J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6(1999), no. 1, 13-16

ON THE w-DERIVED SET

YOON HOE GOO AND DAE HEE RY

ABSTRACT. We introduce the notion of the w-derived set and w-dense, and investigate some of their properties.

1. Introduction

We define the notion of the w-derived set which is more general than that of the derived set, and examine the relation between the derived set and the w-derived set. And we investigate some properties of the w-derived set.

Also, we introduce the notion of w-dense, and study its property.

2. w-derived set

We denote by A' and cl A the derived set and the closure of the set A, respectively.

Definition 2.1. Let X be a space. For a subset A of X, the w-derived set A'_w of A is defined by

$$A_w' = \{x \in X | \ (A - \{x\}) \cap \operatorname{cl} U \neq \emptyset \text{ for all neighborhoods } U \text{ of } x\}.$$

It is obvious that $A' \subset A'_w$, but as the following example illustrates, there exists a subset A of a space X such that $A' \neq A'_w$.

Example 2.2. Consider the topology $\tau = \{\emptyset, \{1\}, X\}$ on $X = \{0, 1\}$. Let $A = \{0\}$. Then $A' = \emptyset$ and $A'_w = \{1\}$. Therefore, $A' \neq A'_w$.

Received by the editors October 1, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54A05.

Key words and phrases. w-derived set, w-dense.

Theorem 2.3. Let X be a T_1 -space and let V be an open subset of X. Then $V' = V'_w$.

Proof. Let $x \in V'_w$. Then for any neighborhood U of x, $(V - \{x\}) \cap \operatorname{cl} U \neq \emptyset$. Take $y \in (V - \{x\}) \cap \operatorname{cl} U$. Since $y \in \operatorname{cl} U$ and $(V - \{x\})$ is a neighborhood of y, $(V - \{x\}) \cap U \neq \emptyset$. Thus $x \in V'$, so $V'_w \subset V'$. Since $V' \subset V'_w$, $V' = V'_w$. \square

Theorem 2.4. Let A and B be subsets of a space X. Then the followings hold.

- (1) If $A \subset B$, then $A'_w \subset B'_w$.
- (2) $(A \cup B)'_w = A'_w \cup B'_w$.

Proof. (1) Let $x \in A'_w$ and let V be any neighborhood of x. Then $(A - \{x\}) \cap \operatorname{cl} V \neq \emptyset$. Since $(A - \{x\}) \cap \operatorname{cl} V \subset (B - \{x\}) \cap \operatorname{cl} V$, $(B - \{x\}) \cap \operatorname{cl} V \neq \emptyset$. Thus $x \in B'_w$, so $A'_w \subset B'_w$.

(2) Suppose $x \notin A'_w \cup B'_w$. Then $x \notin A'_w$ and $x \notin B'_w$. Therefore there exist neighborhoods U and V of x such that $(A - \{x\}) \cap \operatorname{cl} U = \emptyset$ and $(B - \{x\}) \cap \operatorname{cl} V = \emptyset$. Now $U \cap V$ is a neighborhood of x and $(A \cup B - \{x\}) \cap \operatorname{cl} (U \cap V) = \emptyset$. Therefore $x \notin (A \cup B)'_w$, so $(A \cup B)'_w \subset A'_w \cup B'_w$. Since $A \subset A \cup B$ and $B \subset A \cup B$, by (1) $A'_w \subset (A \cup B)'_w$ and $B'_w \subset (A \cup B)'_w$. Therefore $A'_w \cup B'_w \subset (A \cup B)'_w$. Hence $(A \cup B)'_w = A'_w \cup B'_w$. \square

Definition 2.5. Let X be a space and let A be a subset of X. The w-closure $cl_w(A)$ of A is defined by

 $\operatorname{cl}_w(A) = \{ x \in X | A \cap \operatorname{cl} U \neq \emptyset \text{ for all neighborhoods } U \text{ of } x \}.$

It is clear that $A \subset \operatorname{cl} A \subset \operatorname{cl}_w(A)$.

