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ON INVARIANT APPROXIMATION OF
NON-EXPANSIVE MAPPINGS

MEENU SHARMA AND T. D. NARANG

ABSTRACT. The object of this paper is to extend and generalize the work of Brosow-
ski [Fixpunktsatze in der approximationstheorie. Mathematica Cluj 11 (1969), 195~
200], Hicks & Humphries [A note on fixed point theorems. J. Approz. Theory 34
(1982), 221-225], Khan & Khan [An extension of Brosowski-Meinardus theorem on
invariant approximation. Approz. Theory Appl. 11 (1995), 1-5] and Singh {An
application of a fixed point theorem to approximation theory. J. Approz. Theory
25 (1979), 89-90; Application of fixed point theorem in approximation theory. In:
Applied nonlinear analysis (pp. 389-394). Academic Press, 1979] in metric spaces
having convex structure, and in metric linear spaces having strictly monotone metric.

Many results in approximation theory using fixed point theorems are known in
the literature. Meinardus [6] and Brosowski [2] established some interesting results
on invariant approximation in normed linear spaces in terms of fixed point theory.
Later various researchers obtained generalizations of their results (e.g., Khan &
Khan [5] and the references cited therein). The object of this paper is to extend
and generalize the work of Brosowski (2], Hicks & Humphries [4], Khan & Khan
[5] and Singh [8, 9] in metric spaces having convex structure (a notion introduced
by Takahashi [10]) and in metric linear spaces having strictly monotone metric (a
notion introduced by Guseman & Peters [3]).

To start with we recall a few definitions.

Definition 1. Let (X,d) be a metric space and C a subset of X. A mapping
T :C — X is said to be non-ezpansive if d(Tz,Ty) < d(z,y) for all z,y € C. The
set F(T) = {x € X : T(z) = z} is called the fized point set of a mapping T and a
point of F(T) is called a T-invariant point in X.
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Definition 2. For a metric space (X, d) and a non-empty subset C of X, an element
¢z € C is called a best approzimant to x from C if d(z, c;) < d(z,c) for every c € C
i.e., d(z,c;) = infeec d(z, ¢) = d(z,C).

The set of all best approximants to z € X from C is denoted by Pg(z).

Definition 3 (Takahashi [10]). For a metric space (X, d) and a closed unit interval
I =0,1], a continuous mapping W : X x X x I — X is said to be a convez structure
on X if, forallz,ye X, A e,

d(u, W(z,y,\)) < Ad(u,z) + (1 — N)d(u,y)

for all u € X. The metric space (X, d) together with a convex structure W is called

a convex melric space.

Clearly a Banach space or any convex subset of it is a convex metric space with
W(z,y,A) = Az + (1 — A)y. More generally, if X is a linear space with a translation

invariant metric d satisfying
d(Az + (1= M)y, 0) < Ad(z,0) + (1 - A)d(y, 0),

then X is a convex metric space. Takahashi [10] has shown that there are many
convex metric spaces which can not be embedded in any normed linear space.

Definition 4 (Takahashi [10]).

(i) A non-empty subset K of a convex metric space (X, d) is said to be starshaped
if it is starshaped with respect to one of its elements i. e., if there existsau € K
such that W(z,u,\) € K for every 0 < A <1 and z € K. Such a u is called a
starcentre of K.

(ii) A non-empty subset K of a convex metric space (X, d) is said to be convez if
W(z,y,)\) € K whenever z,y € K and A € I.

Clearly, a convex set is starshaped with respect to each of its points.

Definition 5 (Narang [7]). A convex metric space (X, d) is said to be strictly convex
if for every z,y € X and 7 > 0, d(z,p) < r, d(y,p) < 7 imply d(W(z,y,A),p) <
unless z = y, where p is arbitrary but fixed point of X.

Definition 6. A subset S of a linear space X is starshaped if there exists u in S
such that Az + (1 — A)u € S whenever A € [0,1] and z € S.
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Definition 7. Let (X,d) be a metric linear space. The metric d for X is said to
be strictly monotone (cf. Guseman & Peters [3]) if  # 0 and 0 < A < 1 imply
d(Az,0) < d(z,0).

Definition 8. A metric linear space (X, d) is said to satisfy the *-convexr property
if
(%) dAz + (1 — Ny, 2) < Md(z,z) + (1 — N)d(y, 2)

for every z,y,2 € X and 0 < A < 1.

Remark. Clearly, every normed linear space satisfies the property (x).
In metric linear spaces satisfying the property (*), we have the following lemma
which we shall be using in the proof of Theorem 1.

Lemma 1. Let (X, d) be a metric linear space satisfying the property (x), C a subset
of Xand x € X. Then Po(z) C 9C NC, where OC is the boundary of C.

Proof. Let y € Po(z). For each n € N, let A, =n/(n+1). Since
d(y, Any + (1 — Ap)z) < (1= An)d(z,y)

for all n € N, lim,—oo[Any + (1 — Ap)z] = 9.
So each neighborhood of y contains at least one A,y + (1 — Ap)z. Also,

d(z, My + (1 = Ap)z) < Mpd(y,z) < d(y,z) for alln € N

implies that \,y + (1 — Ap)z ¢ C for any n € N 4. e., y is not an interior point of
C and so y € 8C. Also y € Po(z) implies y € C. Thus, y € 0C N C and hence
Po(z) coCnC. O

Using Lemma 1, we prove the following result on invariant approximation in

metric linear spaces.

