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A FIXED POINT APPROACH TO THE STABILITY OF AN

ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

Abstract. In this paper, we investigate the stability of an additive-cubic-quartic
functional equation

f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)− 12f(y)− 12f(−y) = 0

by applying the fixed point theory in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, Ulam [17] questioned the stability of group homomorphisms, and the

following year Hyers [11] gave an affirmative answer to this problem for additive

mappings between Banach spaces. Hyers’ result has motivated many mathemati-

cians to deal with this problem (cf. [8, 14]).

Throughout this paper, let V and W be real vector spaces and Y a real Banach

space. For a given mapping f : V → W , we use the following abbreviations

Af(x, y) := f(x+ y)− f(x)− f(y),

Cf(x, y) := f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Q′f(x, y) := f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)− 24f(y)

for all x, y ∈ V . Solution of the functional equations Af(x, y) = 0, Cf(x, y) = 0

and Q′f(x, y) = 0 are called an additive mapping, a cubic mapping, and a quartic

mapping, respectively. A mapping f is called an additive-cubic-quartic mapping if f

is represented by sum of an additive mapping, a cubic mapping, and a quartic map-

ping. A functional equation is called an additive-cubic-quartic functional equation

provided that each solution of that equation is an additive-cubic-quartic mapping

and every additive-cubic-quartic mapping is a solution of that equation.
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M. E. Gordji et al. [9] investigated the additive-cubic-quartic functional equation

f(x+ ky)+f(x− ky)− k2f(x+ y)− k2f(x− y)

− (k2 − 1)(k2f(y) + k2f(−y)− 2f(x)) = 0,

where k ̸= 0,±1 is an integer, J. M. Rassias [13] investigated the additive-cubic-

quartic functional equation

11f(x+ 2y + 2w) + 11f(x− 2y − 2w)− 44f(x+ y + w)− 44f(x− y − w)

− 12f(3y + 3w) + 48f(2y + 2w)− 60f(y + w) + 66f(x) = 0,

and many mathematicians [6, 10, 16, 18] investigated the additive-cubic-quartic

functional equation

11f(x+ 2y) + 11f(x− 2y)

=44f(x+ y) + 44f(x− y) + 12f(3y)− 48f(2y) + 60f(y)− 66f(x).

Now we consider the following functional equation

f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)

− 12f(y)− 12f(−y) = 0.(1.1)

The mapping f : R → R defined by f(x) = ax4 + bx3 + cx is a solution of this

functional equation, where a, b, c are real constants.

In this paper, we will show that the functional equation (1.1) is an additive-cubic-

quartic functional equation and we introduce a strictly contractive mapping which

allows us to use the fixed point theory for proving the stability of the functional

equation (1.1) in the sense of L. Cădariu and V. Radu [4, 5]. Namely, starting from

the given mapping f that approximately satisfies the functional equation (1.1), a

solution F of the functional equation (1.1) is explicitly constructed by the formula

F (x) = lim
n→∞

(
n∑

i=0

nCi
(−1)n−i10i

16n
fo(2

2n−ix) +
fe(2

nx)

16n

)
or

F (x) = lim
n→∞

n∑
i=0

nCi

(
10i(−16)n−ifo

(
x

22n−i

)
+ 10i(−96)n−ife

(
x

22n−i

))
,

which approximates the mapping f .
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2. Main Results

Recall the following result of Margolis and Diaz’s fixed point theory.

Theorem 2.1 ([7, 15]). Suppose that a complete generalized metric space (X, d),

which means that the metric d may assume infinite values, and a strictly contractive

mapping J : X → X with the Lipschitz constant 0 < L < 1 are given. Then, for

each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},

or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Throughout this paper, for a given mapping f : V → W , we use the following

abbreviations

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

Df(x, y) := f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)

− 12f(y)− 12f(−y)

for all x, y ∈ V . As we stated in the previous section, a solution of Af = 0, Cf = 0,

and Q′f = 0 is called an additive, a cubic, and a quartic mapping, respectively. Now

we will show that f is an additive-cubic-quartic mapping if f is a solution of the

functional equation Df(x, y) = 0 for all x, y ∈ V .

Lee and Jung [12] proved the following lemma from Baker’s theorem [2].

Lemma 2.2 ([12, Corollary 2.2]). Let V and W are vector spaces over Q, R
or C, and r ∈ Q − {0,±1}. Suppose that n1, . . . , nm are natural numbers, and

cli , dli , α0, β0, . . . , αm, βm are scalar such that αjβl −αlβj ̸= 0 whenever 0 ≤ j < l ≤
m. If a mapping f : V → W satisfies the equality f(rx) = rkf(x) for all x ∈ V and

the inequality

f(α0x+ β0y) +
m∑
l=1

nl∑
i=1

clif(dli(αlx+ βly)) = 0

for all x, y ∈ V , then f is a monomial mapping of degree k.
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Theorem 2.3. A mapping f : V → W satisfies Df(x, y) = 0 for all x, y ∈ V if and

only if f is an additive-cubic-quartic mapping.