Theorem 2.6 [2]. For any open subset U of X, $clU = cl_w(U)$.

Theorem 2.7. For subsets A and B of a space X, the followings hold.

- (1) $\operatorname{cl}_w \emptyset = \emptyset$.
- (2) $A \subset \operatorname{cl}_w(A)$.
- (3) $\operatorname{cl}_w(A) \subset \operatorname{cl}_w(B)$ whenever $A \subset B$.
- $(4) \operatorname{cl}_w(A \cup B) = \operatorname{cl}_w(A) \cup \operatorname{cl}_w(B).$
- (5) $\operatorname{cl}_w(A \cap B) \subset \operatorname{cl}_w(A) \cap \operatorname{cl}_w(B)$.

Proof. (1) Since \emptyset is an open set and $\operatorname{cl}\emptyset = \emptyset$, by Theorem 2.6, $\operatorname{cl}\emptyset = \operatorname{cl}_w\emptyset$. Therefore $\operatorname{cl}_w\emptyset = \emptyset$.

- (2) Since $A \subset \operatorname{cl}_w(A)$, $A \subset \operatorname{cl}_w(A)$.
- (3) Let $x \in \operatorname{cl}_w(A)$ and let U be any neighborhood of x. Then $A \cap \operatorname{cl} U \neq \emptyset$. Since $A \subset B$, $B \cap \operatorname{cl} U \neq \emptyset$. Therefore $x \in \operatorname{cl}_w(B)$, so $\operatorname{cl}_w(A) \subset \operatorname{cl}_w(B)$.
- (4) By (3), $\operatorname{cl}_w(A) \subset \operatorname{cl}_w(A \cup B)$ and $\operatorname{cl}_w(B) \subset \operatorname{cl}_w(A \cup B)$. Hence $\operatorname{cl}_w(A) \cup \operatorname{cl}_w(B) \subset \operatorname{cl}_w(A \cup B)$. Now suppose $x \notin \operatorname{cl}_w(A) \cup \operatorname{cl}_w(B)$. Then $x \notin \operatorname{cl}_w(A)$ and $x \notin \operatorname{cl}_w(B)$. Therefore there are neighborhoods U and V of x such that $A \cap \operatorname{cl} U = \emptyset$ and $B \cap \operatorname{cl} V = \emptyset$. Now $U \cap V$ is a neighborhood of x and $(A \cup B) \cap \operatorname{cl}(U \cap V) = \emptyset$. Thus $x \notin \operatorname{cl}_w(A \cup B)$, so $\operatorname{cl}_w(A \cup B) \subset \operatorname{cl}_w(A) \cup \operatorname{cl}_w(B)$. Hence $\operatorname{cl}_w(A \cup B) = \operatorname{cl}_w(A) \cup \operatorname{cl}_w(B)$.
- (5) Since $A \cap B \subset A$ and $A \cap B \subset B$, by (3) $\operatorname{cl}_w(A \cap B) \subset \operatorname{cl}_w(A)$ and $\operatorname{cl}_w(A \cap B) \subset \operatorname{cl}_w(B)$. Therefore $\operatorname{cl}_w(A \cap B) \subset \operatorname{cl}_w(A) \cap \operatorname{cl}_w(B)$. \square

In the following example, we show that there exist subsets A and B of a space X such that $\operatorname{cl}_w(A \cap B) \neq \operatorname{cl}_w(A) \cap \operatorname{cl}_w(B)$.

Example 2.8. Let τ be a topology $\{\emptyset, \{1\}, X\}$ on $X = \{0, 1\}$, and let $A = \{0\}$ and $B = \{1\}$. Then $A \cap B = \emptyset$, so $\operatorname{cl}_w(A \cap B) = \emptyset$. However, $\operatorname{cl}_w(A) = \operatorname{cl}_w(B) = X$, so $\operatorname{cl}_w(A) \cap \operatorname{cl}_w(B) = X$. Therefore $\operatorname{cl}_w(A \cap B) \neq \operatorname{cl}_w(A) \cap \operatorname{cl}_w(B)$.

