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A FIXED POINT APPROACH TO THE STABILITY OF AN
ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION

YANG-H1 LEE

ABSTRACT. In this paper, we investigate the stability of an additive-cubic-quartic
functional equation

fle+2y) —4f(x+y) +6f(x) —4f(x —y) + f(z — 2y) — 12f(y) — 12f(-y) =0
by applying the fixed point theory in the sense of L. Cadariu and V. Radu.

1. INTRODUCTION

In 1940, Ulam [17] questioned the stability of group homomorphisms, and the
following year Hyers [11] gave an affirmative answer to this problem for additive
mappings between Banach spaces. Hyers’ result has motivated many mathemati-
cians to deal with this problem (cf. [8, 14]).

Throughout this paper, let V' and W be real vector spaces and Y a real Banach

space. For a given mapping f : V — W we use the following abbreviations

Af(z,y) = f(z+y) = f(z) = fy),

Cflz,y) == flr+2y) =3f(z+y) +3f(2) — flx —y) — 6 (y),

Q' f(z,y) = flz+2y) —Af(z +y) +6f(z) —4f(z —y) + f(z — 2y) — 24 (y)
for all z,y € V. Solution of the functional equations Af(z,y) = 0, Cf(x,y) = 0

and Q' f(z,y) = 0 are called an additive mapping, a cubic mapping, and a quartic
mapping, respectively. A mapping f is called an additive-cubic-quartic mapping if f
is represented by sum of an additive mapping, a cubic mapping, and a quartic map-
ping. A functional equation is called an additive-cubic-quartic functional equation
provided that each solution of that equation is an additive-cubic-quartic mapping

and every additive-cubic-quartic mapping is a solution of that equation.
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M. E. Gordji et al. [9] investigated the additive-cubic-quartic functional equation

fla+ky)+flx—ky) — K fla+y) — K flz—y)
— (K* = 1) (K f(y) + K> f(—y) — 2f(z)) =

where k£ # 0,£1 is an integer, J. M. Rassias [13] investigated the additive-cubic-

quartic functional equation

11f(x+2y+2w)+11f(x — 2y — 2w) —44f(x + y+ w) — 44f(z — y — w)
—12f(3y 4+ 3w) + 48 f(2y + 2w) — 60f(y + w) + 66 f(x) =0

and many mathematicians [6, 10, 16, 18] investigated the additive-cubic-quartic

functional equation

11f(z 4+ 2y) + 11f(x — 2y)
=44f(x +y) +44f (z —y) +12f(3y) — 48f(2y) + 60 (y) — 66 ().

Now we consider the following functional equation

flz+2y) —4f(x+y) +6f(x) —4f(z —y) + f(z — 2y)
(1.1) —12f(y) — 12f(~y) = 0.

The mapping f : R — R defined by f(z) = az* + bx® + cx is a solution of this
functional equation, where a, b, ¢ are real constants.

In this paper, we will show that the functional equation (1.1) is an additive-cubic-
quartic functional equation and we introduce a strictly contractive mapping which
allows us to use the fixed point theory for proving the stability of the functional
equation (1.1) in the sense of L. Cadariu and V. Radu [4, 5]. Namely, starting from
the given mapping f that approximately satisfies the functional equation (1.1), a

solution F' of the functional equation (1.1) is explicitly constructed by the formula

)"0, e, fe(2"T)
= im (Z Ci 16” e @)+ 167 )

or

P = i 306 (101074 () + 10007 () )

=0

which approximates the mapping f.
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2. MAIN RESULTS
Recall the following result of Margolis and Diaz’s fixed point theory.

