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MULTIDIMENSIONAL COINCIDENCE POINT RESULTS FOR
CONTRACTION MAPPING PRINCIPLE

AMRISH HANDA

ABSTRACT. The main objective of this article is to establish some coincidence point
theorem for g-non-decreasing mappings under contraction mapping principle on a
partially ordered metric space. Furthermore, we constitute multidimensional results
as a simple consequences of our unidimensional coincidence point theorem. Our
results improve and generalize various known results.

1. INTRODUCTION

The notion of multidimensional fixed /coincidence point was introduced by Roldan
et al. in [15], which is an extension of Berzig and Samet’s notion given in [3].
However, they used permutations of variables and distinguished between the first
and the last variables. For more details one can refer [1, 4 — 13, 16 — 23].

In this article, we obtain some coincidence point theorem for g-non-decreasing
mappings under generalized (1, , p)-contraction on a partially ordered metric space.
Furthermore, we constitute multidimensional results as a simple consequences of our
unidimensional coincidence point theorem. We improve and generalize the results
of Alsulami [2], Razani and Parvaneh [14], Su [21] and many other famous results

in the literature.

2. PRELIMINARIES

In order to establish our main results, we recall the following notions. For sim-
plicity, we denote X x X X ... x X (n times) by X", where n € N with n > 2
and X is a non-empty set. Let {A, B} be a partition of the set A, = {1, 2, ...,
n}, that is, A and B are nonempty subsets of A, such that AU B = A, and
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ANB = (. We will denote Qa5 = {0 : Ay, = Ay, : 0(A) C A, 0(B) C B} and
Q/A,B ={o: A, = A, : 0(A) C B, o(B) C A}. Henceforth, let o1, o9, ..., oy
be n mappings from A,, into itself and let Y be the n—tuple (o1, o9, ..., 0y,). Let
F: X" — X and g : X — X be two mappings. For simplicity, we denote g(x) by
gx where z € X.

A partial order < on X can be extended to a partial order C on X" in the
following way. If (X, <) be a partially ordered space, z, y € X and i € A,,, we will
use the following notations:

x =y, ifie A,

(2.1) “’”ﬁy;‘{xty,iueB.

Consider on the product space X" the following partial order: for Y = (y1, y2, ...,
Yiy vy Yn)y V = (V1, V2, ooy Uiy vy V) € X7,

Notice that C depends on A and B. We say that two points Y and V are comparable,
if Y CV or VLY. Obviously, (X", C) is a partially ordered set.

Definition 2.1 ([12, 15, 18]). A point (x1, 9, ..., x,) € X™is called a T — coincidence
point of the mappings F': X" — X and g : X — X if

F(:Uai(l), To;(2)r ++es xai(n)) = gx;, for all i € A,,.

If g is the identity mapping on X, then (x1, xo, ..., x,,) € X" is called a Y —fized
point of the mapping F.

The previous definition extends the notions of coupled, tripled, and quadruple
fixed points. In fact, if we represent a mapping o : A,, — A,, throughout its ordered
image, that is, o = (o(1), o (2), ..., 0 (n)), then

(7) Gnana-Bhaskar and Lakshmikantham’s coupled fixed points occur when n =
2,01 =(1,2) and 02 = (2, 1),

(73) Berinde and Borcut’s tripled fixed points are associated with n = 3, o1 = (1,
2,3),00=(2,1,2) and 03 = (3, 2, 1),

(747) Karapinar’s quadruple fixed points are considered when n = 4, o1 = (1, 2,
3,4),00=1(2,3,4,1),03 =(3,4,1,2) and 04 = (4, 1, 2, 3).

These cases consider A as the odd numbers in {1, 2, ..., n} and B as its even
numbers. However, Berzig and Samet [3] use A = {1, 2, ..., m}, B={m+1, ..., n}

and arbitrary mappings.
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Definition 2.2 ([15]). Let (X, <) be a partially ordered space. We say that F has
the mized (g, <)-monotone property if F' is g-monotone non-decreasing in arguments
of A and g-monotone non-increasing in arguments of B, that is, for all z1, zo, ...,

Tn, Y, 2 € X and all 7,
9y 292 = F(X1, e i1, Yy T 1y ooy Tny) =5 F(T1y ey Tim1, 2, T 1y oey Ty

Definition 2.3 ([18, 22]). Let (X, d) be a metric space and define A,,, p, : X" X
X" — [0, 400), for Y = (y1, y2, .o, Yn), V = (v1, v2, ..., v,) € X™, by

1 n
A (Y, V)= - Zd(yi, v;) and p, (Y, V) = max d(y;, vi).

