ON INVARIANT APPROXIMATION OF NON-EXPANSIVE MAPPINGS

MEENU SHARMA AND T. D. NARANG

ABSTRACT. The object of this paper is to extend and generalize the work of Brosowski [Fixpunktsatze in der approximationstheorie. Mathematica Cluj 11 (1969), 195–200], Hicks & Humphries [A note on fixed point theorems. J. Approx. Theory 34 (1982), 221–225], Khan & Khan [An extension of Brosowski-Meinardus theorem on invariant approximation. Approx. Theory Appl. 11 (1995), 1–5] and Singh [An application of a fixed point theorem to approximation theory. J. Approx. Theory 25 (1979), 89–90; Application of fixed point theorem in approximation theory. In: Applied nonlinear analysis (pp. 389–394). Academic Press, 1979] in metric spaces having convex structure, and in metric linear spaces having strictly monotone metric.

Many results in approximation theory using fixed point theorems are known in the literature. Meinardus [6] and Brosowski [2] established some interesting results on invariant approximation in normed linear spaces in terms of fixed point theory. Later various researchers obtained generalizations of their results (e. g., Khan & Khan [5] and the references cited therein). The object of this paper is to extend and generalize the work of Brosowski [2], Hicks & Humphries [4], Khan & Khan [5] and Singh [8, 9] in metric spaces having convex structure (a notion introduced by Takahashi [10]) and in metric linear spaces having strictly monotone metric (a notion introduced by Guseman & Peters [3]).

To start with we recall a few definitions.

Definition 1. Let (X,d) be a metric space and C a subset of X. A mapping $T:C\to X$ is said to be non-expansive if $d(Tx,Ty)\leq d(x,y)$ for all $x,y\in C$. The set $F(T)=\{x\in X:T(x)=x\}$ is called the fixed point set of a mapping T and a point of F(T) is called a T-invariant point in X.

Received by the editors August 26, 2002 and, in revised form, March 18, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 41A65 (46B20).

Key words and phrases. starshape, starshapedness.

The first author is thankful to U. G. C., India for awarding the Teacher-Fellowship.

Definition 2. For a metric space (X, d) and a non-empty subset C of X, an element $c_x \in C$ is called a *best approximant to* x from C if $d(x, c_x) \leq d(x, c)$ for every $c \in C$ i. e, $d(x, c_x) = \inf_{c \in C} d(x, c) \equiv d(x, c)$.

The set of all best approximants to $x \in X$ from C is denoted by $P_C(x)$.

Definition 3 (Takahashi [10]). For a metric space (X, d) and a closed unit interval I = [0, 1], a continuous mapping $W : X \times X \times I \to X$ is said to be a *convex structure* on X if, for all $x, y \in X$, $\lambda \in I$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y)$$

for all $u \in X$. The metric space (X, d) together with a convex structure W is called a convex metric space.

Clearly a Banach space or any convex subset of it is a convex metric space with $W(x, y, \lambda) = \lambda x + (1 - \lambda)y$. More generally, if X is a linear space with a translation invariant metric d satisfying

$$d(\lambda x + (1 - \lambda)y, 0) \le \lambda d(x, 0) + (1 - \lambda)d(y, 0),$$

then X is a convex metric space. Takahashi [10] has shown that there are many convex metric spaces which can not be embedded in any normed linear space.

Definition 4 (Takahashi [10]).

- (i) A non-empty subset K of a convex metric space (X,d) is said to be *starshaped* if it is starshaped with respect to one of its elements i.e., if there exists a $u \in K$ such that $W(x,u,\lambda) \in K$ for every $0 \le \lambda \le 1$ and $x \in K$. Such a u is called a *starcentre* of K.
- (ii) A non-empty subset K of a convex metric space (X,d) is said to be *convex* if $W(x,y,\lambda) \in K$ whenever $x,y \in K$ and $\lambda \in I$.

Clearly, a convex set is starshaped with respect to each of its points.

Definition 5 (Narang [7]). A convex metric space (X, d) is said to be *strictly convex* if for every $x, y \in X$ and r > 0, $d(x, p) \le r$, $d(y, p) \le r$ imply $d(W(x, y, \lambda), p) < r$ unless x = y, where p is arbitrary but fixed point of X.

Definition 6. A subset S of a linear space X is starshaped if there exists u in S such that $\lambda x + (1 - \lambda)u \in S$ whenever $\lambda \in [0, 1]$ and $x \in S$.

Definition 7. Let (X,d) be a metric linear space. The metric d for X is said to be *strictly monotone* (cf. Guseman & Peters [3]) if $x \neq 0$ and $0 \leq \lambda < 1$ imply $d(\lambda x, 0) < d(x, 0)$.

Definition 8. A metric linear space (X, d) is said to satisfy the *-convex property if

(*)
$$d(\lambda x + (1 - \lambda)y, z) \le \lambda d(x, z) + (1 - \lambda)d(y, z)$$

for every $x, y, z \in X$ and $0 \le \lambda \le 1$.

