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(L, ∗,⊙)-QUASIUNIFORM CONVERGENCE SPACES

Jung Mi Ko a and Yong Chan Kim b, ∗

Abstract. In this paper, we define the notion of (L, ∗,⊙)-quasiuniform conver-
gence spaces on ecl-premonoid. From (L, ∗,⊙)-quasiuniform structures, we can ob-
tain various (L, ∗,⊙)-quasiuniform convergence structures and give their examples.

1. Introduction

Gäher [2,3] introduced the notions of L-filters in a frame. Höhle and Sostak [4]

introduced the concept of L-filters for a complete quasimonoidal lattice L. For the

case that the lattice is a stsc quantale, L-filters were introduced in [12]. Jäger [5-

6] developed stratified L-convergence structures based on the concepts of L-filters

where L is a complete Heyting algebra. Yao [14] extended stratified L-convergence

structures to complete residuated lattices and investigated between stratified L-

convergence structures and L-fuzzy topological spaces. As an extension of Yao

[14], Fang [7-11] introduced L-ordered convergence structures and (pre, quasi,semi)

uniform convergence spaces on L-filters and investigated their relations.

In this paper, we define the (L, ∗,⊙)-quasiuniform convergence spaces as an ex-

tension of Fang’s uniform convergence spaces on ecl-premonoid in Orpen’s sense [13].

From (L, ∗,⊙)-quasiuniform structures, we can obtain various (L, ∗,⊙)-quasiuniform

convergence structures and give their examples.

2. Preliminaries

Definition 2.1 ([13]). A complete lattice (L,≤,⊥,⊤) is called a GL-monoid (L,≤
, ∗,⊥,⊤) with a binary operation ∗ : L× L→ L satisfying the following conditions:
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(G1) a ∗ ⊤ = a, for all a ∈ L,

(G2) a ∗ b = b ∗ a, for all a, b ∈ L,

(G3) a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b ∈ L,

(G4) if a ≤ b, there exists c ∈ L such that b ∗ c = a,

(G5) a ∗
∨

i∈Γ bi =
∨

i∈Γ(a ∗ bi).
We can define an implication operator:

a⇒ b =
∨

{c | a ∗ c ≤ b}.

Example 2.2 ([1, 4, 13]). (1) A continuous t-norm ([0, 1],≤, ∗) is a GL-monoid.

(2) A frame (L,≤,∧) is a GL-monoid.

Definition 2.3 ([1, 4, 13]). A complete lattice (L,≤,⊥,⊤) is called a cl-premonoid

(L,≤,⊙) with a binary operation ⊙ : L×L→ L satisfying the following conditions:

(CL1) a ≤ a⊙⊤ and a ≤ ⊤⊙ a, for all a ∈ L,

(CL2) if a ≤ b and c ≤ d, then a⊙ c ≤ b⊙ d,

(CL3) a⊙
∨

i∈Γ bi =
∨

i∈Γ(a⊙ bi) and
∨

j∈Γ aj ⊙ b =
∨

j∈Γ(aj ⊙ b).

We can define an implication operator:

a→ b =
∨

{c | a⊙ c ≤ b}.

Example 2.4 ([1, 4, 13]). (1) Every GL-monoid (L,≤, ∗) is a cl-premonoid.

(2) Defines maps ⊙i : [0, 1]× [0, 1] → [0, 1] as follows:

x⊙1 y = x
1
p · y

1
p (p ≥ 1), x⊙2 y = (xp + yp) ∧ 1(p ≥ 1).

Then (L,≤,⊙i) is a cl-premonoid for i = 1, 2.

Definition 2.5 ([1, 4, 13]). A complete lattice (L,≤,⊥,⊤) is called an ecl-premonoid

(L,≤,⊙, ∗) with a GL-monoid (L,≤, ∗) and a cl-premonoid (L,≤,⊙) which satisfy

the following condition:

(D) (a⊙ b) ∗ (c⊙ d) ≤ (a ∗ c)⊙ (b ∗ d), for all a, b, c, d ∈ L.

An ecl-premonoid (L,≤,⊙, ∗) is called an M-ecl-premonoid if it satisfiesthe fol-

lowing condition:

(M) a ≤ a⊙ a for all a ∈ L.

In this paper, we always assume that (L,≤,⊙, ∗) is an ecl-premonoid unless

otherwise specified.