: 1<i<n
=1

Then A,, and p,, are metric on X" and (X, d) is complete if and only if (X", A,).
Similarly (X, d) is complete if and only if(X™, p,) are complete. It is easy to see
that

A (YY) — 0 (ask — o00) & dyF, vi) = 0 (as k — o),
and p,(Y*, Y) — 0 (ask — 00) < d(yF, v;) = 0 (as k — 00), i € Ay,

where Y* = (y¥, o5, ..., y¥) and Y = (y1, yo, ..., yn) € X™.

Definition 2.4 ([15]). We will say that two mappings T, g : X — X are commuting
if gTx = Tgx for all x € X. We will say that ' : X" — X and g : X — X are
commuting if gF(x1, xo, ..., ) = F(gz1, 922, ..., gxy) for all z1, z9, ..., x, € X.

Definition 2.5 ([13]). Let (X, d, <) be a partially ordered metric space and let
F: X" — X and g : X — X be two mappings. Let T = (01, 02, ..., 05,) be an
n—tuple of mappings A,, into itself verifying o; € Qa p if 1 € A and o0; € Q:‘\, g if
i € B. We will say that (F, g) is a (O, T)—compatible pair if, for all i € A,,,

lim d(gF (i, 25i®, .., 25it), F(gaqi®, gani®, . gagi®™)) =0,

m—0o0

whenever {zl}, {22}, ..., {z"} are sequences in X such that {gzl}, {922}, ...,

{gz}} are < —monotone and

1i_r>n F(xf,{(l), :L"f;{@), ey mf,{(")) = 1i_>m grl € X, foralli € A,,.

Lemma 2.1 ([7, 13, 18, 22, 23]). Let (X, d, <) be a partially ordered metric space
and let F: X" — X and g : X — X be two mappings. Let T = (o1, 02, ..., o)
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be an n—tuple of mappings from A,, into itself verifying o; € Q45 if i € A and
oi € Q:4B if 1 € B. Define Fy, G : X" — X", for all y1, yo, ..., yn € X, by

F(yal(l)’ Yo1(2)5 o ycn(n))v
(23> FT(yh Y2, - yn) = F(y02(1)7 Yoo (2)s s yag(n))> )
oy FYon (1)) You(2)s 5 You(n))

and

(2.4) Gy, Y2, - Yn) = (9U1, GY2, -y GYn)-

(1) If F has the mixed (g, <)—monotone property, then Fy is monotone (G,
C)—non-decreasing.

(2) If F is d—continuous, then Fy is A, —continuous and p,—continuous.

(3) If g is d—continuous, then G is A, —continuous and p,—continuous.

(4) A point (y1, y2, ..., yn) € X™ is a T—fixed point of F' if and only if (y1, ya,
.oy Yn) 1s a fixed point of Fy.

(5) A point (y1, y2, ..., Yyn) € X™ is a T—coincidence point of F' and ¢ if and only
if (y1, Y2, .., yn) is a coincidence point of Fy and G.

(6) If (X, d, <) is regular, then (X", A,, C) and (X", p,, C) are also regular.

(7) If there exist yi, v, ..., yit € X verifying gy =i F(ygi(l), ygi(Q), s ygi("))
for all ¢ € A, then there exists Yy € X" such that G(Yp) C Fr(Yp).

(8) If F' and g are (O, T)-compatible, then Fy and G are O-compatible.

9

Definition 2.6 ([21]). A generalized altering distance function is a function # : [0,
+00) — [0, +00) which satisfies the following conditions:

(iy) 1 is non-decreasing,

(iiy) (t) = 0 if and only if t = 0.

