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RECURSIVE PROPERTIES OF A MAP ON THE CIRCLE

SEONG HooN CHO *, KYUNG JIN MIN AND SEUNG KAB YANG

1. Introduction

Let I be the interval, S* the circle and let X be a compact metric space. And
let C°(X,X) denote the set of continuous maps from X into itself. For any f €
C°(X,X), let P(f),R(f),T(f),A(f) and Q(f) denote the collection of the periodic
points, recurrent points, y-limit points, w-limit points and nonwandering points,
respectively. Let T(f) = {z € X|f is not a local homeomorphism at z} denote the
set of turning points of f. A map f € C°(X, X) is said to be piecewise monotone if
the set T(f) is finite. For any piecewise monotone f, we know that A(f) = P(f) by
the result of Sarkovskii [4] and Nitecki [3]. Hence A%(f) = A(P(f)). On the other
hand, J.C.Xiong [5] proved that for any piecewise monotone f, P(f) = ACP(f)).
Therefore A%(f) = A(f) for any picewise monotone f. Also J.C.Xiong [5] proved
that for a piecewise monotone f, z € P(f) if and only if P(f) = A(P(f)). In this

paper, we obtain the following similar results for maps of the circle :

Theorem A. Let f € C°(S,S"). Suppose that T(f) is finite. Then we have
L(f) = A(f).
Theorem B. Let f € C°(S?,S'). Suppose that T(f) is finite. Then we have

A*(f) = A(f).
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2. Definitions and preliminaries

Let f € C°(X,X). For z € X, a point y € X is called an w-limit point of z if there
exists a sequence n; of positive integers with n; — oo such that f*(z) — y. Denote
w(z) the set of w-limit points of 2. A point z € X is called a recurrent point of f if
z € w(z). A point y € X is called an a-limit point of z if there exists a sequence n;
of positive integers with n; — co and a sequence y; of points such that f*(y;) =z
and y; — y. The set of a-limit points of £ denoted by a(z).

Let A(f) = Ugzexw(z). Let A’(f) = X, and define, inductively A™(f) =
A(A™1(f)) for any n > 1. Obviously, A1(f) D A%(f) D A3(f) D ---. The set
A>(f) = ﬁ A™(f) is called the attracting centre of f.

The fo:W;rd orbit Op(z) of z € X is the set {f*(2)|k = 0,1,2,---}, and the
reverse orbit On(z) of x € X is the set fj f~*(z). Usually the forward orbit of z
is simply called the orbit of z. i

3. Main results

The following lemmas and proposition found in [1].
Lemma 1. Let f € C°(S!,S') and z € Q(f). Then we have z € a(z).

Lemma 2. Let f € C°(S',S') and I = [a,b] be an arc for some a,b € S* with
a#b, andlet INP(f)=¢.
(a) Suppose that there exists = € I such that f(z) € I and z < f(z). Then
(1) if yel,f(y) eI, z <y and f(y) <y, then [z,y] f-covers [f(z),b], and
(2) if yeI,f(y) ¢ I and
(i) y <z, then [y,2] f-covers [f(2), f(y)].
(ii) ¢ <y, then [z,y] f-covers [f(z),f(y)].



RECURSIVE PROPERTIES OF A MAP ON THE CIRCLE 159

(b) Suppose that there exists = € I such that f(z) €I and z > f(z). Then
(1) if yeI,f(y) €I, y<z and y< f(y), then [z,y] f-covers [a, f(z)], and
(2) if yel,f(y) ¢ I and
() y <, then [y,2] f-covers [f(y), f(z)]
(ii) =z <y, then [z,y] f-covers [f(y), f(z)].

Proposition 1. Let f € C°(S!,S*). Then we have

P(f) C R(f) C T(f) C R(f) C A(f) C ().

Lemma 3. Let f € C°(51,SY). If ¢ € T(f"), then there exists a point ¢' € T(f)
such that ¢ € On(¢') and f*(q) € Op(¢').