Example 2.6 ([1, 4, 13]). (1) Let (L,≤, ∗) be a GL-monoid and (L,≤,∧) is a

cl-premonoid. Then (L,≤,∧, ∗) is an M-ecl-premonoid.
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(2) Let (L,≤, ∗) be a GL-monoid. Then (L,≤, ∗, ∗) is an ecl-premonoid. If ∗ = ·,
0.5 ̸≤ 0.5 · 0.5 = 0.25. (L,≤, ·, ·) is not an M-ecl-premonoid.

(3) Let (L,≤, ·) be a GL-monoid. Define a map ⊙ : [0, 1] × [0, 1] → [0, 1] as

x⊙ y = (x+ y) ∧ 1. Then (L,≤,⊙, ·) is not an M-cl-premonoid because

0.7 = (0.3⊙ 0.4) · (0.5⊙ 0.7) ̸≤ (0.3 · 0.5)⊙ (0.4 · 0.7) = 0.15 + 0.28 = 0.43

(4) Let (L,≤, ·) be a GL-monoid. Define a map ⊙ : [0, 1] × [0, 1] → [0, 1] as

x⊙ y = x
1
3 · y

1
3 . Then (L,≤,⊙, ·) is an M-cl-premonoid.

Lemma 2.7 ([1, 4, 13]). Let (L,≤,⊙, ∗) be an ecl-premonoid. For each a, b, c, d, ai, bi ∈
L and for ↑∈ {→,⇒}, we have the following properties.

(1) If b ≤ c, then a⊙ b ≤ a⊙ c and a ∗ b ≤ a ∗ c.
(2) a⊙ b ≤ c iff a ≤ b→ c. Moreover, a ∗ b ≤ c iff a ≤ b⇒ c.

(3) If b ≤ c, then a ↑ b ≤ a ↑ c and c ↑ a ≤ b ↑ a.
(4) a ≤ b iff a⇒ b = ⊤.

(5) a ∗ b ≤ a⊙ b, a→ b ≤ a⇒ b and a ∗ (b⊙ c) ≤ (a ∗ b)⊙ c.

(6) (a ↑ b)⊙ (c ↑ d) ≤ (a⊙ c) ↑ (b⊙ d).

(7) (b ↑ c) ≤ (a⊙ b) ↑ (a⊙ c).

(8) (b ↑ c) ≤ (a ↑ b) ↑ (a ↑ c) and (b ↑ a) ≤ (a ↑ c) ↑ (b ↑ c).
(9) (b→ c) ≤ (a ↑ b) → (a ↑ c) and (b ↑ a) ≤ (a→ c) → (b ↑ c)
(10) ai ↑ bi ≤ (

∧
i∈Γ ai) ↑ (

∧
i∈Γ bi).

(11) ai ↑ bi ≤ (
∨

i∈Γ ai) ↑ (
∨

i∈Γ bi).

(12) (c ↑ a) ∗ (b→ d) ≤ (a→ b) → (c ↑ d).

Definition 2.8 ([4, 13]). A mapping F : LX → L is called an (L, ∗)-filter on X if

it satisfies the following conditions:

(F1) F(1∅) = ⊥ and F(1X) = ⊤, where 1∅(x) = ⊥, 1X(x) = ⊤ for x ∈ X.

(F2) F(f ∗ g) ≥ F(f) ∗ F(g), for each f, g ∈ LX ,

(F3) if f ≤ g, F(f) ≤ F(g).

An (L, ∗)-filter is called stratified if

(S) F(α ∗ f) ≥ α ∗ F(f) for each f ∈ LX and α ∈ L.

The pair (X,F) is called an (resp. a stratified)(L, ∗)-filter space. We denote by

F∗(X) (resp. F s
∗ (X)) the set of all (resp. stratified) (L, ∗)-filters on X.

Let (X,F1) and (Y,F2) be two (L, ∗)-filter spaces and ϕ : X → Y called an

L-filter map if F2(g) ≤ F1(ϕ
←(g)) for all g ∈ LY where ϕ←(g) = g ◦ ϕ.
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Example 2.9 ([4, 13]). (1) Define a map [x] : LX → L as [x](f) = f(x). Then [x]

is a stratified (L, ∗)-filter on X.

(2) Define a map inf : LX → L as inf(f) =
∧

x∈X f(x). Then inf is a stratified

(L, ∗)-filter on X.

