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QUADRATIC (ρ1, ρ2)-FUNCTIONAL EQUATION

IN FUZZY BANACH SPACES

Siriluk Paokanta a and Dong Yun Shin b, ∗

Abstract. In this paper, we consider the following quadratic (ρ1, ρ2)-functional
equation

N(2f
(x+ y

2

)
+ 2f

(x− y

2

)
− f(x)− f(y)− ρ1(f(x+ y) + f(x− y)

(0.1)

− 2f(x)− 2f(y))− ρ2(4f
(x+ y

2

)
+ f (x− y)− f(x)− f(y)), t) ≥ t

t+ φ(x, y)
,

where ρ1, ρ2 are fixed nonzero real numbers with ρ2 ̸= 1 and 2ρ1 +2ρ2 ̸= 1, in fuzzy
normed spaces.

Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic
(ρ1, ρ2)-functional equation (0.1) in fuzzy Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam

[24] concerning the stability of group homomorphisms. Hyers [12] gave a first affir-

mative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem

was generalized by Aoki [1] for additive mappings and by Rassias [23] for linear

mappings by considering an unbounded Cauchy difference. A generalization of the

Rassias theorem was obtained by Găvruta [11] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias’ approach. The sta-

bility problems of several functional equations have been extensively investigated by

a number of authors and there are many interesting results concerning this problem

(see [7, 13]).

We recall a fundamental result in fixed point theory.
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Theorem 1.1 ([4, 9]). Let (X, d) be a complete generalized metric space and let

J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then

for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [14] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with appli-

cations. By using fixed point methods, the stability problems of several functional

equations have been extensively investigated by a number of authors (see [5, 6, 22]).

Katsaras [15] defined a fuzzy norm on a vector space to construct a fuzzy vector

topological structure on the space. Some mathematicians have defined fuzzy norms

on a vector space from various points of view [10, 17, 25]. In particular, Bag and

Samanta [2], following Cheng and Mordeson [8], gave an idea of fuzzy norm in such

a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [16].

They established a decomposition theorem of a fuzzy norm into a family of crisp

norms and investigated some properties of fuzzy normed spaces [3].

We use the definition of fuzzy normed spaces given in [2, 19, 20] to investigate

the Hyers-Ulam stability of functional equations in fuzzy Banach spaces.

Definition 1.2 ([2, 19, 20, 21]). Let X be a real vector space. A function N :

X × R → [0, 1] is called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,
(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t
|c|) if c ̸= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1.

(N6) for x ̸= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.

The properties of fuzzy normed vector spaces and examples of fuzzy norms are

given in [19, 20, 21].
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Definition 1.3 ([2, 19, 20, 21]). Let (X,N) be a fuzzy normed vector space. A

sequence {xn} in X is said to be convergent or converge if there exists an x ∈ X

such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of

the sequence {xn} and we denote it by N -limn→∞ xn = x.

Definition 1.4 ([2, 19, 20, 21]). Let (X,N) be a fuzzy normed vector space. A

sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists

an n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ε.

It is well-known that every convergent sequence in a fuzzy normed vector space

is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be

complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and

Y is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X,

the sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X,

then f : X → Y is said to be continuous on X (see [3]).

In this paper, we prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional

equation (0.1) in fuzzy Banach spaces by using the fixed point method.

Throughout this paper, assume that ρ1, ρ2 are fixed nonzero real numbers with

ρ2 ̸= 1 and 2ρ1 + 2ρ2 ̸= 1.

2. Quadratic (ρ1, ρ2)-functional Equation (0.1)

In this section, we investigate the additive (ρ1, ρ2)-functional equation (0.1) in

fuzzy Banach spaces.

Lemma 2.1. Let f : X → Y be a mapping satisfying f(0) = 0 and

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y) = ρ1(f(x+ y) + f(x− y)(2.1)

−2f(x)− 2f(y)) + ρ2

(
4f

(
x+ y

2

)
+ f (x− y)− f(x)− f(y)

)
for all x, y ∈ X. Then f : X → Y is quadratic.