Theorem 2.1 ([7, 15]). Suppose that a complete generalized metric space (X,d),
which means that the metric d may assume infinite values, and a strictly contractive
mapping J : X — X with the Lipschitz constant 0 < L < 1 are given. Then, for

each given element x € X, either
d(J"z, J" ) = 400, ¥n € NU{0},

or there exists a nonnegative integer k such that:

(1) d(J"z, J"" ) < 400 for all n > k;

(2) the sequence {J"x} is convergent to a fixved point y* of J;

(3) y* is the unique fived point of J in'Y = {y € X,d(J*z,y) < +oo};
(4) d(y,y*) < (1/(1 = L))d(y, Jy) for ally €Y.

Throughout this paper, for a given mapping f : V — W, we use the following

abbreviations

folz) == ;7 folz) == W7
Df(z,y) :== f(x +2y) —4f(x +y) +6f(x) —4f(z —y) + f(z — 2y)

—12f(y) —12f(~vy)

for all z,y € V. As we stated in the previous section, a solution of Af =0, C'f =0,
and Q' f = 0 is called an additive, a cubic, and a quartic mapping, respectively. Now
we will show that f is an additive-cubic-quartic mapping if f is a solution of the
functional equation Df(z,y) =0 for all z,y € V.

Lee and Jung [12] proved the following lemma from Baker’s theorem [2].

Lemma 2.2 ([12, Corollary 2.2]). Let V and W are vector spaces over Q, R
or C, and r € Q — {0,£1}. Suppose that ni,...,n, are natural numbers, and
¢, di;, 00, Bos - - - 0, B are scalar such that o;8; — o B; # 0 whenever 0 < j <1 <
m. If a mapping f : V — W satisfies the equality f(rz) = r*f(x) for all z € V and
the inequality

m n

Flooz + Boy) + DY e fdi (uz + Biy)) =0

I=1 i=1
for all xz,y € V, then f is a monomial mapping of degree k.
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Theorem 2.3. A mapping f : V — W satisfies D f(x,y) =0 for all z,y € V if and
only if f is an additive-cubic-quartic mapping.

Proof. Define the mappings fi1 and fo by fi(z) = w and fo(z) =
M. If a mapping f : V — W satisfies Df(x,y) = 0 for all z,y € V,
then f1, fo, fe satisfy the equalities D fi(z,y) =0, D fa(x,y) =0, and D fe(x,y) =0
for all z,y € V. We can obtain the equalities f1(2z) = 2f1(x), f2(2z) = 23 fo(x),
fe(2x) = 2%f.(x) from the equalities f.(27) — 16f.(z) = %O’I) and f,(4z) —
10f5(2z) + 16 fo(x) = D fo(2z,2) + 4D fo(x, x) for all z € V. According to Lemma
2.2, fi1, fa, fo are an additive mapping, a cubic mapping, and a quartic mapping,
respectively. Since the equality f = fi + f2+ fc holds, f is an additive-cubic-quartic
mapping.

Conversely, assume that fi, fo, f3 are mappings satisfying the equalities f :=
fi+ fo+ fs, Afi(z,y) =0, Cfa(x,y) =0, and Q' f3(z,y) =0 for all z,y € V. Then
the equalities f1(2) = —f1(=2), fa(z) = —fa(—2), f3(z) = f3(—2), [1(22) = 2f1(2),
f2(2x) = 8fa(x), and f3(2x) = 16 f3(x) hold for all z € V. From the above equalities,

we obtain the equalities

Df(ﬂ?,y) :Dfl(‘rvy) +Df2($7y) +Df3(33,y)
=—Afi(z +2y,z - 2y) +4Afi(z +y,x — y) + Cfa(z,y)

—Cfa(z —y,y) + Q f3(z,y)
—0

as we desired. O

In the following theorem, we can prove the generalized Hyers-Ulam stability of

the functional equation (1.1) by using the fixed point theory.