Remark. Clearly, every normed linear space satisfies the property (*).

In metric linear spaces satisfying the property (*), we have the following lemma which we shall be using in the proof of Theorem 1.

Lemma 1. Let (X, d) be a metric linear space satisfying the property (*), C a subset of X and $x \in X$. Then $P_C(x) \subset \partial C \cap C$, where ∂C is the boundary of C.

Proof. Let $y \in P_C(x)$. For each $n \in \mathbb{N}$, let $\lambda_n = n/(n+1)$. Since

$$d(y, \lambda_n y + (1 - \lambda_n)x) \le (1 - \lambda_n)d(x, y)$$

for all $n \in \mathbb{N}$, $\lim_{n \to \infty} [\lambda_n y + (1 - \lambda_n)x] = y$.

So each neighborhood of y contains at least one $\lambda_n y + (1 - \lambda_n)x$. Also,

$$d(x, \lambda_n y + (1 - \lambda_n)x) \le \lambda_n d(y, x) < d(y, x)$$
 for all $n \in \mathbb{N}$

implies that $\lambda_n y + (1 - \lambda_n)x \notin C$ for any $n \in \mathbb{N}$ *i. e.*, y is not an interior point of C and so $y \in \partial C$. Also $y \in P_C(x)$ implies $y \in C$. Thus, $y \in \partial C \cap C$ and hence $P_C(x) \subset \partial C \cap C$.

Using Lemma 1, we prove the following result on invariant approximation in metric linear spaces.

Theorem 1. Let (X,d) be a metric linear space which satisfies the property (*) with strictly monotone metric d and C a subset of X. Let T be a non-expansive mapping on $P_C(x) \cup \{x\}$ where x is a T-invariant point. Then there is a $x_0 \in P_C(x)$ which is also a T-invariant point provided

- (a) $T: \partial C \to C$
- (b) $P_C(x)$ is nonempty, starshaped and compact.

Proof. Let p be a starcentre of $P_C(x)$. Then $\lambda y + (1 - \lambda)p \in P_C(x)$ for every $y \in P_C(x)$ and $0 \le \lambda \le 1$. We claim that $T: P_C(x) \to P_C(x)$.

Suppose (X, d) satisfies the property (*). Then by the Lemma, $P_C(x) \subset \partial C \cap C$. So for $y \in P_C(x)$, we get $Ty \in C$ as $T : \partial C \to C$. Consider

$$d(x,Ty) = d(Tx,Ty)$$
 (as x is a T -invariant point)
 $\leq d(x,y)$ (as T is non-expansive on $P_C(x) \cup \{x\}$)
 $= d(x,C)$
 $\leq d(x,Ty)$.

This gives d(x, Ty) = d(x, C) i. e., $Ty \in P_C(x)$ for $y \in P_C(x)$ and hence $T : P_C(x) \to P_C(x)$.

Let κ_n , $0 \le \kappa_n < 1$ and $n \in \mathbb{N}$ be a sequence of real numbers such that $\kappa_n \to 1$ as $n \to \infty$. Define $T_n : P_C(x) \to P_C(x)$ by $T_n y = \kappa_n T y + (1 - \kappa_n) p$ for every $y \in P_C(x)$. Then we get

$$d(T_n x, T_n y) = d(\kappa_n T x + (1 - \kappa_n) p, \kappa_n T y + (1 - \kappa_n) p)$$

$$= d(\kappa_n T x, \kappa_n T y)$$

$$= d(\kappa_n (T x - T y), 0)$$

$$< d(T x - T y, 0) \quad \text{(as } d \text{ is strictly monotone)}$$

$$= d(T x, T y)$$

$$\leq d(x, y). \quad \text{(as } T \text{ is non-expansive on } P_C(x) \cup \{x\})$$

Hence T_n is non-expansive on $P_C(x) \cup \{x\}$ for each $n \in \mathbb{N}$. Since $P_C(x)$ is compact and starshaped, T_n has a unique fixed point, say, x_n for each $n \in \mathbb{N}$ (cf. Guseman & Peters [3, Theorem 2]), i. e., $T_n x_n = x_n$ for each n.

Since $P_C(x)$ is compact, $\langle x_n \rangle$ has a convergent subsequence $\langle x_{n_i} \rangle \to x_0 \in P_C(x)$. We claim that $Tx_0 = x_0$.

Consider $x_{n_i} = T_{n_i} x_{n_i} = \kappa_{n_i} T x_{n_i} + (1 - \kappa_{n_i}) p$. Taking limit as $n_i \to \infty$, we get $x_0 = T x_0$ i. e., $x_0 \in P_C(x)$ is a T-invariant point.

Since every normed linear space is a metric linear space with the property (*) and the metric induced by the norm is strictly monotone, we have:

Corollary 1 (Brosowski [2]). Let T be a non-expansive linear operator on a normed linear space X. Let C be a T-invariant subset of X and x a T-invariant point. If the

set of best C-approximants to x is non-empty, compact and convex, then it contains a T-invariant point.

