The Pure and Applied Mathematics 2 (1995), No 2, pp. 157-162 J. Korea Soc. of Math. Edu. (Series B)

RECURSIVE PROPERTIES OF A MAP ON THE CIRCLE

SEONG HOON CHO *, KYUNG JIN MIN AND SEUNG KAB YANG

1. Introduction

Let I be the interval, S^1 the circle and let X be a compact metric space. And let $C^{\circ}(X,X)$ denote the set of continuous maps from X into itself. For any $f \in C^{\circ}(X,X)$, let $P(f),R(f),\Gamma(f),\Lambda(f)$ and $\Omega(f)$ denote the collection of the periodic points, recurrent points, γ -limit points, ω -limit points and nonwandering points, respectively. Let $T(f) = \{x \in X | f \text{ is not a local homeomorphism at } x\}$ denote the set of turning points of f. A map $f \in C^{\circ}(X,X)$ is said to be piecewise monotone if the set T(f) is finite. For any piecewise monotone f, we know that $\Lambda(f) = \overline{P(f)}$ by the result of Sarkovskii [4] and Nitecki [3]. Hence $\Lambda^2(f) = \Lambda(\overline{P(f)})$. On the other hand, J.C.Xiong [5] proved that for any piecewise monotone f, $\overline{P(f)} = \Lambda(\overline{P(f)})$. Therefore $\Lambda^2(f) = \Lambda(f)$ for any piecewise monotone f. Also J.C.Xiong [5] proved that for a piecewise monotone f, $x \in \overline{P(f)}$ if and only if $\overline{P(f)} = \Lambda(\overline{P(f)})$. In this paper, we obtain the following similar results for maps of the circle:

Theorem A. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then we have $\Gamma(f) = \Lambda(f).$

Theorem B. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then we have $\Lambda^2(f) = \Lambda(f).$

Typeset by AMS-TEX

2. Definitions and preliminaries

Let $f \in C^{\circ}(X,X)$. For $x \in X$, a point $y \in X$ is called an ω -limit point of x if there exists a sequence n_i of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. Denote $\omega(x)$ the set of ω -limit points of x. A point $x \in X$ is called a recurrent point of f if $x \in \omega(x)$. A point $y \in X$ is called an α -limit point of x if there exists a sequence n_i of positive integers with $n_i \to \infty$ and a sequence y_i of points such that $f^{n_i}(y_i) = x$ and $y_i \to y$. The set of α -limit points of x denoted by $\alpha(x)$.

Let $\Lambda(f) = \bigcup_{x \in X} \omega(x)$. Let $\Lambda^0(f) = X$, and define, inductively $\Lambda^n(f) = \Lambda(\Lambda^{n-1}(f))$ for any $n \geq 1$. Obviously, $\Lambda^1(f) \supset \Lambda^2(f) \supset \Lambda^3(f) \supset \cdots$. The set $\Lambda^{\infty}(f) = \bigcap_{n=1}^{\infty} \Lambda^n(f)$ is called the attracting centre of f.

The forward orbit $O_P(x)$ of $x \in X$ is the set $\{f^k(x)|k=0,1,2,\cdots\}$, and the reverse orbit $O_N(x)$ of $x \in X$ is the set $\bigcup_{n=1}^{\infty} f^{-n}(x)$. Usually the forward orbit of x is simply called the orbit of x.

3. Main results

The following lemmas and proposition found in [1].

Lemma 1. Let $f \in C^{\circ}(S^1, S^1)$ and $x \in \Omega(f)$. Then we have $x \in \alpha(x)$.

Lemma 2. Let $f \in C^0(S^1, S^1)$ and I = [a, b] be an arc for some $a, b \in S^1$ with $a \neq b$, and let $I \cap P(f) = \phi$.

- (a) Suppose that there exists $x \in I$ such that $f(x) \in I$ and x < f(x). Then
- (1) if $y \in I$, $f(y) \in I$, x < y and f(y) < y, then [x, y] f-covers [f(x), b], and
- (2) if $y \in I$, $f(y) \notin I$ and
 - (i) y < x, then [y, x] f-covers [f(x), f(y)].
 - (ii) x < y, then [x, y] f-covers [f(x), f(y)].

- (b) Suppose that there exists $x \in I$ such that $f(x) \in I$ and x > f(x). Then
- (1) if $y \in I$, $f(y) \in I$, y < x and y < f(y), then [x, y] f-covers [a, f(x)], and
- (2) if $y \in I$, $f(y) \notin I$ and
 - (i) y < x, then [y, x] f-covers [f(y), f(x)].
 - (ii) x < y, then [x, y] f-covers [f(y), f(x)].

Proposition 1. Let $f \in C^{\circ}(S^1, S^1)$. Then we have

$$P(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)$$
.

Lemma 3. Let $f \in C^{\circ}(S^1, S^1)$. If $q \in T(f^n)$, then there exists a point $q' \in T(f)$ such that $q \in O_N(q')$ and $f^n(q) \in O_P(q')$.