Proof. Define the mappings f1 and f2 by f1(x) := −fo(2x)+8fo(x)
6 and f2(x) :=

fo(2x)−2fo(x)
6 . If a mapping f : V → W satisfies Df(x, y) = 0 for all x, y ∈ V ,

then f1, f2, fe satisfy the equalities Df1(x, y) = 0, Df2(x, y) = 0, and Dfe(x, y) = 0

for all x, y ∈ V . We can obtain the equalities f1(2x) = 2f1(x), f2(2x) = 23f2(x),

fe(2x) = 24fe(x) from the equalities fe(2x) − 16fe(x) = Dfe(0,x)
2 and fo(4x) −

10fo(2x) + 16fo(x) = Dfo(2x, x) + 4Dfo(x, x) for all x ∈ V . According to Lemma

2.2, f1, f2, fe are an additive mapping, a cubic mapping, and a quartic mapping,

respectively. Since the equality f = f1+f2+fe holds, f is an additive-cubic-quartic

mapping.

Conversely, assume that f1, f2, f3 are mappings satisfying the equalities f :=

f1 + f2 + f3, Af1(x, y) = 0, Cf2(x, y) = 0, and Q′f3(x, y) = 0 for all x, y ∈ V . Then

the equalities f1(x) = −f1(−x), f2(x) = −f2(−x), f3(x) = f3(−x), f1(2x) = 2f1(x),

f2(2x) = 8f2(x), and f3(2x) = 16f3(x) hold for all x ∈ V . From the above equalities,

we obtain the equalities

Df(x, y) =Df1(x, y) +Df2(x, y) +Df3(x, y)

=−Af1(x+ 2y, x− 2y) + 4Af1(x+ y, x− y) + Cf2(x, y)

− Cf2(x− y, y) +Q′f3(x, y)

=0

as we desired. �

In the following theorem, we can prove the generalized Hyers-Ulam stability of

the functional equation (1.1) by using the fixed point theory.

Theorem 2.4. Let f : V → Y be a mapping for which there exists a mapping

φ : V 2 → [0,∞) such that the inequality

(2.1) ∥Df(x, y)∥ ≤ φ(x, y)

holds for all x, y ∈ V and let f(0) = 0. If there exists a constant 0 < L < 1 such

that φ has the property

(2.2) φ(2x, 2y) ≤ (
√
41− 5)Lφ(x, y)



A FIXED POINT APPROACH TO THE STABILITY 271

for all x, y ∈ V , then there exists a unique solution F : V → Y of (1.1) satisfying

the inequality

(2.3) ∥f(x)− F (x)∥ ≤ Φ(x)

32(1− L)

for all x ∈ V , where Φ(x) = φ(2x, x) + φ(−2x,−x) + 4φ(x, x) + 4φ(−x,−x) +

φ(0, x) + φ(0,−x). In particular, F is represented by

(2.4) F (x) = lim
n→∞

(
n∑

i=0

nCi
(−1)n−i10i

16n
fo(2

2n−ix) +
fe(2

nx)

16n

)

for all x ∈ V .

Proof. Let S be the set of all functions g : V → Y with g(0) = 0. We introduce a

generalized metric on S by

d(g, h) = inf
{
K ∈ R+

∣∣ ∥g(x)− h(x)∥ ≤ KΦ(x) for all x ∈ V
}
.

It is easy to show that (S, d) is a generalized complete metric space. Now we consider

the mapping J : S → S, which is defined by

Jg(x) := −g(4x)

32
+

g(−4x)

32
+

11g(2x)

32
− 9g(−2x)

32

for all x ∈ V. Notice that the equality

Jng(x) =
n∑

i=0

nCi
(−1)n−i10i

16n
go(2

2n−ix) +
ge(2

nx)

16n

holds for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary

constant with d(g, h) ≤ K. From the definition of d, we have

∥Jg(x)− Jh(x)∥ ≤ 1

32
∥g(4x)− h(4x)∥+ 1

32
∥g(−4x)− h(−4x)∥

+
11

32
∥g(2x)− h(2x)∥+ 9

32
∥g(−2x)− h(−2x)∥

≤ K(
Φ(4x)

32
+

Φ(−4x)

32
+

11

32
Φ(2x) +

9

32
Φ(−2x))

≤ K(
1

16
Φ(4x) +

10

16
Φ(2x))
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≤ K(

√
41− 5

16
LΦ(2x) +

10

16
Φ(2x))

≤ K(
(
√
41− 5)2

16
L2Φ(x) +

10(
√
41− 5)