Corollary 2 (Guseman & Peters [3]). Let T be a non-expansive mapping on a normed linear space X. Let C be a T-invariant subset of X and x_0 a T-invariant point in X. If the set D of best C-approximants to x_0 is non-empty, compact and starshaped, then it contains a T-invariant point.

Corollary 3 (Hicks & Humphries [4]). Let X be a normed linear space and T: $X \to X$ a mapping. Let C be a subset of X such that C is T-invariant and let x_0 be a T-invariant point in X. If D, the set of best C-approximants to x_0 is non-empty, compact and starshaped and T is

- (i) continuous on D
- (ii) $||x y|| \le d(x_0, C) \Rightarrow ||Tx Ty|| \le ||x y|| \text{ for } x, y \in D \cup \{x\},$

then it contains a T-invariant point which is a best approximant to x_0 in C.

Note. The continuity of T on D follows from (ii)

Corollary 4 (Khan & Khan [5]). Let T be a non-expansive operator on a normed linear space X. Let C be a subset of X and x a T-invariant point. There is a y in $P_C(x)$, which is also a T-invariant point, provided

- (a) $T: C \to C$
- (b) $P_C(x)$ is non-empty, compact and convex.

Since each p-norm generates a translation invariant metric d satisfying the property (*) and is strictly monotone, we have:

Corollary 5 (Meinardus [6]). Let $(E, || ||_P)$ be a p-normed linear space, $T: E \to E$ a non-expansive mapping with a fixed point $u \in E$ and C a closed T-invariant subset of E such that T is compact on C. If $P_C(u)$ is starshaped, then there exists an element in $P_C(u)$ which is also a fixed point of T.

In strictly convex metric spaces, we have the following result on invariant approximation:

Theorem 2. Let (X,d) be a strictly convex metric space and T a non-expansive mapping on $P_C(x) \cup \{x\}$ where x is a T-invariant point. If C is a subset of X, T: $\partial C \to C$ and $P_C(x)$ is non-empty and starshaped with starcentre q, then $P_C(x) = \{q\}$ with Tq = q.

Proof. Let $p \neq q \in P_C(x)$. Then d(x,p) = d(x,q) = d(x,C). Since $p \neq q$, strict convexity of the space implies $d(x,W(p,q,\lambda)) < \operatorname{dist}(x,C)$ and so $W(p,q,\lambda) \notin P_C(x)$, $0 \leq \lambda \leq 1$. Starshapedness of $P_C(x)$ therefore implies p = q, i. e., $P_C(x) = \{q\}$. Since $T: \partial C \to C$ and X is convex, $T: P_C(x) \to P_C(x)$ (cf. Al-Thagafi [1, Lemma 3.2]). Hence $Tq \in P_C(x) = \{q\}$, i. e., Tq = q.

REFERENCES

- 1. M. A. Al-Thagafi: Best approximation and fixed points in strong M-starshaped metric spaces. Internat. J. Math. Math. Sci. 18 (1995), no. 3, 613–616. MR 96f:47111
- 2. B. Brosowski: Fixpunktsätze in der Approximationstheorie. *Mathematica (Cluj)* 11(34) (1969), 195–220. MR 43#3712
- 3. L. F. Guseman, Jr. & B. C. Peters, Jr.: Nonexpansive mappings on compact subsets of metric linear spaces. *Proc. Amer. Math. Soc.* 47 (1975), 383–386. MR 50#5558
- T. L. Hicks & M. D. Humphries: A note on fixed-point theorems. J. Approx. Theory 34 (1982), no. 3, 221–225. MR 83k:47041
- 5. L. A. Khan & A. R. Khan: An extension of Brosowski-Meinardus theorem on invariant approximation. *Approx. Theory Appl. (N. S.)* 11 (1995), no. 4, 1–5. MR 97h:41065
- G. Meinardus: Invarianz bei linearen Approximationen. Arch. Rational Mech. Anal. 14 (1963), 301–303. MR 27#6075
- 7. T. D. Narang: Best approximation and strict convexity of metric spaces. Arch. Math. (Brno) 17 (1981), no. 2, 87–90. MR 84f:41037
- 8. S. P. Singh: An application of a fixed-point theorem to approximation theory. *J. Approx. Theory* **25** (1979), no. 1, 89–90. MR **80g**:41026
- 9. _____: Application of fixed point theorems in approximation theory. In: V. Lakshmikantham (Ed.), *Applied nonlinear analysis* (pp. 389–394). Academic Press, New York-London, 1979. MR **80**j:41043
- W. Takahashi: A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep. 22 (1970), 142–149. MR 42#2467
- (M. Sharma) Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, India

Email address: msharma62@yahoo.co.in

(T. D. Narang) Department of Mathematics, Guru Nanak Dev University, Amritsar 143005, India

Email address: address:tdnarang1948@yahoo.co.in