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ON THE HYERS-ULAM-RASSIAS STABILITY OF AN
ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION

YANG-H1 LEE

ABSTRACT. In this paper, we investigate Hyers-Ulam-Rassias stability of the func-
tional equation

fla+ky) =K fz+y) +2(k* = 1) f(x) = k" f(z —y) + f(z — ky)
— KK = 1)(f(y) + f(=y) =0,
where k is a fixed real number with |k| # 0, 1.

1. INTRODUCTION

Throughout this paper, let V' and W be real vector spaces and k a fixed real
number such that |k| # 0,1. For a given mapping f : V' — W, we use the following

abbreviations:
fo(x) = f(x) —2f(—93)7
(.’L’) ( )+2f(—$),
Af(z,y) :=f(z+y) - flx) = f(y),
Cf(z,y) :=f(x+2y) —3f(x+y)+3f(z) — flz —y) - 6f(y),
Q' f(x,y) :=f(x+2y) —4f(x+y) +6f(x) —4f(x —y) + f(x — 2y) — 241 (y),
Dif(,y) :=f(x+ky) — K> f(z +y) +2(k> = 1) f(z) — K> f(z —y) + f(z — ky)

(1.1) — K = 1)(f(y) + f(-y))

for all x,y € V. Every solution of functional equation Af(z,y) =0, Cf(x,y) =0
and @' f(z,y) = 0 are called an additive mapping, a cubic mapping and a quar-
tic mapping, respectively. If a mapping can be expressed by the sum of an addi-

tive mapping, a cubic mapping and a quartic mapping, then we call the mapping
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an additive-cubic-quartic mapping. A functional equation is called an additive-
cubic-quartic functional equation provided that each solution of that equation is an
additive-cubic-quartic mapping and every additive-cubic-quartic mapping is a solu-
tion of that equation. Many mathematicians [2, 5, 7, 9, 11] have studied the stability

of the following additive-cubic-quartic functional equation

11f(z+2y)+11f(x—2y) = 44f (z+y)+44f (z—y)+12f(3y)—48 f (2y)+60 f (y)—66 f ().

In 1940, Ulam [10] questioned about the stability of group homomorphisms. In
1941, Hyers [6] solved this question for Cauchy functional equation, which is a partial
answer to Ulam’s question. In 1978, Rassias [8] made Hyers’ result generalized (Refer
to Gavruta’s paper [3] for a more generalized result). The concept of stability used
by Rassias is called "Hyers-Ulam-Rassias stability’.

M.E. Gordji etc. [4] investigated the stability of the functional equation Dy f(z,y)
= 0 on the random normed spaces for the case k is a fixed integer.

In this paper, we will show that the functional equation D, f(x,y) = 0 is an
additive-cubic-quartic functional equation when r is a rational number, and also
investigate Hyers-Ulam-Rassias stability of that functional equation Dy f(z,y) = 0

for k£ is a real number.

2. MAIN THEOREMS
The following theorem is a particular case of Baker’s theorem [1].

Theorem 2.1 ([1, Theorem 1]). Suppose that V' and W are vector spaces over
Q, R or C and g, Bo, - - ., tm, Bm are scalars such that o3 — oy B; # 0 whenever
0<ji<i<m. If f; : V=W for0<l<m and

> fleuz + Biy) = 0

1=0
for all x;y € V, then each f; is a “generalized” polynomial mapping of “degree” at

most m — 1.

Baker [1] also states that if f is a ”generalized” polynomial mapping of ”degree”
at most m — 1, then f is expressed as f(z) = zo + Y7 aj(x) for x € V, where a]
is a monomial mapping of degree [ and f has a property f(rz) = xo+ Zﬁ;l 7“la;k (z)

for x € V and r € Q. The monomial mapping of degree 1, 2, 3 and 4 are also called
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an additive mapping, a quadric mapping, a cubic mapping and a quartic mapping,
respectively.

