ON THE HYERS-ULAM-RASSIAS STABILITY OF AN ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION

YANG-HI LEE

ABSTRACT. In this paper, we investigate Hyers-Ulam-Rassias stability of the functional equation

$$f(x+ky) - k^2 f(x+y) + 2(k^2 - 1)f(x) - k^2 f(x-y) + f(x-ky)$$
$$-k^2 (k^2 - 1)(f(y) + f(-y)) = 0,$$

where k is a fixed real number with $|k| \neq 0, 1$.

1. Introduction

Throughout this paper, let V and W be real vector spaces and k a fixed real number such that $|k| \neq 0, 1$. For a given mapping $f: V \to W$, we use the following abbreviations:

$$f_{o}(x) := \frac{f(x) - f(-x)}{2},$$

$$f_{e}(x) := \frac{f(x) + f(-x)}{2},$$

$$Af(x,y) := f(x+y) - f(x) - f(y),$$

$$Cf(x,y) := f(x+2y) - 3f(x+y) + 3f(x) - f(x-y) - 6f(y),$$

$$Q'f(x,y) := f(x+2y) - 4f(x+y) + 6f(x) - 4f(x-y) + f(x-2y) - 24f(y),$$

$$D_{k}f(x,y) := f(x+ky) - k^{2}f(x+y) + 2(k^{2}-1)f(x) - k^{2}f(x-y) + f(x-ky)$$

$$(1.1) - k^{2}(k^{2}-1)(f(y) + f(-y))$$

for all $x, y \in V$. Every solution of functional equation Af(x, y) = 0, Cf(x, y) = 0 and Q'f(x, y) = 0 are called an additive mapping, a cubic mapping and a quartic mapping, respectively. If a mapping can be expressed by the sum of an additive mapping, a cubic mapping and a quartic mapping, then we call the mapping

Received by the editors March 28, 2019. Accepted November 19, 2019.

²⁰¹⁰ Mathematics Subject Classification. 39B82, 39B52.

Key words and phrases. stability of a functional equation, additive-cubic-quartic functional equation, additive-cubic-quartic mapping.

an additive-cubic-quartic mapping. A functional equation is called an additive-cubic-quartic functional equation provided that each solution of that equation is an additive-cubic-quartic mapping and every additive-cubic-quartic mapping is a solution of that equation. Many mathematicians [2, 5, 7, 9, 11] have studied the stability of the following additive-cubic-quartic functional equation

$$11f(x+2y)+11f(x-2y)=44f(x+y)+44f(x-y)+12f(3y)-48f(2y)+60f(y)-66f(x).$$

In 1940, Ulam [10] questioned about the stability of group homomorphisms. In 1941, Hyers [6] solved this question for Cauchy functional equation, which is a partial answer to Ulam's question. In 1978, Rassias [8] made Hyers' result generalized (Refer to Găvruta's paper [3] for a more generalized result). The concept of stability used by Rassias is called 'Hyers-Ulam-Rassias stability'.

M.E. Gordji etc. [4] investigated the stability of the functional equation $D_k f(x, y)$ = 0 on the random normed spaces for the case k is a fixed integer.

In this paper, we will show that the functional equation $D_r f(x, y) = 0$ is an additive-cubic-quartic functional equation when r is a rational number, and also investigate Hyers-Ulam-Rassias stability of that functional equation $D_k f(x, y) = 0$ for k is a real number.

2. Main Theorems

The following theorem is a particular case of Baker's theorem [1].

Theorem 2.1 ([1, Theorem 1]). Suppose that V and W are vector spaces over \mathbb{Q} , \mathbb{R} or \mathbb{C} and $\alpha_0, \beta_0, \ldots, \alpha_m, \beta_m$ are scalars such that $\alpha_j \beta_l - \alpha_l \beta_j \neq 0$ whenever $0 \leq j < l \leq m$. If $f_l : V \to W$ for $0 \leq l \leq m$ and

$$\sum_{l=0}^{m} f_l(\alpha_l x + \beta_l y) = 0$$

for all $x, y \in V$, then each f_l is a "generalized" polynomial mapping of "degree" at most m-1.

