leoreanu [8]. Cyclic semihypergroups are important

not only in the sphere of finitely generated semihypergroups but also for interesting

combinatorial implications. Mousavi et al. [10] introduced a strongly regular rela-

tion on a hypergroup such that in a particular case the quotient is a cyclic group.

Al Tahan and Davvaz [1] presented a link between hyperstructures and the infinite

non abelian group, braid group.

Now, in this paper, we classify all polygroups of order four and period two. The

paper is organized as follows: After an introduction, Section 2 presents some basic

definitions that are used throughout this paper. Section 3 presents some new prop-

erties of single power cyclic polygroups and finds all single power cyclic polygroups
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of order less than six where each of its non-identity elements is a generator of period

two. Section 4 presents an algorithm as alternative way for finding all single power

cyclic polygroups of order less than six where each of its non-identity elements is a

generator of period two.

2. Basic Concepts and Definitions

This section explains some basic notions and definitions that have been used in

this paper.

Definition 2.1. Let H be a non-empty set. A mapping · : H ×H → P∗(H), where

P∗(H) denotes the family of all non-empty subsets of H, is called a hyperoperation

on H. The couple (H, ·) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and x ∈ H,

then we denote

A ·B =
∪
a∈A
b∈B

a · b, A · x = A · {x} and x ·B = {x} ·B.

Definition 2.2. A hypergroupoid (H, ·) is called a semihypergroup if for every

x, y, z ∈ H, x · (y · z) = (x · y) · z, that is∪
u∈y·z

x · u =
∪

v∈x·y
v · z.

Definition 2.3. A hypergroup is a semihypergroup (H, ·) such thatH ·x = x·H = H

for all x ∈ H, which is called reproduction axiom, it means that for any x, y ∈ H

there exist u, v ∈ H such that y ∈ x · u and y ∈ v · x.

Definition 2.4 ([2, 6]). A polygroup is a system < P, ·, e,−1>, where e ∈ P , −1 is

a unitary operation on P , · maps P × P into the non-empty subsets of P , and the

following axioms hold for all x, y, z ∈ P :

(1) x · (y · z) = (x · y) · z,
(2) e · x = x · e = x,

(3) x ∈ y · z =⇒ y ∈ x · z−1, z ∈ y−1 · x.

The element e is called identity element. The following elementary facts about

polygroups follow easily from the axioms: e ∈ x ·x−1∩x−1 ·x, e−1 = e, (x−1)−1 = x

and (x · y)−1 = y−1 · x−1 where A−1 = {a−1| a ∈ A}.
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Definition 2.5. A polygroup P is cyclic if there exists p ∈ P and s ∈ N such that

P = p ∪ p2 ∪ · · · ∪ ps ∪ · · · .

If P = p∪ p2 ∪ · · · ∪ ps then P is a cyclic polygroup with finite period. Otherwise,

P is called a cyclic polygroup with infinite period. Here, ps = p · p · · · · · p︸ ︷︷ ︸
s times

.

Definition 2.6. A polygroup P is a single-power cyclic polygroup if there exists

p ∈ P and s ∈ N such that P = p ∪ p2 ∪ · · · ∪ ps ∪ · · · and p ∪ p2 ∪ · · · ∪ pm−1 ⊂ pm,

for all m ∈ N.

Definition 2.7. Let < P1, ·, e1,−1> and < P2, ⋆, e2,
−1> be polygroups. A mapping

ϕ from P1 into P2 is said to be a strong homomorphism if for all x, y ∈ P1,

(1) ϕ(x · y) = ϕ(x) ⋆ ϕ(y),

(2) ϕ(e1) = e2.

Clearly, a strong homomorphism ϕ is an isomorphism if ϕ is one to one and onto.

We write P1
∼= P2 if P1 is isomorphic to P2.

Proposition 2.8. A polygroup P in which every element has order 2 (i.e., x−1 = x

for all x) is commutative.

Proof. We will show that for every x, y ∈ P , x · y = y · x. Let t ∈ x · y, then

x ∈ t · y−1 = t · y and y ∈ t−1 · x = t · x and t ∈ y · x−1 = y · x and so x · y ⊆ y · x. In
a similar way it can be shown that y · x ⊆ x · y. Therefore x · y = y · x. �

Corollary 2.9. A polygroup P in which x2 = P for all non-identity element x, is

commutative.