Therefore, if f, g, h, f' are generalized polynomial mappings of degree at most 4
satisfying f(rz) = rf(x), g(rx) = r2g(z), h(rz) = r3h(z) and f'(rz) = r*f'(z) for
all z € V when r is a fixed rational number with r # 0, +1, then f, g, h, f’ are an
additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping,
respectively.

Hereafter we will use the following abbreviation for convenience:

Af(x) ::ﬁ((%? ) Dyfo(, 2) — 262Dy fo (2, ) + 262 Dy fo (, 220)

— 2Dy fol(k + D), 2) + 2Dp fo((k — 1)z, ) — k* Dy f,(2x, 22)
(2.1) + Dy fo(,3z) — Difo((2k + 1)z, ) + Di fo((2k — 1)z, 7).

Now we will show that the functional equation D, f(x,y) = 0 is an additive-cubic-

quartic functional equation when r is a rational number such that r # 0, +1.

Theorem 2.2. Let r be a rational number such that r # 0,+1. A mapping f
satisfies the functional equation D, f(x,y) =0 for all x,y € V if and only if f is an

additive-cubic-quartic mapping.

Proof. Assume that a mapping f : V' — W satisfies the functional equation D, f(z,y)
=0 for all z,y € V and g, h are the mappings defined by g(z) = M and
h(z) = M. Then D,g(z,y) =0, D,.h(x,y) = 0 and D, fe(z,y) = 0 hold for
all z,y € V. According to Theorem 2.1, we obtain that g, h and f. are generalized

polynomial mappings of degree at most 4. From the equalities

(22)  fo(da) — 10£,(22) + 16(x) = Af(x) and fu(r) - r*fo(a) = 2L (00
for all x € V, where Af(x) is the mapping defined in (2.1), we know that g, h, fe
satisfy the properties g(2z) = 2g(x), h(2z) = 23h(z) and f.(rz) = r*f.(z) for all z €
V', respectively. As mentioned in the previous sentence above this theorem, g, h, fe
are an additive mapping, a cubic mapping, and a quartic mapping, respectively.
Since the equality f = g + h + f. holds, f is an additive-cubic-quartic mapping.
Conversely, assume that f is an additive-cubic-quartic mapping, i.e. there exist
an additive mapping g, a cubic mapping h, and a quartic mapping f’ such that f =
g+h+ f'. Notice that the equalities g(rz) = rg(z), g(x) = —g(—=x), h(rz) = r3h(x),
h(z) = —h(—x), f'(rz) = r*f'(z) and f'(x) = f'(—z) for all z € V and r € Q. First
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D,g(x,y) = 0 is obtained from the equality
Drg(z,y) = r*Ag(x +y, & — y) — Ag(z + ry,z — ry) — (r* — 1) Ag(, 7)

for all z,y € V. Let us first prove D,h(z,y) = 0 and D, f'(x,y) = 0 for n is a
natural number. Using mathematical induction, the equalities D, h(z,y) = 0 and

D, f'(z,y) = 0 are obtained from the equalities
Dih(w,y) = 0= D1f'(x,y),
Dyf'(z,y) = Q'f'(x,y),
Doh(z,y) = Ch(z,y) = Ch(z = y,y),
Dy f'(,y) = Dn1f'(x +y,y) + Dn1f'(x — y,y) — Dnaf'(z,y)
+(n—1°Q f'(z,y),
Dyh(z,y) = Dn-1h(x +y,y) + Dp_1h(z = y.y) — Dp—2h(z,y) + (n — 1)* Dah(z,y)
for all z,y € V and all n € N\{1,2}. Let us now prove D,f(z,y) = 0 and
D,h(z,y) = 0 for any rational numbers r with r # 0,4+1. Notice that if » € Q, then

there exist m,n € N such that r = > or r = —. Since the equalities D~ h(x,y) = 0,
D_nh(z,y) =0, Dx f'(z,y) = 0and D _» f'(x,y) = 0 are derived from the equalities

D h(ag) =Da () - Zfz ()
D%nh(%y) 2 h(z, —y),
e e 0.1 (5.2) - oo (s 2).