3. (L, ∗,⊙)-quasiuniform Convergence Spaces

Theorem 3.1. Let U ,V ∈ F∗(X ×X). We define U ◦⊙ V : LX×X → L as follows:

(U ◦⊙ V)(w) =
∨

{U(u)⊙ V(v) | u ◦ v ≤ w}

where u ◦ v(x, z) =
∨

y∈X(u(x, y) ∗ v(y, z)).
(1) u ◦ v = ⊥ implies U(u)⊙ V(v) = ⊥ iff (U ◦⊙ V) ∈ F∗(X ×X).

(2) If u◦v = ⊥ implies U(u)⊙V(v) = ⊥ and U ∈ F s
∗ (X×X) or V ∈ F s

∗ (X×X),

then U ◦⊙ V ∈ F s
∗ (X ×X).

(3) If U(1△) = ⊤ where 1△(x, x) = ⊤ and 1△(x, y) = ⊥ for x ̸= y ∈ X, U◦U ≥ U .
(4) U ◦⊙ [(x, x)] ∈ F s

∗ (X ×X), U ◦⊙ [(x, x)] ≥ U .
(5) [(x, x)] ◦∗ [(x, x)] = [(x, x)].

(6)
∧

x∈X [(x, x)] ◦∗
∧

x∈X [(x, x)] =
∧

x∈X [(x, x)].

(7) U ◦∗ U−1 ∈ F∗(X ×X).

(8) (U ◦⊙ V)−1 = V−1 ◦⊙ U−1.

Proof. (1) Since (u1 ∗ u2) ◦ (v1 ∗ v2) ≤ (u1 ◦ v1) ∗ (u2 ◦ v2),

(U ◦⊙ V)(u) ∗ (U ◦⊙ V)(v)
=

∨
u1◦v1≤u(U(u1)⊙ V(v1)) ∗

∨
u2◦v2≤v(U(u2)⊙ V(v2))

≤
∨

(u1◦v1)∗(u2◦v2)≤u∗v

(
(U(u1)⊙ V(v1)) ∗ (U(u2)⊙ V(v2))

)
≤

∨
(u1◦v1)∗(u2◦v2)≤u∗v

(
(U(u1) ∗ U(u2))⊙ (V(v1) ∗ V(v2))

)
≤

∨
(u1∗u2)◦(v1∗v2)≤u∗v(U(u1 ∗ u2)⊙ V(v1 ∗ v2))

≤ (U ◦⊙ V)(u ∗ v).
Other cases are easily proved.

(2) Let U ∈ F s
∗ (X ×X). Since a ∗ (b⊙ c) ≤ (a⊙⊤) ∗ (b⊙ c) ≤ (a ∗ b)⊙ (⊤∗ c) =

(a ∗ b)⊙ c, we have

α ∗ (U ◦⊙ V)(u) = α ∗
∨

u1◦v1≤u(U(u1)⊙ V(v1))
=

∨
u1◦v1≤u(α ∗ (U(u1)⊙ V(v1)))

≤
∨

(u1◦v1)≤u((α ∗ U(u1))⊙ V(v1))
≤

∨
((α∗u1)◦v1)≤α∗u(U(α ∗ u1)⊙ V(v1))

≤ (U ◦⊙ V)(α ∗ u)
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(3) For u ◦ 1△ = u, U ◦⊙ U(u) ≥ U(u)⊙ U(1△) = U(u).
(4) Since [(x, x)](α ∗ u) = α ∗ u(x, x) = α ∗ [(x, x)](u), [(x, x)] ∈ F s

∗ (X ×X). For

u ◦ 1△ = u, we have

(U ◦⊙ [(x, x)])(u) ≥ U(u)⊙ [(x, x)](1△) = U(u).

(5) For u1 ◦ u2 ≤ u, we have

([(x, x)] ◦∗ [(x, x)])(u) =
∨
x∈X

([(x, x)](u1) ∗ [(x, x)](u2)) ≤ u(x, x) = [(x, x)](u).

(6) For u ◦ 1△ = u, we have

(
∧

x∈X [(x, x)] ◦∗
∧

x∈X [(x, x)])(u) ≥
∧

x∈X [(x, x)](u) ∗ [(x, x)](1△)
=

∧
x∈X [(x, x)](u).

For u ◦ v ≤ w,

(
∧

x∈X [(x, x)](u)) ∗ (
∧

x∈X [(x, x)](v)) =
∧

x∈X u(x, x) ∗
∧

x∈X v(x, x)
≤

∧
x∈X [(x, x)](u ◦ v) ≤

∧
x∈X [(x, x)](w).

(7) For u◦v = ⊥, we have U(u)∗U−1(v) ≤ U(u∗v−1) = ⊥ because u∗v−1(x, y) ≤
u ◦ v(x, x) = ⊥.