16
LΦ(x))

≤ K
(
√
41− 5)2 + 10(

√
41− 5)

16
LΦ(x)

≤LKΦ(x)

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the

Lipschitz constant L. Moreover, by (2.1) we see that

∥f(x)− Jf(x)∥

=
∥Df(2x, x)−Df(−2x,−x) + 4Df(x, x)− 4Df(−x,−x)−Df(0, x)∥

32

≤ φ(2x, x) + φ(−2x,−x) + 4φ(x, x) + 4φ(−x,−x) + φ(0, x)

32

≤ Φ(x)

32

for all x ∈ V . It means that d(f, Jf) ≤ 1
32 < ∞ by the definition of d. Therefore

according to Theorem 2.1, the sequence {Jnf} converges to the unique fixed point

F : V → Y of J in the set T = {g ∈ S|d(f, g) < ∞}, which is represented by (2.4)

for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

32(1− L)
,

which implies (2.3). By the definition of F , together with (2.1) and (2.2), we have

∥DF (x, y)∥ = lim
n→∞

∥DJnf(x, y)∥

= lim
n→∞

∥∥∥ n∑
i=0

nCi
(−1)n−i(10)i

16n
Dfo(2

2n−ix, 22n−iy)

+
Dfe(2

nx, 2ny)

16n

∥∥∥
≤ lim

n→∞

n∑
i=0

nCi

2

10i

16n
(
φ(22n−ix, 22n−iy) + φ(−22n−ix,−22n−iy)

)
+ lim

n→∞

(
φ(2nx, 2ny) + φ(−2nx,−2ny)

)
2 · 16n
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≤ lim
n→∞

( n∑
i=0

nCi
10i

16n
(
√
41− 5)n−iLn−i

(
φ(2nx, 2ny) + φ(−2nx,−2ny)

)
+

1

16n
(
φ(2nx, 2ny) + φ(−2nx,−2ny)

))
≤ lim

n→∞

( n∑
i=0

nCi
(
√
41− 5)n−i10i

16n
+

1

16n

)(
φ(2nx, 2ny) + φ(−2nx,−2ny)

)
≤ lim

n→∞

(
((
√
41− 5) + 10)n

16n
+

1

16n

)(
φ(2nx, 2ny) + φ(−2nx,−2ny)

)
≤ lim

n→∞

(
(
√
41 + 5)n

16n
+

1

16n

)(
φ(2nx, 2ny) + φ(−2nx,−2ny)

)
≤ lim

n→∞

(
(
√
41 + 5)n(

√
41− 5)n

16n
+

(
√
41− 5)n

16n

)
Ln
(
φ(x, y) + φ(−x,−y)

)
≤ lim

n→∞
2Ln

(
φ(x, y) + φ(−x,−y)

)
= 0

for all x, y ∈ V i.e., F is a solution of the functional equation (1.1). Notice that if

F is a solution of the functional equation (1.1), then the equality F (x) − JF (x) =
DF (2x,x)−DF (−2x,−x)+4DFx,x)−4DF (−x,−x)−DF (0,x)

32 implies that F is a fixed point of

J . �

Theorem 2.5. Let f : V → Y be a mapping for which there exists a mapping

φ : V 2 → [0,∞) such that the inequality (2.1) holds for all x, y ∈ V and let f(0) = 0.

If there exists a constant 0 < L < 1 such that φ has the property

(2.5) Lφ(2x, 2y) ≥ 16φ(x, y)

for all x, y ∈ V , then there exists a unique solution F : V → Y of (1.1) satisfying

the inequality

(2.6) ∥f(x)− F (x)∥ ≤ Ψ(x)

1− L

for all x ∈ V , where Ψ(x) is given by

Ψ(x) :=4φ

(
x

4
,
x

4

)
+ φ

(
x

2
,
x

4

)
+ 4φ

(
−x

4
,
−x

4

)
+ φ

(
−x

2
,
−x

4

)
.

In particular, F is represented by

(2.7) F (x) = lim
n→∞

n∑
i=0

nCi

(
10i(−16)n−ifo

(
x

22n−i

)
+ 10i(−96)n−ife

(
x

22n−i

))
for all x ∈ V .
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Proof. Let the set S be the set as in the proof of Theorem 2.4. We give a generalized

metric on S by

d(g, h) = inf
{
K ∈ R+

∣∣ ∥g(x)− h(x)∥ ≤ KΨ(x) for all x ∈ V
}
.