Proof. In this case for every x ∈ P we have x−1 = x. Now by Proposition 2.8 it

follows that P is commutative. �

3. Single Power Cyclic Polygroups of Order less than Six
where Each of its Non-identity Elements is a Generator of

Period Two

In this section we find all single power cyclic polygroups of order less than six in

which every non-identity element has period two. From order one we have just one

polygroup P = {e}. Also, from order two we have one polygroup:
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· e a
e e a
a a e, a

and from order three, by Theorem 4.4.5 of [6], we have one polygroup:

·1 e a b
e e a b
a a e, a, b a, b
b b a, b e, a, b

Now, for order four we need some lemma and propositions.

Lemma 3.1. A polygroup P in which every element has order 2 (i.e., x−1 = x for

all x), if x ̸= y then e /∈ x · y.

Proof. If e ∈ x · y then x ∈ e · y−1 = e · y = y that is contradiction with x ̸= y. �

Proposition 3.2. A polygroup P = {e, a, b, c} in which x2 = P for all non-identity

element x, we have:

(i) a ∈ a · b = b · a and a ∈ a · c = c · a,
(ii) b ∈ b · c =∈ c · b and b ∈ a · b = b · a,
(iii) c ∈ a · c = c · a and c ∈ b · c = c · b.

Proof. For every x, y ̸= e we have x ∈ y · y = P . Therefore y ∈ x · y−1 = x · y and

y ∈ y−1 · x = y · x. �

Proposition 3.3. A polygroup P = {e, a, b, c} in which x2 = P for all non-identity

element x ∈ P , we have:

(i) if a ∈ b · c = c · b then b ∈ a · c = c · a and c ∈ b · a = a · b,
(ii) if b ∈ a · c = c · a then a ∈ b · c = c · b and c ∈ a · b = b · a,
(iii) if c ∈ a · b = b · a then a ∈ c · b = b · c and b ∈ a · c = c · a.

Proof. For every non-identity x ̸= y ̸= z. if x ∈ y · z then y ∈ x · z−1 = x · z and

z ∈ y−1 · x = y · x. �

Theorem 3.4. Let · be a commutative hyperoperation on a polygroup P = {e, a, b, c}.
Then P is associative if the following are satisfied:

(1) a · (a · b) = (a · a) · b,
(2) a · (a · c) = (a · a) · c,
(3) a · (b · b) = (a · b) · b,
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(4) a · (b · c) = (a · b) · c,
(5) a · (c · b) = (a · c) · b,
(6) a · (c · c) = (a · c) · c,
(7) b · (b · c) = (b · b) · c,
(8) b · (c · c) = (b · c) · c.

Proof. Since (P, ·) is commutative, it follows that for every x, y, z ∈ P we have

x · (x · x) = (x · x) · x and z · (y · z) = (y · z) · z = (z · y) · z. By using (4), (5) we

have b · (a · c) = (b · a) · c. Also by (4) we have c · (b · a) = (c · b) · a. Finally for every

x ∈ P we have x · e = e · x = x. �

Theorem 3.5. There are 2 polygroups of order four which every non-identity has

period two.

Proof. Suppose that P = {e, a, b, c}. The first row, column and diagonal are fix. By

Corollary 2.9, we must determine a ·b, a ·c and b ·c. Now, by Lemma 3.1, Proposition

3.2 and Proposition 3.3 we have the following two cases:

·1 e a b c
e e a b c
a a P a, b a, c
b b a, b P b, c
c a a, c b, c P

·2 e a b c
e e a b c
a a P a, b, c a, b, c
b b a, b, c P a, b, c
c a a, b, c a, b, c P

Finally, by Theorem 3.5 the associativity of them is proved:

a ·1 (a ·1 b) = P (a ·1 a) ·1 b = P
a ·1 (a ·1 c) = P (a ·1 a) ·1 c = P
a ·1 (b ·1 b) = P (a ·1 b) ·1 b = P

a ·1 (b ·1 c) = {a, b, c} (a ·1 b) ·1 c = {a, b, c}
a ·1 (c ·1 b) = {a, b, c} (a ·1 c) ·1 b = {a, b, c}

a ·1 (c ·1 c) = P (a ·1 c) ·1 c = P
b ·1 (b ·1 c) = P (b ·1 b) ·1 c = P
b ·1 (c ·1 c) = P (b ·1 c) ·1 c = P
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a ·2 (a ·2 b) = P (a ·2 a) ·2 b = P
a ·2 (a ·2 c) = P (a ·2 a) ·2 c = P
a ·2 (b ·2 b) = P (a ·2 b) ·2 b = P
a ·2 (b ·2 c) = P (a ·2 b) ·2 c = P
a ·2 (c ·2 b) = P (a ·2 c) ·2 b = P
a ·2 (c ·2 c) = P (a ·2 c) ·2 c = P
b ·2 (b ·2 c) = P (b ·2 b) ·2 c = P
b ·2 (c ·2 c) = P (b ·2 c) ·2 c = P

