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DOMAIN OF INFLUENCE OF LOCAL VOLATILITY FUNCTION

ON THE SOLUTIONS OF THE GENERAL BLACK–SCHOLES

EQUATION

Hyundong Kim a, Sangkwon Kim a, Hyunsoo Han b, Hanbyeol

Jang b, Chaeyoung Lee a and Junseok Kim a, ∗

Abstract. We investigate the domain of influence of the local volatility function
on the solutions of the general Black–Scholes model. First, we generate the sample
paths of underlying asset using the Monte Carlo simulation. Next, we define the
inner and outer domains to find the effective volatility region. To confirm the
effect of the inner domain, we use the root mean square error for the European call
option prices, and then change the values of volatility in the proposed domain. The
computational experiments confirm that there is an effective region which dominates
the option pricing.

1. Introduction

The standard Black–Scholes (BS) partial differential equation [3, 12] assumes

constant volatility σ, and the underlying asset S follows the stochastic differential

equation

(1.1)
dS

S
= rdt+ σdWt,

where t is time, r is the risk-free interest rate, andWt is a standard Brownian motion.

It is well known that the price of European call option u(S, t) is governed by the BS

partial differential equation. However, the implied volatility is different for various

strike price K in real market [11, 16]. This difficulty is known as the volatility

skew and smile [5]. In order to overcome this difficulty, the constant volatility was

extended to a local volatility function σ(S, t) of the underlying asset and time. Thus,

Received by the editors April 12, 2019. Accepted November 20, 2019.
2010 Mathematics Subject Classification. 63N06, 91G80.
Key words and phrases. local volatility function, general Black–Scholes equation, finite difference

method.
∗Corresponding author.

c© 2020 Korean Soc. Math. Educ.

43



44 Hyundong Kim et al.

the price u(S, t) is governed by the following general Black–Scholes model (GBSM)

for (S, t) ∈ R
+ × [0, T ) [6, 7]:

(1.2)
∂u(S, t)

∂t
= −

(

σ(S, t)S
)2

2

∂2u(S, t)

∂S2
− rS

∂u(S, t)

∂S
+ ru(S, t).

Here, the payoff of European call option u(S, T ) has the value max(S−K, 0), where

K is strike price and T is maturity date. There are many studies on calibration

of local volatility using market data [8]. For example, in [7], Duprie obtained the

local volatility function for strike price and maturity using implied volatility. The

authors in [1, 4] proposed interesting minimization method. Jackson et al. [10]

introduced a method of minimizing the range of the optimization problem in local

volatility. In [2], the authors proposed a formulation near expiry of the calibration

for the local volatility model using a direct link between implied volatilities and

local volatilities. In [8], for European options, the authors developed the calibration

of a local volatility surface by applying a second-order Tikhonov regularization. In

[15], Turinici calibrated local volatility through a numerical method which applies

a Gauss–Newton type approximation of the Hessian and showed a well-executed

method in the benchmarks of foreign exchange data. In [9], Glover and Ali con-

structed a local volatility surfaces using non-parametric two-dimensional regression.

They implemented the regression using thin plate splines, the type of radial basis

functions, and using Tykhonov regularization and trust-region optimization to find

optimal parameter of their proposed local volatility surface.

Although many studies on local volatility have been made, most studies did not

consider the effective region of domain for local volatility surface. Therefore, the

main goal of this study is to investigate the regional effect of local volatility function

on the pricing of the GBSM.

The content of this paper is as follows. In Section 2, we propose the numerical

solution algorithm for the GBSM. We perform the numerical experiments in Section

3. Conclusions are drawn in Section 4.

2. Numerical Solution Algorithm

In this section, we propose the numerical solution algorithm by using the fully

implicit finite difference scheme and Thomas algorithm. Let τ = T − t be the time

to expiry. Then Eq. (1.2) can be rewritten as the following Cauchy problem for
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(S, τ) ∈ Ω× (0, T ]:

∂u(S, τ)

∂τ
= −

(

σ(S, τ)S
)2

2

∂2u(S, τ)

∂S2
− rS

∂u(S, τ)

∂S
+ ru(S, τ),(2.1)

∂2u(0, τ)

∂S2
=

∂2u(Smax, τ)

∂S2
= 0

with a initial condition u(S, 0) = max(S − K, 0) for S ∈ Ω = (0, Smax), where the

infinite domain is truncated to a finite computational domain [13]. Let the number

of uniform grid points NS and Nτ be positive integers. For 1 ≤ i ≤ NS and

1 ≤ n ≤ Nτ , the notations u(Si, τn) = u(ih, n∆τ) and σ(Si, τn) are simply denoted

by uni and σn
i , respectively. Here, h = Smax/NS and ∆τ = T/Nτ are space and time

steps, respectively. Now, we discretize Eq. (2.1) by using the fully implicit finite

difference scheme:

(2.2)
un+1
i − uni
∆τ

=
(σn+1

i Si)
2

2

un+1
i−1 − 2un+1

i + un+1
i+1

h2
+rSi

un+1
i+1 − un+1

i−1

2h
−run+1

i .

Let αi =
rSi

2h
− (σn+1

i Si)
2

2h2
, βi =

1

∆τ
+

(σn+1
i Si)

2

h2
+ r, γi = −rSi

2h
− (σn+1

i Si)
2

2h2
,

bi =
uni
∆τ

. Then, we can rewrite Eq. (2.2) as follows:

(2.3) αiu
n+1
i−1

+ βiu
n+1
i + γiu

n+1
i+1

= bi.

For the boundary condition, we use the linear boundary condition at S0 and SNS
.

That is, un0 = 2un1 − un2 and unNS+1
= 2unNS

− unNS−1
for all n [17]. To solve the

discrete Eq. (2.3), we apply the Thomas algorithm [14].