Theorem A. Let f € C°(S*,S1). Suppose that T(f) is finite. Then we have

I'(f) = A(f):

Proof. It suffices to show that A(f) C T'(f). Suppose that € A(f) \ T'(f). Then
there exists an open arc (a,b) containing  such that (a,b) N Op(z) = ¢ Without
loss of generallty, we may assume that there exists y € S* and n; — oo such that
fM(y) > zand a < f*(z) < --- < f*(y) < z. Let us take a sequence of points z;
withz < --- < 2z; < -+ < z; < bsuch that z; — z. For each 7, thete exist j; > i such
that (f+ (1), 25:) N ON(f™ (4)) = §. For if (™ (y), 73,) N O(F™(y)) # @ for all
J > 1, then ¢ € w(f™(y)) Na(f™(y)) C T'(f), a contradiction. Assume j;y > j;.
Fixed ¢ > 0. By Lemma 1, we can choose u; € (f™i(y),2;;) and an increasing
sequence of positive integers m; such that f™i(u;) = z By taking subsequence if we
need, we have the following two cases:

Case i ui <up < - <z
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Since f*-1(y) ¢ f™([ui-1,7]), by Lemma 2,
[ui—1,u;] f™° ~ covers [z, f™ (ui-1)]

and

[ui,z] f™ — covers [z, f™(z)].

In particular, both [u;—1,u;] and [u;,z] f™ — covers [z,b]. Therefore, if we take
an arbtrary point ¢ € (z,b), then there exist d € (u;—1,u;) and e € (u;,z) such
that f™i(d) = f™i(e) = c. Hence there exists a turning points ¢; of f™ with
U1 < ¢ < ZT.

Casell. z< - <uij < - <uz <y

We know that f™~'(y) ¢ f™([z,ui-1]). By Lemma 2,

[ui,ui<1] f™ ~ covers [f™ (ui-1), 2]

and

[z,ui] f™ — covers [f™(z), z].

In particular, both [u;,u;—1] and [z, u;] f™ — covers [a,z]. By the same way in the
Case I, we have a turning points ¢; of f™ with z < ¢} < u;_;.

In any cases, we can have a turning point ¢; € (ui-1,2;) of f™ By lemma
3, there exists ¢; € T(f) such that ¢; € On(c:;) and f™i(q;) € Op(ci). Hence
(f™(y),2z:) N On(e;i) # ¢ and (f™(y),2i) N Op(c;) # ¢ for all 2 > 1.

Since T(f) is finite, the sequence c; has a subsequence taking by a constant value,
say, ck. In this case, z € w(ck) N afck) C T'(f). This is a contradiction.

The proof of theorem is complete.

The following corollary is immediate consequence of Proposition 1 and Thereom

A
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Corollary 1. Let f € C%(S*,S). Suppose that T(f) is finite. Then the followings
are equivalent:

(1) Every ~-limit point is recurrent.

(2) Recurrent points forms a closed set.

(1) Every w-limit point is recurrent.
The following proposition found in [2].

Proposition 2. Let f € C°(S',5"). Then we have

A®(f) = -+ = A*(f) = M) = AR) = AT(H) = T(f)).

Theorem B. Let f € C°(S*,S*). Suppose that T(f) is finite. Then we have

A*(f) = A(£).

Proof. We know that A(f) = R(f) = T'(f) by Theorem A. By Proposition 2,
A*(f) = T(f) = A(S).

The proof is complete.
Corollary 2. Let f € C°(S',S"). Suppose that T(f) is finite. Then we have
AR(f) = - = N (f) = A(f)

= AQ(f) = AR(D) = AT())

Therefore the attracting centre of f is A(f), and A(R(f)) = R(f)-

Proof. By Proposition 2,

A®(f) = -+ = AX(f) = M) = AR(S)) = AT(f)) =T(f)-
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We know that A(f) = I'(f) by Theorem B. Therefore

A=(f) =+ = A*(f) = A(f)
AQ($)) = ARTD) = AT()

= R(f) = A(f).

The proof is complete.
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