�

Finally, for order five we apply as following:

Proposition 3.6. A polygroup P = {e, a, b, c, d} in which x2 = P for all non-

identity element x, we have:

(i) a ∈ a · b = b · a, a ∈ a · c = c · a and a ∈ a · d = d · a,
(ii) b ∈ b · c = c · b, b ∈ a · b = b · a and b ∈ d · b = b · d,
(iii) c ∈ a · c = c · a, c ∈ b · c = c · b and c ∈ c · d = d · c.
(iv) d ∈ a · d = d · a, d ∈ b · d = d · b and d ∈ d · c = c · d.

Proof. It is similar to the proof of Proposition 3.2. �

Proposition 3.7. A polygroup P = {e, a, b, c, d} in which x2 = P for all non-

identity element x ∈ P , we have:

(i) if a ∈ b · c = c · b then b ∈ a · c = c · a and c ∈ b · a = a · b,
(ii) if a ∈ b · d = d · b then b ∈ a · d = d · a and d ∈ a · b = b · a,
(iii) if a ∈ c · d = d · c then c ∈ a · d = d · a and d ∈ a · c = c · a,
(iv) if b ∈ a · c = c · a then a ∈ b · c = c · b and c ∈ a · b = b · a,
(v) if b ∈ c · d = d · c then c ∈ b · d = d · b and d ∈ c · b = b · c,
(vi) if b ∈ a · d = d · a then a ∈ b · d = d · b and d ∈ a · b = b · a,
(vii) if c ∈ a · b = b · a then a ∈ c · b = b · c and b ∈ a · c = c · a,
(viii) if c ∈ a · d = d · a then a ∈ c · d = d · c and d ∈ a · c = c · a,
(ix) if c ∈ d · b = b · d then b ∈ c · d = d · c and d ∈ b · c = c · b,
(x) if d ∈ a · b = b · a then a ∈ d · b = b · d and b ∈ a · d = d · a,
(xi) if d ∈ a · c = c · a then a ∈ c · d = d · c and c ∈ a · d = d · a,
(xii) if d ∈ c · b = b · c then b ∈ c · d = d · c and c ∈ b · d = d · b,

Proof. It is similar to the proof of Proposition 3.3. �

Corollary 3.8. A polygroup P = {e, a, b, c, d} in which x2 = P for all non-identity

element x ∈ P , we have:
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(i) a · b = b · a ∈ {{a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}}
(ii) a · c = c · a ∈ {{a, c}, {a, b, c}, {a, c, d}, {a, b, c, d}}
(iii) a · d = d · a ∈ {{a, d}, {a, b, d}, {a, c, d}, {a, b, c, d}}
(iv) b · c = c · b ∈ {{b, c}, {a, b, c}, {b, c, d}, {a, b, c, d}}
(v) b · d = d · b ∈ {{b, d}, {a, b, d}, {b, c, d}, {a, b, c, d}}
(vi) c · d = d · c ∈ {{c, d}, {b, c, d}, {a, c, d}, {a, b, c, d}}

Proof. It follows from Propositions 3.6 and 3.7 and Lemma 3.1. �

Theorem 3.9. Let · be a commutative hyperoperation on a polygroup P = {e, a, b, c, d}.
Then P is associative if the following are satisfied:

(1) a · (a · b) = (a · a) · b,
(2) a · (a · c) = (a · a) · c,
(3) a · (a · d) = (a · a) · d,
(4) a · (b · b) = (a · b) · b,
(5) a · (b · c) = (a · b) · c,
(6) a · (b · d) = (a · b) · d,
(7) a · (c · b) = (a · c) · b.
(8) a · (c · c) = (a · c) · c,
(9) a · (c · d) = (a · c) · d,

(10) a · (d · b) = (a · d) · b,
(11) a · (d · c) = (a · d) · c,
(12) a · (d · d) = (a · d) · d,
(13) b · (a · c) = (b · a) · c,
(14) b · (a · d) = (b · a) · d,
(15) b · (b · c) = (b · b) · c.
(16) b · (b · d) = (b · b) · d,
(17) b · (b · c) = (b · b) · c,
(18) b · (c · d) = (b · c) · d,
(19) b · (d · c) = (b · d) · c,
(20) b · (d · d) = (b · d) · d,
(21) c · (b · d) = (c · b) · d,
(22) c · (c · d) = (c · c) · d,
(23) c · (d · d) = (c · d) · d,

Proof. It is similar to the proof of Theorem 3.4. �
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Theorem 3.10. There are 16 polygroups of order five which every non-identity has

period two.