Now we consider the mapping J : S → S defined by

Jg(x) := 10g

(
x

2

)
+ 40g

(
x

4

)
+ 56g

(
−x

4

)
for all x ∈ V . Notice that the equality

Jng(x) =

n∑
i=0

nCi

(
10i(−16)n−igo

(
x

22n−i

)
+ 10i(−96)n−ige

(
x

22n−i

))
holds for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary

constant with d(g, h) ≤ K. From the definition of d, we have

∥Jg(x)− Jh(x)∥ ≤10

∥∥∥∥g(x

2

)
− h

(
x

2

)∥∥∥∥
+ 40

∥∥∥∥g(x

4

)
− h

(
x

4

)∥∥∥∥+ 56

∥∥∥∥g(−x

4

)
− h

(
−x

4

)∥∥∥∥
≤96KΨ

(
x

4

)
+ 10KΨ

(
x

2

)
≤L2 6

16
KΨ(x) +

10

16
LKΨ(x)

≤LKΨ(x)

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the

Lipschitz constant L. Moreover, by (2.1) we see that

∥f(x)− Jf(x)∥ =

∥∥∥∥Df

(
x

2
,
x

4

)
+ 4Df

(
x

4
,
x

4

)∥∥∥∥
≤ φ

(
x

2
,
x

4

)
+ φ

(
−x

2
,
−x

4

)
+ 4φ

(
x

4
,
x

4

)
+ 4φ

(
−x

4
,
−x

4

)
≤ Ψ(x)

for all x ∈ V . It means that d(f, Jf) ≤ 1 < ∞ by the definition of d. Therefore

according to Theorem 2.1, the sequence {Jnf} converges to the unique fixed point

F : V → Y of J in the set T = {g ∈ S|d(f, g) < ∞}, which is represented by (2.7)
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for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ 1

1− L
,

which implies (2.6). By the definition of F , together with (2.1) and (2.5), we have

∥DF (x, y)∥ = lim
n→∞

∥DJnf(x, y)∥

= lim
n→∞

∥∥∥ n∑
i=0

nCi10
i(−16)n−iDfo

(
x

22n−i
,

y

22n−i

)
+10i(−96)n−iDfe

(
x

22n−i
,

y

22n−i

))∥∥∥
≤ lim

n→∞

n∑
i=0

nCi10
i96n−i

(
φ

(
x

22n−i
,

y

22n−i

)
+ φ

(
−x

22n−i
,

−y

22n−i

))

≤ lim
n→∞

( n∑
i=0

nCi10
i6n−iLn−i

(
φ

(
x

2n
,
y

2n

)
+ φ

(
−x

2n
,
−y

2n

))
≤ lim

n→∞
(10 + 6)n

(
φ

(
x

2n
,
y

2n

)
+ φ

(
−x

2n
,
−y

2n

))
≤ lim

n→∞
Ln
(
φ(x, y) + φ(−x,−y)

)
= 0

for all x, y ∈ V i.e., F is a solution of the functional equation (1.1). Notice that if

F is a solution of the functional equation (1.1), then the equality F (x) − JF (x) =

DF (x2 ,
x
4 ) + 4DF (x4 ,

x
4 ) implies that F is a fixed point of J . �
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8. P. Gǎvruta: A generalization of the Hyers–Ulam–Rassias stability of approximately

additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.

9. M.E. Gordji, Y.J. Cho, H. Khodaei & M. Ghanifard: Solutions and stability of gener-

alized mixedtType QCA-functional equations in random normed spaces. Annals of the

Alexandru Ioan Cuza University-Mathematics 59 (2013), no. 2, 299-320.

10. M.E. Gordji, S.K. Gharetapeh, C. Park & S. Zolfaghri: Stability of an additive-cubic-

quartic functional equation. Adv. Differ. Equ. 2009 Article ID 395693.

11. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci.

U.S.A. 27 (1941), 222–224.

12. Y.-H. Lee & S.-M. Jung: Generalized Hyers-Ulam stability of some cubic-quadratic-

additive type functional equations. (2000), submitted.

13. J M. Rassias, M. Arunkumar, E. Sathya & N. Mahesh Kumar: Solution and Stability

of an ACQ Functional Equation in Generalized 2-Normed Spaces. Intern. J. Fuzzy

Mathematical Archive 7 (2015), 213-224.

14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer.

Math. Soc. 72 (1978), 297-300.

15. I.A. Rus: Principles and Applications of Fixed Point Theory. Ed. Dacia, Cluj-Napoca

1979(in Romanian).

16. R. Saadati, M.M. Zohdi & S.M. Vaezpour: Nonlinear L-random stability of an ACQ

functional equation. J. Inequal. Appl. 2011 Article ID 194394.

17. S.M. Ulam: A Collection of Mathematical Problems. Interscience, New York, 1960.

18. Z. Wang, X. Li & Th.M. Rassias: Stability of an additive-cubic-quartic functional

equation in multi-Banach spaces. Abstr. Appl. Anal. 2011 Article ID 536520.

Department of Mathematics Education, Gongju National University of Education,
Gongju 32553, Republic of Korea
Email address: lyhmzi@gjue.ac.kr