3. Numerical Experiments

In this section, we implement the numerical experiments. In all numerical exper-

iments, unless otherwise noted, we perform Monte Carlo simulations with 1.0E+5

samples and we use the maturity date T = 1, temporal step size ∆t = 1/365, risk-free

interest rate r = 0.015, and strike prices (K1,K2,K3,K4,K5) = (80, 90, 100, 110, 120).

All computations are done using MATLAB R2018. To generate the sample paths

of underlying asset, we shall configure the two-step as follows. First, we take the

natural logarithm on the both sides of Eq. (1.1) and then apply the Itô’s lemma.

Then, we can obtain the following well-known decision process of asset value with

respect to the standard normal distribution Z:
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(3.1) S(t) = S(0) exp
(

(r − σ2

2
)t+ σ

√
tZ

)

,

which follows the log-normal distribution with mean (r − σ2

2
)t and variance σ2t.

Also, we discretize Eq. (3.1) into the following equation:

(3.2) S(t+∆t) = S(t) exp
(

(r − σ2

2
)∆t+ σ

√
∆tZ

)

,

Next, let us consider the computational domain Ω = (0, Smax) × (0, T ]. By

using the Monte Carlo simulation and Eq. (3.2) with σ = 0.25, r = 0.015, ∆t =

1/365, we generate random sample paths of underlying asset. Let Ωin =
{

(S, tm) :

Sm
k (⌊k α

100
⌋) ≤ S ≤ Sm

k (⌊k(1 − α
100

)⌋)
}

be the inner domain, where ⌊ · ⌋ is a floor

function, Sm
k is a matrix of all simulated S and is generated at time t in ascending

order, k is the number of simulations and m = t/∆t , 1 ≤ m ≤ Nt where Nt is

the number of uniform grid points. Above condition means that Sm
k (⌊k α

100
⌋) and

Sm
k (⌊k(1 − α

100
)⌋) are underlying asset prices on the maximum value among the

values of the lower α%, and on the minimum value among the upper α% values

at time t, respectively. In detail, using
(

⌊k α
100

⌋
)

-th and
(

⌊k(1 − α
100

)⌋
)

-th indices,

we define Ωin such as grayscale shadow sketched in Fig 1. Let Ωout=Ωc
in be the

outer domain. From now on, to observe the influence of inner domain Ωin, we define
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Figure 1. Generating sample paths, and setting of Sm
k (⌊k α

100
⌋),

Sm
k (⌊k(1 − α

100
)⌋), Ωin, and Ωout.

the reference solution V ref
j = V ref (S0,Kj) and numerical solution Vj = V (S0,Kj)

which are priced by the GBSM for each strike price Kj , 1 ≤ j ≤ 5. In this test, the
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reference solution V ref
j is the European call option price when the underlying asset

price S0 = 100, σ1 = σ2 = 0.25 and Kj for all j. Furthermore, we define the local

volatility function as follows:

σ(S, t;σ1, σ2) =

{

σ1 if (S, t) ∈ Ωin,

σ2 if (S, t) ∈ Ωout.

In Fig. 2, we can see the schematics of inner domain Ωin and of outer domain Ωout

with corresponding volatilities σ1 and σ2.
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Figure 2. Inner domain Ωin and outer domain Ωout with correspond-
ing volatilities σ1 and σ2.

In Fig. 3, for 0 ≤ S ≤ Smax, V (S,K3) is calculated with σ1 = 0.25, σ2 = 0.35

and then is compared with V ref (S,K3). The result in Fig. 3 shows that V (S,K3)

and V ref (S,K3) are not significantly different.

Now, we use the root mean square error (RMSE) to confirm the effect of the

inner domain Ωin, which is defined by

RMSE =

√

√

√

√

1

N

N
∑

j=1

(V ref
j − Vj)

2,

In Ωin and Ωout, we investigate the RMSE while changing the volatility σ1 or σ2

from 0 to 0.5. First, we fixed σ2 = 0.25 in Ωout and calculated Vj with various σ1

values from 0 to 0.5 in Ωin (circle marker). On the other hand, we fixed σ1 = 0.25 in

Ωin and calculated Vj with various σ2 values from 0 to 0.5 in Ωout (square marker).

Fig. 4(a), (b), (c), and (d) show the RMSEs for α = 1, 5, 10, 15, respectively. The
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Figure 3. Call option price.

results in Fig. 4 show that RMSEs are relatively small when changing σ2 in Ωout

than when changing σ1 in region Ωin. Ultimately, this means that the influence of

Ωin is greater than the influence of Ωout when calculating the option price.

4. Conclusions

This paper focuses on the volatility region that affects the option price. To dis-

cover of influence on the generated volatility region, we performed the numerical

experiments using the RMSE. To find the numerical solution for the GBSM, we

used the fully implicit finite difference scheme and applied the Thomas algorithm.

The Monte Carlo simulation and the decision process of asset price were used to

generate the sample paths of underlying asset and the influential volatility region.

In the numerical experiments, we proposed the inner and outer domains to inves-

tigate the influential volatility region. The computational results show that there

is no big difference between the option prices obtained using the separated volatil-

ity region and the constant volatility. In a more complex situation, we have found

that the results of numerical test using the RMSE are smaller when changed the

volatility in outer domain than when we changed the volatility in inner domain. As

a consequence, the proposed inner domain becomes the influential volatility region.

These results provide important information to the reconstruction of local volatil-

ity function. Using these results, in the future work for local volatility study, we
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Figure 4. (a), (b), (c), and (d) are the RMSEs for α = 1, 5, 10, 15, respectively.

will investigate a specific region rather than whole domain to find local volatility

function.
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