Proof. Suppose that P = {e, a, b, c, d}. The first row, column and diagonal are fix.

By Corollary 2.9, we must determine a · b, a · c, a · d, b · c, b · d and c · d. Now, by

Lemma 3.1, Propositions 3.6, 3.7 and Corollary 3.8 we have the following 16 cases:

·1 e a b c d
e e a b c d
a a P a, b a, c a, d
b b a, b P b, c b, d
c c a, c b, c P c, d
d d a, d b, d c, d P

·2 e a b c d
e e a b c d
a a P a, b a, c a, d
b b a, b P b, c, d b, c, d
c c a, c b, c, d P b, c, d
d d a, d b, c, d b, c, d P

·3 e a b c d
e e a b c d
a a P a, b a, c, d a, c, d
b b a, b P b, c b, d
c c a, c, d b, c P a, c, d
d d a, c, d b, d a, c, d P

·4 e a b c d
e e a b c d
a a P a, b a, c, d a, c, d
b b a, b P b, c, d b, c, d
c c a, c, d b, c, d P a, b, c, d
d d a, c, d b, c, d a, b, c, d P

·5 e a b c d
e e a b c d
a a P a, b, c a, b, c a, d
b b a, b, c P a, b, c b, d
c c a, b, c a, b, c P c, d
d d a, d b, d c, d P
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·6 e a b c d
e e a b c d
a a P a, b, c a, b, c a, d
b b a, b, c P a, b, c, d b, c, d
c c a, b, c a, b, c, d P b, c, d
d d a, d b, c, d b, c, d P

·7 e a b c d
e e a b c d
a a P a, b, c a, b, c, d a, c, d
b b a, b, c P a, b, c b, d
c c a, b, c, d a, b, c P a, c, d
d d a, c, d b, d a, c, d P

·8 e a b c d
e e a b c d
a a P a, b, c a, b, c, d a, c, d
b b a, b, c P a, b, c, d b, c, d
c c a, b, c, d a, b, c, d P a, b, c, d
d d a, c, d b, c, d a, b, c, d P

·9 e a b c d
e e a b c d
a a P a, b, d a, c a, b, d
b b a, b, d P b, c a, b, d
c c a, c b, c P c, d
d d a, b, d a, b, d c, d P

·10 e a b c d
e e a b c d
a a P a, b, d a, c a, b, d
b b a, b, d P b, c, d a, b, c, d
c c a, c b, c, d P b, c, d
d d a, b, d a, b, c, d b, c, d P

·11 e a b c d
e e a b c d
a a P a, b, d a, c, d a, b, c, d
b b a, b, d P b, c a, b, d
c c a, c, d b, c P a, c, d
d d a, b, c, d a, b, d a, c, d P
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·12 e a b c d
e e a b c d
a a P a, b, d a, c, d a, b, c, d
b b a, b, d P b, c, d a, b, c, d
c c a, c, d b, c, d P a, b, c, d
d d a, b, c, d a, b, c, d a, b, c, d P

·13 e a b c d
e e a b c d
a a P a, b, c, d a, b, c a, b, d
b b a, b, c, d P a, b, c a, b, d
c c a, b, c a, b, c P c, d
d d a, b, d a, b, d c, d P

·14 e a b c d
e e a b c d
a a P a, b, c, d a, b, c a, b, d
b b a, b, c, d P a, b, c, d a, b, c, d
c c a, b, c a, b, c, d P b, c, d
d d a, b, d a, b, c, d b, c, d P

·15 e a b c d
e e a b c d
a a P a, b, c, d a, b, c, d a, b, c, d
b b a, b, c, d P a, b, c a, b, d
c c a, b, c, d a, b, c P a, c, d
d d a, b, c, d a, b, d a, c, d P

·16 e a b c d
e e a b c d
a a P a, b, c, d a, b, c, d a, b, c, d
b b a, b, c, d P a, b, c, d a, b, c, d
c c a, b, c, d a, b, c, d P a, b, c, d
d d a, b, c, d a, b, c, d a, b, c, d P