Theorem 2.4. Let f : V. — Y be a mapping for which there exists a mapping
@ : V2 —=1[0,00) such that the inequality

(2.1) 1Df(z, )|l < ¢(z,y)

holds for all x,y € V and let f(0) = 0. If there exists a constant 0 < L < 1 such
that ¢ has the property

(2.2) p(2z,2y) < (VAL —5)Lep(z,y)
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for all z,y € V, then there exists a unique solution F : V. — 'Y of (1.1) satisfying
the inequality

o(z)
(2.3) 1f(z) = F(z)| < m

for all x € V, where ®(x) = ¢(2z,z) + o(—2z, —x) + dp(z, z) + do(—z,—z) +
©(0,z) + ¢(0, —z). In particular, F is represented by

)" 10’ 2n—i fe(2"z)
(2:4) = hm (Z Ci 16” T I R T
forallz e V.

Proof. Let S be the set of all functions g : V' — Y with ¢g(0) = 0. We introduce a

generalized metric on S by

d(g,h) = inf {K € Ry|lg(x) ~ h(2)]| < KP(a) for all = € V}.
It is easy to show that (S, d) is a generalized complete metric space. Now we consider
the mapping J : S — S, which is defined by

_ g(dx)  g(—4x)  11g(2z) 9g(—27)
To@) = =+ T T T3 T T 5

for all z € V. Notice that the equality

)Pi10! — ge(2"x)
22n A
Z AT gy 2

holds for all n € N and z € V. Let g,h € S and let K € [0,00] be an arbitrary
constant with d(g, h) < K. From the definition of d, we have

179(x) — Jh(z)]| S33!!g(4x) h(4z)|| + %Ilg(—‘lu’v) — h(—4z)]|

+ 55 llg(2) — h(2e)l + o lo(~22) — h(=22)]

< K<@gj;x> + 2 D ar) + 2 a(-21)
10
16@(4x)+ 1 2(20)

< K(
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VAL=5 00y + Va0

< K( 16 16
VI 52 oy 10«/;?2 ~5)

K
= K( 16

K(\/‘T— 5)? + 10(v41 - 5)
16

Lo(x))

Lo(x)
<LK®(x)
for all x € V, which implies that
d(Jg,Jh) < Ld(g, h)

for any g,h € S. That is, J is a strictly contractive self-mapping of S with the
Lipschitz constant L. Moreover, by (2.1) we see that

1f(z) = Jf()|
|\Df(2z,xz) — Df(—2z,—x) +4Df(x,z) — 4D f(—x,—x) — Df(0,z)||
32
< 02z, ) + o(—2x, —x) + dp(z, x) + dp(—z, —z) + ©(0, )
- 32
_ o)
- 32

for all x € V. It means that d(f, Jf) < 3% < oo by the definition of d. Therefore
according to Theorem 2.1, the sequence {J"f} converges to the unique fixed point
F:V =Y of Jin theset T = {g € S|d(f,g) < oo}, which is represented by (2.4)
for all x € V. Notice that

A, F) < 2 d(f, 7)< gt

~—321-L)’
which implies (2.3). By the definition of F, together with (2.1) and (2.2), we have

IDF(y)| = lim D" f(x, )]

—  lim HZ o, =0 o 10) T D, (220, 220y

n—oo

Dfe(2”:z, 2"y) H
+ 16n
lim Y nCi 1—01

n—oo 2 16™

=0

n—»00 2.-16™

IN

((,0(22’”_@‘1:, 22n—iy) 4 S0(_227’1—1‘:1:7 _22n—iy))
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< lim <Z 16" \F 5" LM (27, 2"y) 4 p(—2", —2"y))

n—00
=0

1
+@(¢(2”w, 2"y) + p(—2"x, —2”y))>

< lim (in@ (Va1 —1652n—i1()i . 1(1in> (p(2"z,2™y) + (—2"z, —2"y))
< lim <((\/4> _152 10", 1én> (0(2"2,2"y) + p(—2"2, —2"y))

< lim <@;§5>” + 1(1371) (p(2"z,2"y) 4+ p(=2"z, —2"y))

< lm ((Wﬁ+ 5):6(71\/5 —5)" (\/{6; 5)">Ln(¢(x’y) (-, —y)
< lim 2L (p(@,y) + p(~, ~y))