3. MAIN RESULTS

Theorem 3.1. Let (X, d, <) be a partially ordered metric space and T, g: X — X
be two mappings such that T is (g, =)—non-decreasing and T(X) C g(X). As-
sume there exist a generalized altering distance function ¢ and a right upper semi-

continuous function ¢ : [0, +00) — [0, +00) such that

(3.1) Y(d(Tx, Ty)) < p(d(gz, gy)),
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for all x, y € X with gr = gy, where ¥(t) > ¢(t) for all t > 0 and ¢(0) = 0.
There exists xg € X such that grg =< Txg. Also assume that one of the following
conditions holds.

(a) (X, d) is complete, T and g are continuous and the pair (T, g) is compatible,

(b) (9(X), d) is complete and (X, d, <) is non-decreasing-regular,

(¢) (X, d) is complete, g is continuous and monotone non-decreasing, the pair
(T, g) is compatible and (X, d, <) is non-decreasing-regular.

Then T and g have a coincidence point.

Proof. Let o9 € X be arbitrary. Since T(X) C g(X), there exists ;1 € X such
that Txg = gx1. Then gxrg = Tzg = gr1. As T is (g, <)-non-decreasing and so
Txo < Tzy. Continuing in this manner, we get a sequence {zy }n>0 such that {gx,}

is 2-non-decreasing, grn+1 = Txy = Tpy1 = grpyo and
(3.2) 9Tpy1 = Tz, for all n > 0.
Let ¢, = d(gzy, grnt1). By using contractive condition (3.1), we have

(3'3) ¢(d(g$n+1> gwn+2)) = w(d(Txm Tanrl)) < @(d(gxn, gacn+1)),

which, by the fact that ¢ (t) > o(t) for all ¢ > 0, implies

P(d(gont1, 9Tnt2)) < P(d(gTn, gTni1))-

It follows, from the monotonicity of ¢, that

d(g$n+1a gmn+2) < d(gxm g$n+1)7 that is, Cnt1 < Cp-

Hence the sequence {(,}n>0 is a decreasing sequence of positive numbers. Then
there exists ¢ > 0 such that

(3'4) lim ¢, = hHm d(gxn, gmn—f—l) = (.

n—0o0
We claim that ¢ = 0. If possible, suppose ¢ > 0. Taking n — oo in (3.3), by using
(3.4) and the property of 1) and ¢, we obtain

Q) < lim (d(gzn+1, gTnt2)) < lim o(d(grn, gaa+1)) < (),
which contradicts the fact that ¢(t) > ¢(t) for all ¢ > 0. Thus, by (3.4), we get

(3.5) nh—>nolo Cn = nh—g)lo d(9rn, grny1) = 0.
Now, we claim that {gz, }n>0 is a Cauchy sequence in X. If possible, suppose {gz, }

is not a Cauchy sequence. Then there exists an € > 0 for which we can find two
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sequences of positive integers {m(k)} and {n(k)} such that for all positive integers
k, and

A(GZn(kys 9Tm(r)) = €, for n(k) > m(k) > k.
Assuming that n(k) is the smallest such positive integer, we get
A(GZp(k)—1, GTmk)) < €
By using triangle inequality, we have
e < d(9Tnk)s 9Tmk))
d(9Zn(k)s 9Tn(k)—1) + d(GTnk)—15 9Tm(k))

IN

IN

d(gZn(k)s 9Tn(k)—1) + €.

Letting k — oo in the above inequality and by using (3.5), we have

(3.6) im d(gz, k), 9Tmk)) = €.

k—o0

By using triangle inequality, we have

d(9Tp(k)+1, 9Tm(k)+1)
< d(9Tpk)y+1> 9Tnk)) + AGTnys 9Tmk)) + AGTmk)ys ITm(k)+1)-

Letting & — oo in the above inequalities and by using (3.5) and (3.6), we have
(3.7) im d(9Zn@k)y+1, 9Tmk)+1) =€
k—ro0

As n(k) > m(k) and gz, 4 = 9Ty, S0 by using contractive condition (3.1), we

have

V(A(9Tnk)y+15 9Tmk)+1)) = V(AT Tpy, TTimwy)) < @(A(GTnr)s 9Tmk)))-

Letting k — oo in the above inequality, by using the property of ¢, ¢ and (3.6),
(3.7), we have
P(e) < ¢le),

which contradicts the fact that € > 0. This shows that {gz, }»>0 is a Cauchy sequence
in X.