(8) Since (v ◦ u)−1 = u−1 ◦ v−1, we have

V−1 ◦⊙ U−1(w) =
∨
{V−1(v)⊙ U−1(u) | v ◦ u ≤ w}

=
∨
{V(v−1)⊙ U(u−1) | u−1 ◦ v−1 ≤ w−1}

= U ◦⊙ V(w−1) = (U ◦⊙ V)−1(w).

Definition 3.2. A subset U of F∗(X×X) is called an (L, ∗,⊙)-quasiuniform struc-

ture on X if it satisfies the following conditions:

(QU1) U ≤ [(x, x)], for each x ∈ X.

(QU2) U ≤ U ◦⊙ U .
The pair (X,U) is called an (L, ∗,⊙) quasiuniform space.

An (L, ∗,⊙)-quasiuniform space is called an (L, ∗,⊙)-uniform space if it satisfies

the following condition;

(U) U ≤ U−1.
Let (X,UX) and (Y,UY ) be (L, ∗,⊙)-quasiuniform spaces. A map ψ : (X,UX) →

(Y,UY ) is called quasiuniformly continuous if for all u ∈ LY×Y , UY (u) ≤ UY ((ψ ×
ψ)←(u)).

Example 3.3. Let X = {a, b, c} be a set and (L = [0, 1],≤,∧, ∗, 0, 1) an M-ecl-

premonoid with a ∗ b = (a+ b− 1) ∨ 0. Put u, v ∈ [0, 1]X×X as follows:

u(a, a) = u(b, b) = u(c, c) = 1, u(a, b) = u(b, a) = 0.6,
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u(a, c) = u(c, a) = 0.5, u(b, c) = u(c, b) = 0.4.

v(a, a) = v(b, b) = 1, v(c, c) = 0.4, v(a, b) = v(b, a) = 0.6,

v(a, c) = v(c, a) = 0.5, v(b, c) = v(c, b) = 0.4.

(1) Define a ([0, 1], ∗)-filter as U : [0, 1]X×X → [0, 1] as follows:

U(w) =


1, if w = 1X×X ,
0.6, if u ≤ w ̸= 1X×X ,
0.3, if u ∗ u ≤ w ̸≥ u,
0, otherwise.

Since u ◦ u = u, we obtain U = U ◦∧ U = U−1 and

(U ◦∗ U)(w) =

 1, if w = 1X×X ,
0.2, if u ≤ w ̸= 1X×X ,
0, otherwise.

Furthermore, U(w) ≤ [(x, x)](w), for each x ∈ X, w ∈ LX×X . Hence U is an

(L, ∗,∧)-uniform structure on X but not an (L, ∗, ∗)-uniform structure on X because

0.6 = U(u) ̸≤ (U ◦∗ U)(u) = 0.2.

(2) Define [0, 1]-filter as V : [0, 1]X×X → [0, 1] as follows:

V(w) =


1, if w ≥ 1△,
0.6, if v ≤ w ̸≥ 1△,
0.3, if v ∗ v ≤ w ̸≥ v,
0, otherwise.

Since v ◦ 1△ = v, we obtain V ◦∗ V = V ◦∧ V = V = V−1. But 0.6 = V(v) ̸≤
[(c, c)](v) = 0.4. Hence V is neither an (L, ∗,∧)-uniform structure nor an (L, ∗, ∗)-
uniform structure on X.

Definition 3.4. A map Λ : F∗(X × X) → L is called an (L, ∗,⊙)-quasiuniform

convergence structure on X if it satisfies the following conditions:

(QC1) Λ([(x, x)]) = ⊤, for each x ∈ X.

(QC2) If U ≤ V, then Λ(U) ≤ Λ(V).
(QC3) Λ(U)⊙ Λ(V) ≤ Λ(U ⊙ V).
(QC4) Λ(U)⊙ Λ(V) ≤ Λ(U ◦⊙ V) where U ◦⊙ V ∈ F∗(X ×X).

The pair (X,Λ) is called an (L, ∗,⊙)-quasiuniform convergence space.

An (L, ∗,⊙)-quasiuniform convergence space is called an (L, ∗,⊙)-uniform con-

vergence space if it satisfies the following condition;

(U) Λ(U) ≤ Λ(U−1).
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We say Λ1 is finer than Λ2 (or Λ2 is coarser than Λ1) iff Λ1 ≤ Λ2.