Proof. Letting y = x in (2.1), we get −ρ1(f(2x)− 4f(x)) = 0 and so f(2x) = 4f(x)

for all x ∈ X. Thus
1

2
(f(x+ y) + f(x− y)− 2f(x)− 2f(y))

= (ρ1 + ρ2)(f(x+ y) + f(x− y)− 2f(x)− 2f(y))
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and so f(x+ y)+ f(x− y)− 2f(x)− 2f(y) = 0 for all x, y ∈ X, since 2ρ1 +2ρ2 ̸= 1.

Thus f : X → Y is quadratic. �

We prove the Hyers-Ulam stability of the quadratic (ρ1, ρ2)-functional equation

(0.1) in fuzzy Banach spaces.

Theorem 2.2. Let φ : X2 → [0,∞) be a function such that there exists an L < 1

with

φ(x, y) ≤ L

4
φ(2x, 2y)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

N(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ1(f(x+ y) + f(x− y)

(2.2)

− 2f(x)− 2f(y))− ρ2

(
4f

(
x+ y

2

)
+ f (x− y)− f(x)− f(y)

)
, t) ≥ t

t+ φ(x, y)

for all x, y ∈ X and all t > 0. Then Q(x) := N -limn→∞ 4nf
(

x
2n

)
exists for each

x ∈ X and defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (1− ρ2)(1− L)t

(1− ρ2)(1− L)t+ φ(x, 0)
(2.3)

for all x ∈ X and all t > 0.

Proof. Letting y = 0 in (2.2), we get

N((1− ρ2)
(
4f

(x
2

)
− f(x)

)
, t) ≥ t

t+ φ(x, 0)
(2.4)

for all x ∈ X.

Consider the set

S := {g : X → Y, g(0) = 0}

and introduce the generalized metric on S:

d(g, h) = inf

{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, 0)
, ∀x ∈ X, ∀t > 0

}
,

where, as usual, inf ϕ = +∞. It is easy to show that (S, d) is complete (see [18,

Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x
2

)
for all x ∈ X.
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Let g, h ∈ S be given such that d(g, h) = ε. Then

N(g(x)− h(x), εt) ≥ t

t+ φ(x, x)

for all x ∈ X and all t > 0. Hence

N(Jg(x)− Jh(x), Lεt) = N
(
4g

(x
2

)
− 4h

(x
2

)
, Lεt

)
= N

(
g
(x
2

)
− h

(x
2

)
,
L

4
εt

)
≥

Lt
4

Lt
4 + φ

(
x
2 , 0

) ≥
Lt
4

Lt
4 + L

4φ(x, 0)
=

t

t+ φ(x, 0)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means

that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.

It follows from (2.4) that

N

(
f(x)− 4f

(x
2

)
,

t

1− ρ2

)
≥ t

t+ φ (x, 0)

for all x ∈ X and all t > 0. Hence d(f, Jf) ≤ 1
1−ρ2

.

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , i.e.,

Q
(x
2

)
=

1

4
Q(x)(2.5)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (2.5) such that there exists a

µ ∈ (0,∞) satisfying

N(f(x)−Q(x), µt) ≥ t

t+ φ(x, 0)

for all x ∈ X;

(2) d(Jnf,Q) → 0 as n→ ∞. This implies the equality

N - lim
n→∞

4nf
( x
2n

)
= Q(x)

for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ 1

(1− ρ2)(1− L)
.