Baker [1] also states that if f is a "generalized" polynomial mapping of "degree" at most m-1, then f is expressed as $f(x) = x_0 + \sum_{l=1}^{m-1} a_l^*(x)$ for $x \in V$, where a_l^* is a monomial mapping of degree l and f has a property $f(rx) = x_0 + \sum_{l=1}^{m-1} r^l a_l^*(x)$ for $x \in V$ and $r \in \mathbb{Q}$. The monomial mapping of degree 1, 2, 3 and 4 are also called

an additive mapping, a quadric mapping, a cubic mapping and a quartic mapping, respectively.

Therefore, if f, g, h, f' are generalized polynomial mappings of degree at most 4 satisfying f(rx) = rf(x), $g(rx) = r^2g(x)$, $h(rx) = r^3h(x)$ and $f'(rx) = r^4f'(x)$ for all $x \in V$ when r is a fixed rational number with $r \neq 0, \pm 1$, then f, g, h, f' are an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

Hereafter we will use the following abbreviation for convenience:

$$\Lambda f(x) := \frac{1}{k^4 - k^2} \left((4k^2 - 3)D_k f_o(x, x) - 2k^2 D_k f_o(2x, x) + 2k^2 D_k f_o(x, 2x) - 2D_k f_o((k+1)x, x) + 2D_k f_o((k-1)x, x) - k^2 D_k f_o(2x, 2x) + D_k f_o(x, 3x) - D_k f_o((2k+1)x, x) + D_k f_o((2k-1)x, x) \right).$$

Now we will show that the functional equation $D_r f(x,y) = 0$ is an additive-cubicquartic functional equation when r is a rational number such that $r \neq 0, \pm 1$.

Theorem 2.2. Let r be a rational number such that $r \neq 0, \pm 1$. A mapping f satisfies the functional equation $D_r f(x, y) = 0$ for all $x, y \in V$ if and only if f is an additive-cubic-quartic mapping.

Proof. Assume that a mapping $f: V \to W$ satisfies the functional equation $D_r f(x,y) = 0$ for all $x, y \in V$ and g, h are the mappings defined by $g(x) = \frac{-f_o(2x) + 8f_o(x)}{6}$ and $h(x) = \frac{f_o(2x) - 2f_o(x)}{6}$. Then $D_r g(x,y) = 0$, $D_r h(x,y) = 0$ and $D_r f_e(x,y) = 0$ hold for all $x, y \in V$. According to Theorem 2.1, we obtain that g, h and f_e are generalized polynomial mappings of degree at most 4. From the equalities

(2.2)
$$f_o(4x) - 10f_o(2x) + 16f_o(x) = \Lambda f(x)$$
 and $f_e(rx) - r^4 f_e(x) = \frac{D_r f(0, x)}{2}$

for all $x \in V$, where $\Lambda f(x)$ is the mapping defined in (2.1), we know that g, h, f_e satisfy the properties g(2x) = 2g(x), $h(2x) = 2^3h(x)$ and $f_e(rx) = r^4f_e(x)$ for all $x \in V$, respectively. As mentioned in the previous sentence above this theorem, g, h, f_e are an additive mapping, a cubic mapping, and a quartic mapping, respectively. Since the equality $f = g + h + f_e$ holds, f is an additive-cubic-quartic mapping.