We define Λ⊤,Λ⊥ : F∗(X ×X) → [0, 1] as follows:

Λ⊤(W) =

{
⊤, if W ≥ [(x, x)],∀x ∈ X
⊥, otherwise.

Λ⊥(W) = ⊤, ∀W ∈ F (X ×X)

Then Λ⊤ (resp. Λ⊥) is the finest (resp. coarsest) (L, ∗,⊙)-quasiuniform convergence

structure.

Let (X,ΛX) and (Y,ΛY ) be (L, ∗,⊙)-quasiuniform convergence spaces. A map

ψ : (X,ΛX) → (Y,ΛY ) is called quasiuniformly continuous if for all U ∈ F∗(X ×X),

ΛX(U) ≤ ΛY ((ψ × ψ)⇒(U)).

Theorem 3.5. Let (X,ΛX) be an (L, ∗,⊙)-quasiuniform convergence space. We

define a map Λ−1X : F∗(X ×X) → L as

Λ−1X (U) = ΛX(U−1)

Then

(1) (X,Λ−1X ) is an (L, ∗,⊙)-quasiuniform convergence space.

(2) If ψ : (X,ΛX) → (Y,ΛY ) is quasiuniformly continuous, then ψ : (X,Λ−1X ) →
(Y,Λ−1X ) is quasiuniformly continuous.

Proof. (1) (QC1) It is easy because [(x, x)]−1 = [(x, x)].

(QC2) If U ≤ V, then U−1 ≤ V−1. Thus Λ−1X (U) = ΛX(U−1) ≤ ΛX(V−1) =

Λ−1X (V).
(QC3) Λ−1X (U)⊙Λ−1X (V) = ΛX(U−1)⊙ΛX(V−1) ≤ ΛX(U−1⊙V−1) = Λ−1X (U⊙V).
(QC4)

Λ−1X (U)⊙ Λ−1X (V) = Λ−1X (V)⊙ Λ−1X (U) = ΛX(V−1)⊙ ΛX(U−1)
≤ ΛX(V−1 ◦⊙ U−1) = ΛX((U ◦⊙ V)−1)
= Λ−1X (U ◦⊙ V).

(2) Λ−1X (U) = ΛX(U−1) ≤ ΛY ((ψ × ψ)⇒(U−1)) = ΛY (((ψ × ψ)⇒(U))−1) =

Λ−1Y ((ψ × ψ)⇒(U)).

Example 3.6. Let X = {a, b, c} be a set, (L = [0, 1],≤,⊙, ∗, 0, 1) an ecl-premonoid

with a ∗ b = a · b, a⊙ b = a
1
3 · b

1
3 and u ∈ [0, 1]X×X defined as follows:

u(a, a) = u(b, b) = u(c, c) = 1, u(a, b) = 0.5, u(b, a) = 0.6,

u(a, c) = u(c, a) = 0.5, u(b, c) = 0.6, u(c, b) = 0.4.
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Define [0, 1]-filter as U : [0, 1]X×X → [0, 1] as follows:

U(w) =

 1, if w = 1X×X ,
0.6n, if un ≤ w ̸≥ un−1, n ∈ N,
0, otherwise.

where un+1 = un ∗ u and u0 = 1X×X .

Since un ◦ un = un, we obtain

(U ◦⊙ U)(w) =

 1, if w = 1X×X ,
0.6n ⊙ 0.6n, if un ≤ w ̸≥ un−1, n ∈ N, ,
0, otherwise.

(U ⊙ U)(w) =

 1, if w = 1X×X ,
0.6n ⊙ 0.6n, if un ≤ w ̸≥ un−1, n ∈ N,
0, otherwise.

We define Λ : F∗(X ×X) → [0, 1] as follows:

Λ(W) =


1, if W ≥ [(x, x)], x ∈ X

0.5[n], if U [n] ≤ W ̸≥ U [n+1], n ∈ N
0, otherwise.

where U [n+1] = U [n] ⊙ U and 0.5[n+1] = 0.5[n] ⊙ 0.5.

Then Λ is an (L, ∗,⊙)-quasiuniform convergence structure on X.

We obtain Λ−1 : F (X ×X) → [0, 1] as follows:

Λ−1(W) =


1, if W ≥ [(x, x)], x ∈ X

0.5[n+1], if V [n] ≤ W ̸≥ V [n+1],
0, otherwise.

where V = U−1, V [n+1] = V [n] ⊙ V and 0.5[n+1] = 0.5[n] ⊙ 0.5. Then Λ−1 is an

(L, ∗,⊙)-quasiuniform convergence structure on X.