@3\@

D_ f( )D"f(% )

for all z,y € V and n,m € N, we get D, h(z,y) = 0 and D, f'(z,y) = 0 for all
x,y € V. N

Now we can prove the following Hyers-Ulam-Rassias stability theorem.

Theorem 2.3. Let p # 1,3,4 be a positive real number, X a real normed space, and

Y a real Banach space. Suppose that f : X — Y s a mapping such that

(2.3) 1Drf (@, )l < Ol l” + llyl”)

for all x,y € X. Then there exists a unique solution mapping F of the functional
equation DiF(x,y) = 0 such that
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(2.4)

2||k|p T 57 e (s — 73))0llllP if 4<p,

2||k|P SR T 5 (s — w) ) OllallPif 3 <p <4,
QHW sEPTe T 6 K (25 + 55)]0l|z|P if 1<p<3,
R T 6 (m — 52) ] Ol if 0<p<l1

[
1/ () = F(2)]| < %
[

for all x € X, where

12k% + 13 + 5k22P + 3P + 2|k — 1P + 2|k + 1P + |2k — 1P + |2k + 1|p
|kt — k2|

K=

Proof. Notice that 2k?(k? — 1) f(0)|| = ||Dxf(z,y)|| < 0, which implies f(0) = 0.
we will prove this theorem by dividing it into two cases, |k| < 1 and 1 < |k|.
CASE 1: Assume that 1 < |k|. Let J,f : X — Y be the mappings defined by

kA fo(k~"x) + wfo(z%) _ 8n+132n+3 fO(Qnafkl) it 4<p,
(o) = felbro) | A8"2" p () 8L g () if 3<p<d,
n — n n— n+1 _ n .
fe]({/.’fln ) . 1 (fO(Qn 1) - 8f0(2 )) + fo 2 z?8n2f0(2 I) lf 1 < p < 37
n n n+1 n+1 n X
felkra) e D)o he) | [o(2 ) 2fo(2") it p<1

for all x € X and all nonnegative integers n. Then, by (2.2) and the definitions of
Jnf and Af, we have the equality

(2.5)
4an n n .
B Def (0, pr) + 25 Af(55) — T Af(555)  if4 <p,
Dkf(O k"z) | 4.87 x Pig :
+ Af(nz ZAf(5%5) if3<p<4
intD) 3 T T )
Jnf(-r) - Jn+1f(x) = D2k§(0 ]:nz) 1 on 2

Forz) —
2. kAT 48 Sn ( x) e lAf(2n+1) if 1 <p<3,
(2"z) -

_ Dif(0,k™ .
ngég n+1£)L‘ + 12. 2n Af n:r 48 8n Af(2n ) lfp < ].

holds for all x € X and all nonnegative integers n. Therefore, together with the
equality f(z) — J,f(x) = Z;:&(Jif(x) — Jiy1f(x)) for all z € X, we obtain that if
f: X — Y is a mapping such that Dy f(z,y) =0 for all x,y € X, then

(2.6) Inf(x) = f(x)
for all x € X and all positive integers n. The inequality

(2.7) [Af ()] < KOj]”
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follows from (2.3) and the definition of Af. It follows from (2.5) and (2.7) that

k4" 4.8" 9" \K .
(2'|k|("+1)f’ + (3.2(n+2))p )9||5UHP if 4 < p,
(z.zli!:il) +5 8;n+22)p >9H95||p it 3 <p<4,
19nf(@) = T f(@)] < |k|™P Konp MK .
(2,k4(n+1) + G.gnT1 + 6'2(n+1)p>HHpr ifl< p < 3,
k|np 4n+1_1 onp [ .
| (ke + S o if0<p<l1

for all # € X. Together with the equality J,f(z) — Juimf(z) = S0 (T f(x)
—Jit1f(x)) for all x € X, we get