This implies that the inequality (2.3) holds.
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By (2.2),

N(4n
(
2f

(
x+ y

2n

)
+ 2f

(
x− y

2n

)
− f

( x
2n

)
− f

( y

2n

))
− 4nρ1

(
f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y

2n

))
− 4nρ2

(
4f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y

2n

))
, 4nt) ≥ t

t+ φ( x
2n ,

y
2n )

for all x, y ∈ X, all t > 0 and all n ∈ N. So

N(4n
(
2f

(
x+ y

2n

)
+ 2f

(
x− y

2n

)
− f

( x
2n

)
− f

( y

2n

))
− 4nρ1

(
f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y

2n

))
− 4nρ2

(
4f

(
x+ y

2n

)
+ f

(
x− y

2n

)
− 2f

( x
2n

)
− 2f

( y

2n

))
, t) ≥

t
4n

t
4n + Ln

4n φ(x, y)

Since limn→∞
t
4n

t
4n

+Ln

4n
φ(x,y)

= 1 for all x, y ∈ X and all t > 0,

2Q

(
x+ y

2

)
+ 2Q

(
x− y

2

)
−Q(x)−Q(y) = ρ1(Q(x+ y) +Q(x− y)

−2Q(x)− 2Q(y)) + ρ2

(
4Q

(
x+ y

2

)
+Q (x− y)−Q(x)−Q(y)

)
for all x, y ∈ X. By Lemma 2.1, the mappingQ : X → Y is quadratic, as desired. �

Corollary 2.3. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed

vector space with norm ∥ · ∥. Let f : X → Y be a mapping satisfying f(0) = 0 and

N(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)− ρ1(f(x+ y) + f(x− y)− 2f(x)(2.6)

−2f(y))− ρ2

(
4f

(
x+ y

2

)
+ f (x− y)− f(x)− f(y)

)
, t) ≥ t

t+ θ(∥x∥p + ∥y∥p)
for all x, y ∈ X and all t > 0. Then Q(x) := N -limn→∞ 4nf( x

2n ) exists for each

x ∈ X and defines a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (1− ρ2)(2
p − 4)t

(1− ρ2)(2p − 2)t+ 2pθ∥x∥p

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.2 by taking φ(x, y) := θ(∥x∥p + ∥y∥p) for
all x, y ∈ X. Then we can choose L = 22−p, and we get the desired result. �
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Theorem 2.4. Let φ : X2 → [0,∞) be a function such that there exists an L < 1

with

φ(x, y) ≤ 4Lφ
(x
2
,
y

2

)
for all x, y ∈ X. Let f : X → Y be a mapping satisfying (2.2) and f(0) = 0. Then

Q(x) := N -limn→∞
1
4n f (2

nx) exists for each x ∈ X and defines a quadratic mapping

Q : X → Y such that

N (f(x)−Q(x), t) ≥ (1− ρ2)(1− L)t

(1− ρ2)(1− L)t+ Lφ(x, 0)
(2.7)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem

2.2.

It follows from (2.4) that

N

(
f(x)− 1

4
f(2x),

1

4(1− ρ2)
t

)
≥ t

t+ φ(2x, 0)

and so

N

(
f(x)− 1

4
f(2x), t

)
≥ 4(1− ρ2)t

4(1− ρ2)t+ 4Lφ(x, 0)
=

(1− ρ2)t

(1− ρ2)t+ Lφ(x, 0)

for all x ∈ X and all t > 0. Now we consider the linear mapping J : S → S such

that

Jg(x) :=
1

4
g (2x)

for all x ∈ X. Then d(f, Jf) ≤ L
1−ρ2

. Hence

d(f,Q) ≤ L

(1− ρ2)(1− L)
,

which implies that the inequality (2.7) holds.

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a

normed vector space with norm ∥ · ∥. Let f : X → Y be a mapping satisfying (2.6)

and f(0) = 0. Then Q(x) := N -limn→∞
1
4n f(2

nx) exists for each x ∈ X and defines

a quadratic mapping Q : X → Y such that

N (f(x)−Q(x), t) ≥ (1− ρ2)(4− 2p)t

(1− ρ2)(4− 2p)t+ 2pθ∥x∥p

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.4 by taking φ(x, y) := θ(∥x∥p + ∥y∥p) for
all x, y ∈ X. Then we can choose L = 2p−2, and we get the desired result. �
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4. L. Cădariu & V. Radu: Fixed points and the stability of Jensen’s functional equation.

J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
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