- 0

for all z,y € V i.e., F is a solution of the functional equation (1.1). Notice that if

F is a solution of the functional equation (1.1), then the equality F(x) — JF(z) =
DF(2z,2)—DF(—2xz,—x)+4DFx,x)—4DF(—x,—x)—DF(0,z)
32

implies that F' is a fixed point of
J. O

Theorem 2.5. Let f : V. — Y be a mapping for which there exists a mapping
¢ : V2 —[0,00) such that the inequality (2.1) holds for all x,y € V and let f(0) =
If there exists a constant 0 < L < 1 such that ¢ has the property

(2.5) Lo(2z,2y) > 16¢(z,y)

for all x,y € V, then there exists a unique solution F : V —'Y of (1.1) satisfying
the inequality

(2.6) 1f () = F(2)] <

for all x € V', where U(z) is given by

(@) _4“’(4 4) + (2 4> +4“0< 433 _4$> “0(_23:’_495)

In particular, F' is represented by

U(z)
-y

—

n

(27) F@)= lim 3.0 <1oi(—16)"‘if0(22f > +10°(— 96)"—76(2;3_@.))
i=0

forallz e V.
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Proof. Let the set S be the set as in the proof of Theorem 2.4. We give a generalized

metric on S by
d(g,h) =inf {K € ]RJF‘ lg(z) — h(z)|| < K¥(z) for all z€V}.
Now we consider the mapping J : S — S defined by

Jg(x) == 109(2) +40g (Z) n 56g<—4~”ﬂ>

for all x € V. Notice that the equality

= j —i x i n—i L
J"g(x) = E nCi<10z(_16)n 90<22n—i> +10"(—96)"""g, (2%_2.))
i=0

holds for all n € N and =z € V. Let g,h € S and let K € [0,00] be an arbitrary
constant with d(g,h) < K. From the definition of d, we have

96e) ~ anel <10o(5 ) - ()|
) )

<96K T <Z> 110KV (”23)

6 10
<IL2— KU LKV
T RT: ()

<LKU(z)

for all x € V, which implies that
d(Jg,Jh) < Ld(g,h)

for any g,h € S. That is, J is a strictly contractive self-mapping of S with the
Lipschitz constant L. Moreover, by (2.1) we see that

I f(z) — Jf(2)] = HDf<32:’Z> +4Df<Z7Z>

r T —r —T r T —r —X
=e\e) e\ )P ) T e T

< U(z)

for all x € V. It means that d(f,Jf) < 1 < oo by the definition of d. Therefore
according to Theorem 2.1, the sequence {J™ f} converges to the unique fixed point
F:V Y of Jin theset T = {g € S|d(f,g) < oo}, which is represented by (2.7)
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for all x € V. Notice that

1 1

which implies (2.6). By the definition of F', together with (2.1) and (2.5), we have

IDE(z,y)ll = lim [[DJ"f(z,y)]]

n—oo

. - i n—i z Y
= n11—>11(;lo ‘Z;ncilo (—16) ‘Df0<22ni’ 22”1)

i n—i £ Y
+107(—96) Dfe<22n_i, 22n_>> H

n
, S T y -z -y
< nan;OZ;nC’iloz%” l(‘p(ani’ 22ni> +‘P(22ni7 22ni>>
1=
- z Y r —y
; 10tgn—t [t = 2 = J
= nli"%o(%"amﬁ L (‘p<2n’2n>+‘ﬁ<2n’ 2n>>
1=
<

. x oy —z —y
lim (1 nfof X Y B
i (10 +6) <¢(2n’2n) +¢<2n’ 2n)>

< . n _ i
< lim L"(p(x,y) +o(—2, —y))
~ 0

for all z,y € V i.e., F is a solution of the functional equation (1.1). Notice that if
F is a solution of the functional equation (1.1), then the equality F'(z) — JF(z) =

DF(5,7)+4DF(F, %) implies that I is a fixed point of J. O
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