Theorem 1. Let (X, d) be a metric linear space which satisfies the property () with
strictly monotone metric d and C a subset of X. Let T be a non-expansive mapping
on Po(z) U {z} where x is a T-invariant point. Then there is a o € Pc(x) which
is also a T-invariant point provided

(a) T:0C - C

(b) Po(z) is nonempty, starshaped and compact.
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Proof. Let p be a starcentre of Po(x). Then Ay + (1 - \)p € Pg(z) for every
y € Po(z) and 0 < A < 1. We claim that T : Po(z) — Po(z).

Suppose (X, d) satisfies the property (). Then by the Lemma, Pz(z) C 0CNC.
So for y € Po(x), we get Ty € C as T : 9C — C. Consider

d(z,Ty) = d(Tz, Ty) (as x is a T-invariant point)
< d(z,y) (as T is non-expansive on Po(z) U {z})
= d(z,C)
< d(z, Ty).

This gives d(z,Ty) = d(z,C) i. e., Ty € Pc(z) for y € Po(z) and hence T' : Po(z) —
Pe(z).

Let kn, 0 < k, < 1 and n € N be a sequence of real numbers such that «, — 1 as
n — oo. Define T, : Po(z) — Po(x) by Tpy = knTy+ (1 —kp)p for every y € Po(z).
Then we get

d(Tnz, Tny) = d(knTz + (1 — £n)p, ko TY + (1 — Ky )p)
= d(kpT'z, knTY)
= d(kn(Tz — Ty),0)
< d(Tz — Ty,0) (as d is strictly monotone)
=d(Tz,Ty)
< d(z,y). (as T is non-expansive on Po(z) U {z})

Hence T, is non-expansive on Po(z)U{z} for each n € N. Since Pc(z) is compact
and starshaped, T;, has a unique fixed point, say, =, for each n € N (¢f. Guseman
& Peters [3, Theorem 2)), i. e., Tz, = z, for each n.

Since Po(z) is compact, (z,) has a convergent subsequence (z,,) — x¢ € Pc(z).
We claim that Tzg = xg.

Consider z,, = Tn,Zn, = kn,TZn, + (1 — Ky, )p. Taking limit as n; — co, we get

zo =Tzg i. €., 29 € Po(x) is a T-invariant point. O

Since every normed linear space is a metric linear space with the property (*)
and the metric induced by the norm is strictly monotone, we have:

Corollary 1 (Brosowski [2]). Let T be a non-ezpansive linear operator on a normed
linear space X. Let C be a T-invariant subset of X and z a T'invariant point. If the



ON INVARIANT APPROXIMATION OF NON-EXPANSIVE MAPPINGS 131

set of best C-approzimants to z is non-empty, compact and convez, then it contains

a T-tnvariant point.

Corollary 2 (Guseman & Peters [3]). Let T be a non-ezpansive mapping on a
normed linear space X. Let C be a T-invariant subset of X and xy a T-invariant
point in X. If the set D of best C-approzimants to zg is non-empty, compact and
starshaped, then it contains a T-invariant point.

Corollary 3 (Hicks & Humphries [4]). Let X be a normed linear space and T :
X — X a mapping. Let C be a subset of X such that C is T-invariant and let xg be
a T-invariant point in X. If D, the set of best C-approzimants to xo ts non-empty,
compact and starshaped and T is

(i) continuous on D
(i) flz —yll < d(zo,C) = [Tz = Tyl| < |lz - yl| for 2,y € DU {z},

then it contains a T-invariant point which is a best approximant to xg in C.
Note. The continuity of T' on D follows from (ii)

Corollary 4 (Khan & Khan [5]). Let T be a non-expansive operator on a normed
linear space X. Let C be a subset of X and z a T-invariant point. There is a y in
Pc(x), which is also a T-invariant point, provided

(a) T:C—-C

(b) Pc(z) is non-empty, compact and convez.

Since each p-norm generates a translation invariant metric d satisfying the prop-

erty (*) and is strictly monotone, we have:

Corollary 5 (Meinardus [6]). Let (E, | ||p) be a p-normed linear space, T : E — E a
non-expansive mapping with a fixed point u € E and C a closed T-invariant subset
of E such that T is compact on C. If Po(u) is starshaped, then there exists an
element in Po(u) which is also a fized point of T

In strictly convex metric spaces, we have the following result on invariant approx-

imation:

Theorem 2. Let (X,d) be a strictly convexr metric space and T a non-erpansive
mapping on Po(z) U {z} where z is a T-invariant point. If C is a subset of X, T :
0C — C and Pc(z) is non-empty and starshaped with starcentre q, then Pc(z) = {q}
with Tq = q.
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Proof. Let p # q € Pc(x). Then d(z,p) = d(z,q) = d(z,C). Since p # g, strict
convexity of the space implies d(z, W(p,q,A)) < dist(z,C) and so W(p,q,A) ¢
Pc(z), 0 < A < 1. Starshapedness of Po(x) therefore implies p = g, i. e., Po(z) =
{q}. Since T': C — C and X is convex, T : Po(z) — Po(z) (¢f. Al-Thagafi [1,
Lemma 3.2]). Hence Tq € Po(z) = {q}, t.e., Tq = q. O
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