Conversely, assume that f is an additive-cubic-quartic mapping, i.e. there exist an additive mapping g, a cubic mapping h, and a quartic mapping f' such that f = g+h+f'. Notice that the equalities g(rx) = rg(x), g(x) = -g(-x), $h(rx) = r^3h(x)$, h(x) = -h(-x), $f'(rx) = r^4f'(x)$ and f'(x) = f'(-x) for all $x \in V$ and $r \in \mathbb{Q}$. First

 $D_r g(x,y) = 0$ is obtained from the equality

$$D_r g(x,y) = r^2 A g(x+y, x-y) - A g(x+ry, x-ry) - (r^2-1) A g(x,x)$$

for all $x, y \in V$. Let us first prove $D_n h(x, y) = 0$ and $D_n f'(x, y) = 0$ for n is a natural number. Using mathematical induction, the equalities $D_n h(x, y) = 0$ and $D_n f'(x, y) = 0$ are obtained from the equalities

$$D_1 h(x,y) \equiv 0 \equiv D_1 f'(x,y),$$

$$D_2 f'(x,y) = Q' f'(x,y),$$

$$D_2 h(x,y) = Ch(x,y) - Ch(x-y,y),$$

$$D_n f'(x,y) = D_{n-1} f'(x+y,y) + D_{n-1} f'(x-y,y) - D_{n-2} f'(x,y) + (n-1)^2 Q' f'(x,y),$$

$$D_n h(x,y) = D_{n-1} h(x+y,y) + D_{n-1} h(x-y,y) - D_{n-2} h(x,y) + (n-1)^2 D_2 h(x,y)$$

for all $x, y \in V$ and all $n \in \mathbb{N}\setminus\{1, 2\}$. Let us now prove $D_r f'(x, y) = 0$ and $D_r h(x, y) = 0$ for any rational numbers r with $r \neq 0, \pm 1$. Notice that if $r \in \mathbb{Q}$, then there exist $m, n \in \mathbb{N}$ such that $r = \frac{n}{m}$ or $r = \frac{-n}{m}$. Since the equalities $D_{\frac{n}{m}} h(x, y) = 0$, $D_{\frac{-n}{m}} f'(x, y) = 0$ and $D_{\frac{-n}{m}} f'(x, y) = 0$ are derived from the equalities

$$D_{\frac{n}{m}}h(x,y) = D_{n}h\left(x,\frac{y}{m}\right) - \frac{n^{2}}{m^{2}}D_{m}h\left(x,\frac{y}{m}\right),$$

$$D_{\frac{-n}{m}}h(x,y) = D_{\frac{n}{m}}h(x,-y),$$

$$D_{\frac{n}{m}}f'(x,y) = D_{n}f'\left(x,\frac{y}{m}\right) - \frac{n^{2}}{m^{2}}D_{m}f'\left(x,\frac{y}{m}\right),$$

$$D_{\frac{-n}{m}}f'(x,y) = D_{\frac{n}{m}}f'(x,-y)$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we get $D_r h(x, y) = 0$ and $D_r f'(x, y) = 0$ for all $x, y \in V$.

Now we can prove the following Hyers-Ulam-Rassias stability theorem.

Theorem 2.3. Let $p \neq 1, 3, 4$ be a positive real number, X a real normed space, and Y a real Banach space. Suppose that $f: X \to Y$ is a mapping such that

for all $x, y \in X$. Then there exists a unique solution mapping F of the functional equation $D_k F(x, y) = 0$ such that

$$||f(x) - F(x)|| \le \begin{cases} \left[\frac{1}{2||k|^p - |k|^4|} + \frac{K}{3 \cdot 2^p} \left(\frac{4}{2^p - 8} - \frac{1}{2^p - 2} \right) \right] \theta ||x||^p & \text{if } 4 < p, \\ \left[\frac{1}{2||k|^p - |k|^4|} + \frac{K}{3 \cdot 2^p} \left(\frac{4}{2^p - 8} - \frac{1}{2^p - 2} \right) \right] \theta ||x||^p & \text{if } 3 < p < 4, \\ \left[\frac{1}{2||k|^p - |k|^4|} + \frac{K}{6} \left(\frac{1}{8 - 2^p} + \frac{1}{2^p - 2} \right) \right] \theta ||x||^p & \text{if } 1 < p < 3, \\ \left[\frac{1}{2||k|^p - |k|^4|} + \frac{K}{6} \left(\frac{1}{2 - 2^p} - \frac{1}{8 - 2^p} \right) \right] \theta ||x||^p & \text{if } 0 < p < 1 \end{cases}$$

for all $x \in X$, where

$$K = \frac{12k^2 + 13 + 5k^22^p + 3^p + 2|k - 1|^p + 2|k + 1|^p + |2k - 1|^p + |2k + 1|^p}{|k^4 - k^2|}.$$