Now, we claim that T and g have a coincidence point between cases (a) — (¢).

Suppose that (a) holds, that is, (X, d) is complete, T and g are continuous and
the pair (7, g) is compatible. Since (X, d) is complete, there exists z € X such that
{gzn} — 2. It follows, from (3.2), that {T'z,} — 2. As T" and g are continuous, then
{Tgxn} — Tz and {ggx,} — gz. Since the pair (T, g) is compatible, we conclude
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that d(gz, Tz) = lim, 00 d(99Tn+t1, Tgxy) = limy 00 d(gT 2y, Tgxy) = 0, that is, z
is a coincidence point of T and g.

Suppose now (b) holds, that is, (g(X), d) is complete and (X, d, <) is non-
decreasing-regular. As {gz,} is a Cauchy sequence in the complete space (¢(X), d),
so there exist y € g(X) such that {gz,} — y. Let z € X be any point such that
y = gz. Then {gx,} — gz. Now, as (X, d, <) is non-decreasing-regular and {gz,}
is =-non-decreasing and converging to gz, we get gz, = gz for all n > 0. Applying

the contractive condition (3.1), we have

P(d(gani1, Tz)) = p(d(Ten, T2)) < p(d(g2n, 92))-

Taking n — oo in the above inequality and by using (iiy), we get d(gz, Tz) = 0,
that is, z is a coincidence point of T and g.

Suppose now that (¢) holds, that is, (X, d) is complete, ¢ is continuous and mono-
tone non-decreasing, the pair (7, g) is compatible and (X, d, <) is non-decreasing-
regular. As (X, d) is complete, so there exists z € X such that {gx,} — z. It follows,
from (3.2), that {T'z,,} — 2. As g is continuous, then {ggz,} — gz. Furthermore,
since the pair (7', g) is compatible and {ggx,} — gz, it means that {T'gz,} — gz.

Also, since (X, d, <) is non-decreasing-regular and {gx,} is =<-non-decreasing
and converging to z, therefore we get gr, = z, which, by the monotonicity of g,

implies ggz,, =< gz. Using the contractive condition (3.1), we get

Y(d(Tgrn, Tz)) < p(d(ggzn, 92)).
Taking n — oo in the above inequality and by using (iiy), we get d(gz, Tz) = 0,
that is, z is a coincidence point of T and g. O

If we take 9(t) = t and ¢(t) = kt with k < 1 in Theorem 3.1, we get the following

result:

Corollary 3.2. Let (X, d, <) be a partially ordered metric space and T, g : X — X
be two mappings such that T is (g, X)—non-decreasing and T(X) C g(X) satisfying

d(Tx, Ty) < kd(gz, gy),

forallz,y € X with gx =X gy, where k < 1. There exists xqg € X such that grg X Txg.
Suppose one of the following conditions (a) — (¢) of Theorem 3.1 holds. Then T and

g have a coincidence point.
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Example 3.1. Let X = R be a metric space with the metric d : X? — [0, 4+00)
defined by d(z, y) = |x —y|, for all x, y € X, with the natural ordering of real
numbers <. Let T, g : X — X be defined as
22
Tx = 5 and gz = 22, for all z € X.
Clearly the contractive condition of Theorem 3.1 satisfies with ¥ (t) =t and ¢(t) =
t/2 for all ¢ > 0. Furthermore, all the other conditions of Theorem 3.1 are satisfied

and z = 0 is a coincidence point of T and g.

4. MULTIDIMENSIONAL COINCIDENCE POINT RESULTS

Next we give an n—dimensional coincidence point theorem for mixed monotone
mappings. For brevity, (y1, ¥2, - Yn), (V1, V2, ..., vn) and (yg, 43, ..., yi) will be
denoted by Y, V and Yy respectively.