Example 3.7. Let X = {a, b, c}, ([0, 1], ∗), u ∈ [0, 1]X×X and U as defined in

Example 12. We define Λ : F∗(X ×X) → [0, 1] as follows:

Λ(W) =

 1, if W ≥ [(x, x)],
0.6, if U ≤ W ̸≥ [(x, x)],
0, otherwise.

Since U ◦∧ U = U ∧ U = U = U−1, Λ is an (L, ∗,∧)-uniform convergence structure.

Theorem 3.8. Let (L,≤,⊙, ∗) be an M-ecl-premonoid. Let U be a quasiuniform

structure on X. We define a map ΛU : F (X ×X) → L as follows:

ΛU (W) =
∧

u∈LX×X

(U(u) → W(u)).

Then
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(1) ΛU is an (L, ∗,⊙) quasiuniform convergence structure.

(2) If ψ : (X,UX) → (Y,UY ) is quasiuniformly continuous, then ψ : (X,ΛUX) →
(Y,ΛUY ) is quasiuniformly continuous.

Proof. (QC1) Since U ≤ [(x, x)],

ΛU ([(x, x)]) =
∧

u∈LX×X

(U(u) → [(x, x)](u)) = ⊤.

(QC3)

ΛU (W1)⊙ ΛU (W2)

=
(∧

u∈LX×X (U(u) → W1(u))
)
⊙
(∧

v∈LX×X (U(v) → W2(v))
)

≤
∧

u∈LX×X

(
(U(u) → W1(u))⊙ (U(u) → W2(u))

)
≤

∧
u∈LX×X

(
(U(u)⊙ U(u)) → (W1(u)⊙W2(u))

)
≤

∧
u∈LX×X

(
U(u) → (W1 ⊙W2)(u)

)
= ΛU (W1 ⊙W2).

(QC4)

ΛU (V ◦⊙W)

=
∧

u∈LX×X

(
U(u) → (V ◦⊙W)(u)

)
≥

∧
u∈LX×X

(
(U) ◦⊙ U)(u) → (V ◦⊙W)(u)

)
≥

∧
u∈LX×X

(∨
u1◦u2≤u(U(u1)⊙ U(u2)) → (V ◦⊙W)(u))

)
=

∧
u∈LX×X

∧
u1◦u2≤u

(
U(u1)⊙ U(u2) → (V ◦⊙W)(u)

)
≥

∧
u∈LX×X

∧
u1◦u2≤u

(
(U(u1)⊙ U(u2)) → (V(u1)⊙W(u2))

)
≥

∧
u1∈LX×X

∧
u2∈LX×X

(
(U(u1) → V(u1))⊙ (U(u2) → W(u2))

)
≥

(∧
u1∈LX×X (U(u1) → V(u1))

)
⊙
(∧

u2∈LX×X (U(u2) → W(u2))
)

= ΛU (V)⊙ ΛU (W).

(2)

ΛUXX (W) → ΛUYY ((ψ × ψ)⇒(W))

≥
(∧

u∈LX×X (UX(u) → W(u))
)

→
(∧

v∈LY ×Y (UY (v) → (ψ × ψ)⇒(W)(v))
)

≥
(∧

v∈LY ×Y (UX((ψ × ψ)←(v)) → W((ψ × ψ)←(v)))
)
→(∧

v∈LY ×Y (UY (v) → (ψ × ψ)⇒(W)(v))
)
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≥
∧

v∈LY ×Y

(
UX((ψ × ψ)←(v)) → U((ψ × ψ)←(v))) →

(UY (v) → U((ψ × ψ)←(v)))
)

≥
∧

v∈LY ×Y

(
UY (v) → UX((ψ × ψ)←(v))

)
.

Example 3.9. Let X = {a, b, c}, ([0, 1], ∗), u ∈ [0, 1]X×X and U as defined in

Example 12. Since (X,U) is an (L, ∗,∧) is uniform structure and (L,≤,∧, ∗) is an

M-ecl-premonoid, we obtain an (L, ∗,∧)-quasiuniform convergence structure ΛU :

F∗(X ×X) → [0, 1] as follows:

ΛU (W) =
∧

v∈LX×X (U(v) → W(v))
= (0.6 → W(u)) ∧ (0.3 → W(u ∗ u))

where (a→ b) = 1 if a ≤ b and (a→ b) = b, otherwise.
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