Proof. Notice that $2k^2(k^2-1)||f(0)|| = ||D_k f(x,y)|| \le 0$, which implies f(0) = 0. we will prove this theorem by dividing it into two cases, |k| < 1 and 1 < |k|. Case 1: Assume that 1 < |k|. Let $J_n f: X \to Y$ be the mappings defined by

$$J_n f(x) = \begin{cases} k^{4n} f_e(k^{-n}x) + \frac{4 \cdot 8^n - 2^n}{3} f_o(\frac{x}{2^n}) - \frac{8^{n+1} - 2^{n+3}}{3} f_o(\frac{x}{2^{n+1}}) & \text{if } 4 < p, \\ \frac{f_e(k^n x)}{k^{4n}} + \frac{4 \cdot 8^n - 2^n}{3} f_o(\frac{x}{2^n}) - \frac{8^{n+1} - 2^{n+3}}{3} f_o(\frac{x}{2^{n+1}}) & \text{if } 3 < p < 4, \\ \frac{f_e(k^n x)}{k^{4n}} - \frac{2^{n-1}}{3} \left(f_o(\frac{x}{2^{n-1}}) - 8 f_o(\frac{x}{2^n}) \right) + \frac{f_o(2^{n+1}x) - 2 f_o(2^n x)}{6 \cdot 8^n} & \text{if } 1 < p < 3, \\ \frac{f_e(k^n x)}{k^{4n}} + \frac{8 f_o(2^n x) - f_o(2^{n+1}x)}{6 \cdot 2^n} + \frac{f_o(2^{n+1}x) - 2 f_o(2^n x)}{6 \cdot 8^n} & \text{if } p < 1 \end{cases}$$

for all $x \in X$ and all nonnegative integers n. Then, by (2.2) and the definitions of $J_n f$ and Λf , we have the equality

$$J_n f(x) - J_{n+1} f(x) = \begin{cases} \frac{k^{4n}}{2} D_k f\left(0, \frac{x}{k^{n+1}}\right) + \frac{4 \cdot 8^n}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) - \frac{2^n}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text{if } 4 < p, \\ -\frac{D_k f(0, k^n x)}{2 \cdot k^4 (n+1)} + \frac{4 \cdot 8^n}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) - \frac{2^n}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text{if } 3 < p < 4, \\ -\frac{D_k f(0, k^n x)}{2 \cdot k^4 (n+1)} - \frac{1}{48 \cdot 8^n} \Lambda f\left(2^n x\right) - \frac{2^{n-1}}{3} \Lambda f\left(\frac{x}{2^{n+1}}\right) & \text{if } 1 < p < 3, \\ -\frac{D_k f(0, k^n x)}{2 \cdot k^4 (n+1)} + \frac{1}{12 \cdot 2^n} \Lambda f\left(2^n x\right) - \frac{1}{48 \cdot 8^n} \Lambda f\left(2^n x\right) & \text{if } p < 1 \end{cases}$$

holds for all $x \in X$ and all nonnegative integers n. Therefore, together with the equality $f(x) - J_n f(x) = \sum_{i=0}^{n-1} (J_i f(x) - J_{i+1} f(x))$ for all $x \in X$, we obtain that if $f: X \to Y$ is a mapping such that $D_k f(x, y) = 0$ for all $x, y \in X$, then

for all $x \in X$ and all positive integers n. The inequality

follows from (2.3) and the definition of Λf . It follows from (2.5) and (2.7) that