(2.8)
S (gt + G Jollalr 4 <p,
1( R <tz<:f;”<>ew

T2 = TP ON < st (i + 88 + il ol
if 1 <p<3,
St (Gl + S olelr itp <1

for all z € X and n,m € NU{0}. It follows from (2.8) that the sequence {.J, f(z)}
is a Cauchy sequence for all x € X. Since Y is complete, the sequence {J, f(z)}
converges for all x € X. Hence we can define a mapping F': X — Y by
F(z):= lim J,f(z)
n—oo

for all x € X. Moreover, letting n = 0 and passing the limit n — oo in (2.8) we get
the inequality (2.4). For the case 1 < p < 3, we easily get

D)) = Jim | P 2 (g, (35 20) 4 80uss (57 ) )

6 on’ gn ' on
N Dy fo (2"+1$, 2n+1y) — 2Dy fo (2", 2™y) H
68"
. |k|"P 27(2P +8)  2"P(2P +2) o(lzII” + [ly]”)
=\ e T g o 6.gn ) < UEIm+ Y
-0

for all z,y € X. Also we easily show that Dy F(x,y) = 0 by the similar method for
the other cases, either p < lor3 <p<4or4d<np.

To prove the uniqueness of F, let I’ : X — Y be another solution mapping
satisfying (2.4). Instead of the condition (2.4), it is sufficient to show that there is
a unique mapping that satisfies condition ||f(z) — F(x)|| < (2|k4i|k|l’| + 6|8[_(2p| +
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6o ZP‘)QHpr simply. By (2.6), the equality F'(z) = J,F’'(x) holds for all n € N.
For the case 1 < p < 3, we have

[Inf (@) = F'(@)|| = | nf (z) = JnF" (z)]|

() () e
+ 2(:<F’< > - 8F’< >> L C 6) —8n2F£(2"fU) B Fé]i/z:x) ‘
<5 v ( )H () |

L 2o~ |, | F) (k)|
6- 8” kAn

on— 1+p+2n+2 2(n+1)p+2np+1 ’k,‘np
3.9np + 3. 923n+1 + k.4n

+ + ! 0| [”
X
6|8 2| " 6l2—2¢] " 20kt — [k|?|

for all x € X and all positive integers n. Taking the limit in the above inequality
as n — oo, we can conclude that F'(x) = lim, o J,f(x) for all z € X. For the
other cases, either 0 < p < 1 or 3 < p < 4 or 4 < p, we also easily show that
F'(x) = limy,—00 Jn f(x) by the similar method. This means that F(xz) = F'(z) for
all x € X.

CASE 2: Assume that |k| < 1. Let J,f : X — Y be the mappings defined by

Inf () =

o+ S () = S () it 4<p,
kA fo (k) + A2 f () - B2 g (e if 3<p<d,
k4"fe(/€7" ) — 2n- 1(f0(2n 1) 8fo(2 )) + fo 2”“‘1"2);12%(2"2) if 1<p<3,
k,4nfe(kfnx) 8f0(2n )62%(2n+133) fo(2" ) 2f (2"z) if p < 1

for all x € X and all nonnegative integers. Then, by the definitions of J, f and Af,
the equality

Inf(x) = Jng1f(z) =
-G 4 40 (72) - FAS () 1<y
k4n-Dkf( 7kn+1) 48”Af(2n$+2) 2nAf(2n+2) 1f3<p<47
K DLf(0, ¢ 2nz) — 2 lAf(Wl) if 1 <p<3,
B Dy f(0, 5 27x) — e A (27) iftp<1

) 48- 8" (
) + A (
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holds for all x € X and all nonnegative integers n. Proof of the remaining part is
omitted because it follows a procedure very similar to the case of 1 < |k| from the

above equality. O
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