The following result is a consequence of Theorem 2.7.

Corollary 2.9. For subsets A and B of a space X,

$$X - \operatorname{cl}_w(A \cup B) = (X - \operatorname{cl}_w(A)) \cap (X - \operatorname{cl}_w(B)).$$

Theorem 2.10. Let A be a subset of a space X. Then $cl_w(A) = A \cup A'_w$.

Proof. Let $x \in \operatorname{cl}_w(A)$ and let U be any neighborhood of x. Then $A \cap \operatorname{cl} U \neq \emptyset$. If $x \notin A$, then $(A - \{x\}) \cap \operatorname{cl} U \neq \emptyset$ and hence $x \in A'_w$. If $x \in A$, we are through. Thus $\operatorname{cl}_w(A) \subset A \cup A'_w$. On the other hand, since $A \subset \operatorname{cl}_w(A)$ and $A'_w \subset \operatorname{cl}_w(A)$, we obtain $A \cup A'_w \subset \operatorname{cl}_w(A)$. \square

Theorem 2.11. A space X is regular if and only if for each subset A of X, $A' = A'_w$.

Proof. For each subset A of X, suppose $A' = A'_w$. Let $x \in X$ and let U be a neighborhood of x. Since $x \notin X - U$ and $X - U = \operatorname{cl}(X - U) = (X - U) \cup (X - U)' = (X - U) \cup (X - U)'_w$, we obtain $X - U = \operatorname{cl}_w(X - U)$ from Theorem 2.10, so $x \notin \operatorname{cl}_w(X - U)$. Therefore there is a neighborhood V of x such that $(X - U) \cap \operatorname{cl} V = \emptyset$, so $\operatorname{cl} V \subset X - (X - U) = U$. Hence X is regular.

Conversely, suppose X is regular. Let $x \in A'_w$. Then for any neighborhood U of x, there exists a neighborhood V of x such that $\operatorname{cl} V \subset U$. Since $(A - \{x\}) \cap \operatorname{cl} V \neq \emptyset$, $(A - \{x\}) \cap U \neq \emptyset$. Thus $x \in A'$, so $A'_w \subset A'$. Since $A' \subset A'_w$, $A' = A'_w$. \square

Definition 2.12. A subset A of a space X is w-dense in X provided $cl_w(A) = X$.

If a subset A of a space X is dense in X, then A is w-dense in X. However, in the Example 2.8, since $\operatorname{cl} A = \{0\}$ and $\operatorname{cl}_w(A) = X$, the converse does not hold generally, but in every regular space it holds.

Theorem 2.13 [2]. A space X is regular if and only if for any subset A of X, we have $\operatorname{cl} A = \operatorname{cl}_w(A)$.

As a consequence of Theorem 2.13, we obtain the following corollary.

Corollary 2.14. Let A be a subset of a regular space X. Then a set A is w-dense in X if and only if A is dense in X.

REFERENCES

- 1. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- 2. H. K. Kim, The characterizations of H-closed spaces, Master's Thesis, Chungnam National University, Daejeon, Korea, 1995.
- 3. J. S. Park, H-closed spaces and w-Lindelöf spaces, J. Chungcheong Math. Soc. 1 (1988), 55-64.
- 4. C. W. Patty, Foundation of Topology, PWS-KENT Publishing Company, Boston, 1993.
- (Y. H. GOO) DEPARTMENT OF MATHEMATICS, HANSEO UNIVERSITY, SEOSAN, CHUNGNAM 356-820, KOREA.

E-mail address: yhgoo@gaya.hanseo.ac.kr

(D. H. Ry) DEPARTMENT OF COMPUTER SCIENCE, CHUNGWOON UNIVERSITY, HONGSUNG, CHUNGNAM 350-800, KOREA.

E-mail address: rdh@www.cwunet.ac.kr