Theorem A. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then we have

$$\Gamma(f) = \Lambda(f).$$

Proof. It suffices to show that $\Lambda(f) \subset \Gamma(f)$. Suppose that $x \in \Lambda(f) \setminus \Gamma(f)$. Then there exists an open arc (a,b) containing x such that $(a,b) \cap O_P(x) = \phi$ Without loss of generallty, we may assume that there exists $y \in S^1$ and $n_i \to \infty$ such that $f^{n_i}(y) \to x$ and $a < f^{n_1}(x) < \cdots < f^{n_i}(y) < x$. Let us take a sequence of points z_i with $x < \cdots < z_i < \cdots < z_1 < b$ such that $z_i \to x$. For each i, there exist $j_i > i$ such that $(f^{n_{j_i}}(y), z_{j_i}) \cap O_N(f^{n_i}(y)) = \phi$. For if $(f^{n_{j_i}}(y), z_{j_i}) \cap O_N(f^{n_i}(y)) \neq \phi$ for all j > i, then $x \in \omega(f^{n_i}(y)) \cap \alpha(f^{n_i}(y)) \subset \Gamma(f)$, a contradiction. Assume $j_{i+1} > j_i$. Fixed i > 0. By Lemma 1, we can choose $u_i \in (f^{n_{j_i}}(y), z_{j_i})$ and an increasing sequence of positive integers m_i such that $f^{m_i}(u_i) = x$ By taking subsequence if we need, we have the following two cases:

Case I: $u_1 < u_2 < \cdots < x$

Since $f^{n_{i-1}}(y) \notin f^{m_i}([u_{i-1}, x])$, by Lemma 2,

$$[u_{i-1}, u_i] f^{m_i} - \text{covers} [x, f^{m_i}(u_{i-1})]$$

and

$$[u_i, x] f^{m_i}$$
 – covers $[x, f^{m_i}(x)]$.

In particular, both $[u_{i-1}, u_i]$ and $[u_i, x]$ f^{m_i} – covers [x, b]. Therefore, if we take an arbtrary point $c \in (x, b)$, then there exist $d \in (u_{i-1}, u_i)$ and $e \in (u_i, x)$ such that $f^{m_i}(d) = f^{m_i}(e) = c$. Hence there exists a turning points q_i of f^{m_i} with $u_{i-1} < q_i < x$.

Case II. $x < \cdots < u_i < \cdots < u_2 < u_1$

We know that $f^{n_{i-1}}(y) \notin f^{m_i}([x, u_{i-1}])$. By Lemma 2,

$$[u_i, u_{i-1}] f^{m_i}$$
 - covers $[f^{m_i}(u_{i-1}), x]$

and

$$[x, u_i] f^{m_i}$$
 – covers $[f^{m_i}(x), x]$.

In particular, both $[u_i, u_{i-1}]$ and $[x, u_i]$ f^{m_i} – covers [a, x]. By the same way in the Case I, we have a turning points q'_i of f^{m_i} with $x < q'_i < u_{i-1}$.

In any cases, we can have a turning point $q_i \in (u_{i-1}, z_i)$ of f^{m_i} By lemma 3, there exists $c_i \in T(f)$ such that $q_i \in O_N(c_i)$ and $f^{m_i}(q_i) \in O_P(c_i)$. Hence $(f^{n_i}(y), z_i) \cap O_N(c_i) \neq \phi$ and $(f^{n_i}(y), z_i) \cap O_P(c_i) \neq \phi$ for all $i \geq 1$.

Since T(f) is finite, the sequence c_i has a subsequence taking by a constant value, say, c_k . In this case, $x \in \omega(c_k) \cap \alpha(c_k) \subset \Gamma(f)$. This is a contradiction.

The proof of theorem is complete.

The following corollary is immediate consequence of Proposition 1 and Thereom A

Corollary 1. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then the followings are equivalent:

- (1) Every γ -limit point is recurrent.
- (2) Recurrent points forms a closed set.
- (1) Every ω -limit point is recurrent.

The following proposition found in [2].

Proposition 2. Let $f \in C^0(S^1, S^1)$. Then we have

$$\Lambda^{\infty}(f) = \cdots = \Lambda^{2}(f) = \Lambda(\Omega(f)) = \Lambda(\overline{R(f)}) = \Lambda(\Gamma(f)) = \Gamma(f)).$$

Theorem B. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then we have

$$\Lambda^2(f)=\Lambda(f).$$

Proof. We know that $\Lambda(f) = \overline{R(f)} = \Gamma(f)$ by Theorem A. By Proposition 2, $\Lambda^2(f) = \Gamma(f) = \Lambda(f)$.

The proof is complete.

Corollary 2. Let $f \in C^0(S^1, S^1)$. Suppose that T(f) is finite. Then we have

$$\Lambda^{\infty}(f) = \dots = \Lambda^{2}(f) = \Lambda(f)$$

$$= \Lambda(\Omega(f)) = \Lambda(\overline{R(f)}) = \Lambda(\Gamma(f))$$

$$= \overline{R(f)} = \Gamma(f).$$

Therefore the attracting centre of f is $\Lambda(f)$, and $\Lambda(\overline{R(f)}) = \overline{R(f)}$.

Proof. By Proposition 2,

$$\Lambda^{\infty}(f) = \cdots = \Lambda^{2}(f) = \Lambda(\Omega(f)) = \Lambda(\overline{R(f)}) = \Lambda(\Gamma(f)) = \Gamma(f).$$

We know that $\Lambda(f) = \Gamma(f)$ by Theorem B. Therefore

$$\begin{split} \Lambda^{\infty}(f) &= \dots = \Lambda^{2}(f) = \Lambda(f) \\ &= \Lambda(\Omega(f)) = \Lambda(\overline{R(f)}) = \Lambda(\Gamma(f)) \\ &= \overline{R(f)} = \Lambda(f). \end{split}$$

The proof is complete.

REFERENCES

- 1. J.S. Bae, S.H. Cho and S.K. Yang, Relations between nonwandering points and turning points on the circle, Bull. Korean Math. Soc. 32 (1995), 57 66.
- 2. K.J. Min, The attracting centre of a map on the circle, to appear.
- 3. Z. Nitecki, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), 511 514.
- A.N. Sarkovskii, On a theorem of G.D. Birkborff, Dopovidi Akad. Nauk Ukrain, RSR Ser.
 A (1967), 429 432.
- 5. J.C. Xiong, The Closure of periodic points of a piecewise monotone map of the interval, preprint.

Myong Ji University, * Hanseo University