Finally, by Theorem 3.9 the associativity of them is proved. For example we show

the associativity of ·1:
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a ·1 (a ·1 b) = P (a ·1 a) ·1 b = P
a ·1 (a ·1 c) = P (a ·1 a) ·1 c = P
a ·1 (a ·1 d) = P (a ·1 a) ·1 d = P
a ·1 (b ·1 b) = P (a ·1 b) ·1 b = P

a ·1 (b ·1 c) = {a, b, c} (a ·1 b) ·1 c = {a, b, c}
a ·1 (b ·1 d) = {a, b, d} (a ·1 b) ·1 d = {a, b, d}
a ·1 (c ·1 b) = {a, b, c} (a ·1 c) ·1 b = {a, b, c}

a ·1 (c ·1 c) = P (a ·1 c) ·1 c = P
a ·1 (c ·1 d) = {a, c, d} (a ·1 c) ·1 d = {a, c, d}
a ·1 (d ·1 b) = {a, b, d} (a ·1 d) ·1 b = {a, b, d}
a ·1 (d ·1 c) = {a, c, d} (a ·1 d) ·1 c = {a, c, d}

a ·1 (d ·1 d) = P (a ·1 d) ·1 d = P
b ·1 (a ·1 c) = {a, b, c} (b ·1 a) ·1 c = {a, b, c}
b ·1 (a ·1 d) = {a, b, d} (b ·1 a) ·1 d = {a, b, d}

b ·1 (b ·1 c) = P (b ·1 b) ·1 c = P
b ·1 (b ·1 d) = P (b ·1 b) ·1 d = P
b ·1 (c ·1 c) = P (b ·1 c) ·1 c = P

b ·1 (c ·1 d) = {b, c, d} (b ·1 c) ·1 d = {b, c, d}
b ·1 (d ·1 c) = {b, c, d} (b ·1 d) ·1 c = {b, c, d}

b ·1 (d ·1 d) = P (b ·1 d) ·1 d = P
c ·1 (b ·1 d) = {b, c, d} (c ·1 b) ·1 d = {b, c, d}

c ·1 (c ·1 d) = P (c ·1 c) ·1 d = P
c ·1 (d ·1 d) = P (c ·1 d) ·1 d = P

�

4. Appendix

In this section, we explain the previous conclusions by a computer programm. For

order four without consideration of lemmas and propositions (we just use the commu-

tativity and associativity) we present the following algorithms:

Require: procedure SolveP4()

1: P := 1, 2, 3, 4 ◃ e = 1, a = 2, b = 3, c = 4.

2: M := PowerSet(P )− {{}} ◃ M is the space of all possibility for elements aij.

|M | = 24 − 1 = 15.

3: INV := [[1, 2, 3, 4], [1, 2, 4, 3], [1, 3, 2, 4], [1, 3, 4, 2], [1, 4, 2, 3], [1, 4, 3, 2]] ◃ INV is

the list of all permutation of elements of P such that fix e = 1. So |INV | =
3! = 6.
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4: PolygroupList := [] ◃ PolygroupList is a list that we add all founded Polys

into it.

5: for f in INV do

6: for (a23, a24, a34, a32, a42, a43) in M do

7: Set aii := P , for every 1 < i < 5.

8: Set a1i := i, ai1 := i, for every 0 < i < 5.

9: A := (aij) ◃ A, a matrix 4 by 4, is the table of operation.

10: if IsPolygroup(A, f) then

11: Add A to PolygroupList.

12: end if

13: end for

14: end for

15: return PolygroupList

For order five we consider to propositions, lemma and corollaries. Also this fact

that inverse function just can be identity function:

Require: procedure SolveP5()

1: P := {1, 2, 3, 4, 5} ◃ e=1, a=2, b=3, c=4, d=5.

2: M := PowerSet(P ) − {non-empty subsets that contains element e, singleton

subsets, empty-set} ◃ M is the space of all possibility for elements aij. |M | = 11.

3: INV := [[1, 2, 3, 4, 5]] ◃ INV is the −1 function.

4: PolygroupList := [] ◃ PolygroupList is a list that we add all founded Polygroups

into it.

5: for (a23, a24, a25, a34, a35, a45) in M do

6: Set aii := P , for every 1 < i ≤ 5.

7: Set a1i := {i}, ai1 := {i}, for every 1 ≤ i ≤ 5.

8: A := (aij) ◃ A, a matrix 5 by 5, is the table of operation.

9: if IsPolygroup(A, f) then

10: Add A to PolygroupList.

11: end if

12: end for

13: return PolygroupList
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