Theorem 4.1. Let (X, <) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let F : X" — X and
g: X — X be two mappings and Y = (01, o9, ..., o) be an n—tuple of mappings
from A, into itself verifying o; € Qap if i € A and 0; € QIA,B if © € B. Suppose
that the following properties are fulfilled:

(i) F(X") C g(X),

(ii) F has the mized g-monotone property,

(iii) there exist y$, v, ..., yit € X verifying gyl =i F(ygi(l), ygi@), ceny yg"(n)), for
all i € Ay,

(iv) there exist a generalized altering distance function 1 and a right upper semi-
continuous function ¢ : [0, 4+00) — [0, +00) satisfying
(A1) BFA o ), P01, v, e 00)) < 0 (mox dlas g )
for which y;, v; € X such that gy; =<; gv; for all i € A, where Y(t) > ¢(t) for all
t >0 and p(0) = 0. Also assume that one of the following conditions holds,

(a) (X, d) is complete, F and g are continuous and the pair (F, g) is (O, T)-
compatible,

(0) (9(X), d) is complete and (X, d, <) is non-decreasing-regular,

(¢) (X, d) is complete, g is continuous and monotone non-decreasing, the pair

(F, g) is (O, Y)-compatible and (X, d, <) is non-decreasing-regular.



MULTIDIMENSIONAL COINCIDENCE POINT RESULTS 285

Then F and g have a Y —coincidence point.
Proof. For fixed i € A, we have gy, (1) =t 9o, (1) for t € Ay,. From (4.1), we have
w(d(F(yJi(l)v Yoi(2)s s yai(n))a F(’Uai(l)> Voi(2)s +=» ’Uai(n))))

42 < o o )

1<i<n
for all i € A. Similarly, for fixed ¢ € B, we have gy,, ) =t gvs,) for t € Ay It
follows from (4.1) that

’(/)(d(F(ycrl(l)v Yo;(2)5 - yai(n))’ F(’Uai(l)v Vo;i(2)s « on;(n))))
= w(d(F(UUi(lﬁ Voi(2)y «s Uai(n))v F(yai(l)u Yoi(2)y ycrl(n))))

(4.3) < 9 <maX d(9yi, gvi)) :

1<i<n

for all i € B. By (2.2), (2.3), (2.4), (4.2), (4.3) and by the monotonicity of 1, we
have

Y(pn(Fr(Y), Fr(V))) < ¢(pn(G(Y), G(V))),
for all Y, V € X" with G(Y) C G(V). It is only require to apply Theorem 3.1 for
the mappings 7' = Fy and g = G in the ordered metric space (X", p,, C) and using
all items of Lemma 2.1. O

Theorem 4.2. Let (X, <) be a partially ordered set and suppose that there is a
metric d on X such that (X, d) is a complete metric space. Let F : X" — X and
g: X — X be two mappings and Y = (o1, 09, ..., 0n) be an n—tuple of mappings
from A, into itself verifying o; € Qap if i € A and 0; € QIA’B if © € B. Suppose
that the following properties are fulfilled:

(i) F(X™) C g(X),

(ii) F has the mized g-monotone property,

(#ii) there exist Y3, v2, ..., v € X verifying gy} =i F(ygi(l), ygi(z), ey ygi(n)), for
all i € Ay,

(iv) there exist a generalized altering distance function 1 and a right upper semi-

continuous function ¢ : [0, +00) — [0, +00) such that

1 n
0 (nzd(F(yai(l)a Yoi(2)s - Yoi(n))s F(Vo,(1)s Voy(2)) - vm(n))))
=1

(44) < ¢ (;Zd(gyia gvi)),
i=1
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for which y;, v; € X such that gy; =; gv; for all i € Ay, where ¥(t) > @(t) for all
t >0 and p(0) = 0. Also assume that one of the following conditions holds,

(a) (X, d) is complete, F' and g are continuous and the pair (F, g) is (O, Y)-
compatible,

(b) (9(X), d) is complete and (X, d, <) is non-decreasing-regular,

(¢) (X, d) is complete, g is continuous and monotone non-decreasing, the pair
(F, g) is (O, Y)-compatible and (X, d, =) is non-decreasing-regular.

Then F and g have a Y —coincidence point.

Proof. 1t is straightforward that the contractive condition (4.4) means that

P(An(Fr(Y), Fxr(V))) < ¢(An(G(Y), G(V))),

for all Y, V € X" with G(Y) C G(V). Thus Theorem 3.1 is applicable for the
mappings 7' = Fy and g = G in the ordered metric space (X", A,,, C) with the
help of Lemma 2.1. O

We may also state the results similar to Corollary 3.2 for Theorem 4.1 and The-

orem 4.2.
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