$$||J_n f(x) - J_{n+1} f(x)|| \le \begin{cases} \left(\frac{k^{4n}}{2 \cdot |k|^{(n+1)p}} + \frac{(4 \cdot 8^n - 2^n)K}{3 \cdot 2^{(n+2)p}}\right) \theta ||x||^p & \text{if } 4 < p, \\ \left(\frac{|k|^{np}}{2 \cdot k^{4(n+1)}} + \frac{(4 \cdot 8^n - 2^n)K}{3 \cdot 2^{(n+2)p}}\right) \theta ||x||^p & \text{if } 3 < p < 4, \\ \left(\frac{|k|^{np}}{2 \cdot k^{4(n+1)}} + \frac{K2^{np}}{6 \cdot 8^{n+1}} + \frac{2^n K}{6 \cdot 2^{(n+1)p}}\right) \theta ||x||^p & \text{if } 1 < p < 3, \\ \left(\frac{|k|^{np}}{2 \cdot k^{4(n+1)}} + \frac{(4^{n+1} - 1)2^{np}K}{6 \cdot 8^{n+1}}\right) \theta ||x||^p & \text{if } 0 < p < 1 \end{cases}$$

for all $x \in X$. Together with the equality $J_n f(x) - J_{n+m} f(x) = \sum_{i=n}^{n+m-1} (J_i f(x) - J_{i+1} f(x))$ for all $x \in X$, we get (2.8)

$$||J_{n}f(x) - J_{n+m}f(x)|| \le \begin{cases} \sum_{i=n}^{n+m-1} \left(\frac{k^{4i}}{2 \cdot |k|^{(i+1)p}} + \frac{(4 \cdot 8^{i} - 2^{i})K}{3 \cdot 2^{(i+2)p}}\right) \theta ||x||^{p} & \text{if } 4 < p, \\ \sum_{i=n}^{n+m-1} \left(\frac{|k|^{ip}}{2 \cdot k^{4(i+1)}} + \frac{(4 \cdot 8^{i} - 2^{i})K}{3 \cdot 2^{(i+2)p}}\right) \theta ||x||^{p} & \text{if } 3 < p < 4, \\ \sum_{i=n}^{n+m-1} \left(\frac{|k|^{ip}}{2 \cdot k^{4(i+1)}} + \frac{K2^{ip}}{6 \cdot 8^{i+1}} + \frac{2^{i}K}{6 \cdot 2^{(i+1)p}}\right) \theta ||x||^{p} & \text{if } 1 < p < 3, \\ \sum_{i=n}^{n+m-1} \left(\frac{|k|^{ip}}{2 \cdot k^{4(i+1)}} + \frac{(4^{i+1} - 1)2^{ip}K}{6 \cdot 8^{i+1}}\right) \theta ||x||^{p} & \text{if } p < 1 \end{cases}$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup \{0\}$. It follows from (2.8) that the sequence $\{J_n f(x)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{J_n f(x)\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \to Y$ by

$$F(x) := \lim_{n \to \infty} J_n f(x)$$

for all $x \in X$. Moreover, letting n = 0 and passing the limit $n \to \infty$ in (2.8) we get the inequality (2.4). For the case 1 , we easily get

$$||D_k F(x,y)|| = \lim_{n \to \infty} \left| \left| \frac{D_k f_e\left(k^n x, k^n y\right)}{k^{4n}} + \frac{2^n}{6} \left(-D_k f_o\left(\frac{2x}{2^n}, \frac{2y}{2^n}\right) + 8D_k f_o\left(\frac{x}{2^n}, \frac{y}{2^n}\right) \right) \right| + \frac{D_k f_o\left(2^{n+1} x, 2^{n+1} y\right) - 2D_k f_o\left(2^n x, 2^n y\right)}{6 \cdot 8^n} \right|$$

$$\leq \lim_{n \to \infty} \left(\frac{|k|^{np}}{k^{4n}} + \frac{2^n (2^p + 8)}{6 \cdot 2^{np}} + \frac{2^{np} (2^p + 2)}{6 \cdot 8^n} \right) \times \theta(||x||^p + ||y||^p)$$

$$= 0$$

for all $x, y \in X$. Also we easily show that $D_k F(x, y) = 0$ by the similar method for the other cases, either p < 1 or 3 or <math>4 < p.

To prove the uniqueness of F, let $F': X \to Y$ be another solution mapping satisfying (2.4). Instead of the condition (2.4), it is sufficient to show that there is a unique mapping that satisfies condition $||f(x) - F(x)|| \le \left(\frac{1}{2|k^4 - |k|^p|} + \frac{K}{6|8 - 2^p|} + \frac{K}{6|8$

 $\frac{K}{6|2-2^p|}\theta ||x||^p$ simply. By (2.6), the equality $F'(x) = J_n F'(x)$ holds for all $n \in \mathbb{N}$. For the case 1 , we have

$$||J_{n}f(x) - F'(x)|| = ||J_{n}f(x) - J_{n}F'(x)||$$

$$\leq \left\| -\frac{2^{n}}{6} \left(f_{o} \left(\frac{2x}{2^{n}} \right) - 8f_{o} \left(\frac{x}{2^{n}} \right) \right) + \frac{f_{o}(2^{n+1}x) - 2f_{o}(2^{n}x)}{6 \cdot 8^{n}} + \frac{f_{e}(k^{n}x)}{k^{4n}} + \frac{2^{n}}{6} \left(F'_{o} \left(\frac{2x}{2^{n}} \right) - 8F'_{o} \left(\frac{x}{2^{n}} \right) \right) - \frac{F'_{o}(2^{n+1}x) - 2F'_{o}(2^{n}x)}{6 \cdot 8^{n}} - \frac{F'_{e}(k^{n}x)}{k^{4n}} \right\|$$

$$\leq \frac{2^{n}}{6} \left\| (f_{o} - F'_{o}) \left(\frac{2x}{2^{n}} \right) \right\| + \frac{2^{n+3}}{6} \left\| (f_{o} - F'_{o}) \left(\frac{x}{2^{n}} \right) \right\| + \frac{\left\| (f_{o} - F'_{o})(2^{n+1}x) \right\|}{6 \cdot 8^{n}} + \frac{2\left\| (f_{o} - F'_{o})(2^{n}x) \right\|}{6 \cdot 8^{n}} + \frac{\left\| (f_{e} - F'_{e})(k^{n}x) \right\|}{k^{4n}}$$

$$\leq \left(\frac{2^{n-1+p} + 2^{n+2}}{3 \cdot 2^{np}} + \frac{2^{(n+1)p} + 2^{np+1}}{3 \cdot 2^{3n+1}} + \frac{|k|^{np}}{k^{4n}} \right)$$

$$\times \left(\frac{K}{6|8 - 2^{p}|} + \frac{K}{6|2 - 2^{p}|} + \frac{1}{2|k^{4} - |k|^{p}|} \right) \theta \|x\|^{p}$$

for all $x \in X$ and all positive integers n. Taking the limit in the above inequality as $n \to \infty$, we can conclude that $F'(x) = \lim_{n \to \infty} J_n f(x)$ for all $x \in X$. For the other cases, either 0 or <math>3 or <math>4 < p, we also easily show that $F'(x) = \lim_{n \to \infty} J_n f(x)$ by the similar method. This means that F(x) = F'(x) for all $x \in X$.

CASE 2: Assume that |k| < 1. Let $J_n f : X \to Y$ be the mappings defined by $J_n f(x) =$

$$\begin{cases} \frac{f_e(k^n x)}{k^{4n}} + \frac{4 \cdot 8^n - 2^n}{3} f_o\left(\frac{x}{2^n}\right) - \frac{8^{n+1} - 2^{n+3}}{3} f_o\left(\frac{x}{2^{n+1}}\right) & \text{if } 4 < p, \\ k^{4n} f_e(k^{-n} x) + \frac{4 \cdot 8^n - 2^n}{3} f_o\left(\frac{x}{2^n}\right) - \frac{8^{n+1} - 2^{n+3}}{3} f_o\left(\frac{x}{2^{n+1}}\right) & \text{if } 3 < p < 4, \\ k^{4n} f_e(k^{-n} x) - \frac{2^{n-1}}{3} \left(f_o\left(\frac{x}{2^{n-1}}\right) - 8 f_o\left(\frac{x}{2^n}\right)\right) + \frac{f_o(2^{n+1} x) - 2 f_o(2^n x)}{6 \cdot 8^n} & \text{if } 1 < p < 3, \\ k^{4n} f_e(k^{-n} x) + \frac{8 f_o(2^n x) - f_o(2^{n+1} x)}{6 \cdot 2^n} + \frac{f_o(2^{n+1} x) - 2 f_o(2^n x)}{6 \cdot 8^n} & \text{if } p < 1 \end{cases}$$

for all $x \in X$ and all nonnegative integers. Then, by the definitions of $J_n f$ and Λf , the equality

$$J_{n}f(x) - J_{n+1}f(x) = \begin{cases} -\frac{D_{k}f(0,k^{n}x)}{2 \cdot k^{4(n+1)}} + \frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) - \frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text{if } 4 < p, \\ \frac{k^{4n}}{2} D_{k}f\left(0, \frac{x}{k^{n+1}}\right) + \frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) - \frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text{if } 3 < p < 4, \\ \frac{k^{4n}}{2} D_{k}f\left(0, \frac{x}{k^{n+1}}\right) - \frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n}x\right) - \frac{2^{n-1}}{3} \Lambda f\left(\frac{x}{2^{n+1}}\right) & \text{if } 1 < p < 3, \\ \frac{k^{4n}}{2} D_{k}f\left(0, \frac{x}{k^{n+1}}\right) + \frac{1}{12 \cdot 2^{n}} \Lambda f\left(2^{n}x\right) - \frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n}x\right) & \text{if } p < 1 \end{cases}$$

holds for all $x \in X$ and all nonnegative integers n. Proof of the remaining part is omitted because it follows a procedure very similar to the case of 1 < |k| from the above equality.

References

- 1. J. Baker: A general functional equation and its stability. Proc. Natl. Acad. Sci. **133** (2005), no. 6, 1657-1664.
- 2. Y.J. Cho & R. Saadati: Lattictic non-archimedean random stability of ACQ functional equation. Adv. Differ. Equ. **2011**(1), 31.
- 3. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184** (1994), 431-436.
- 4. M.E. Gordji, Y.J. Cho, H. Khodaei & M. Ghanifard: Solutions and stability of generalized mixed type QCA-functional equations in random normed spaces. Annals of the Alexandru Ioan Cuza University-Mathematics **59** (2013), 299-320.
- 5. M.E. Gordji, S.K. Gharetapeh, C. Park & S. Zolfaghri: Stability of an additive-cubic-quartic functional equation. Adv. Differ. Equ. **2009** Article ID 395693.
- 6. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
- J.M. Rassias, M. Arunkumar, E. Sathya & N. Mahesh Kumar: Solution and stability of an ACQ functional equation in generalized 2-normed spaces. Intern. J. Fuzzy Mathematical Archive 7 (2015), 213-224.
- 8. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. **72** (1978), 297-300.
- 9. R. Saadati, M.M. Zohdi & S.M. Vaezpour: Nonlinear L-random stability of an ACQ functional equation. J. Inequal. Appl. **2011** Article ID 194394.
- 10. S.M. Ulam: A Collection of Mathematical Problems. Interscience, New York, 1960.
- 11. Z. Wang, X. Li & Th.M. Rassias: Stability of an additive-cubic-quartic functional equation in multi-Banach spaces. Abstr. Appl. Anal. **2011** Article ID 536520.

Department of Mathematics Education, Gongju National University of Education, Gongju 32553, Republic of Korea

Email address: lyhmzi@gjue.ac.kr