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NUMERICAL METHODS FOR FUZZY SYSTEM OF LINEAR

EQUATIONS WITH CRISP COEFFICIENTS

Younbae Jun

Abstract. In this paper, numerical algorithms for solving a fuzzy system of linear
equations with crisp coefficients are presented. We illustrate the efficiency and
accuracy of the proposed methods by solving some numerical examples. We also
provide a graphical representation of the fuzzy solutions in three-dimension as a
visual reference of the solution of the fuzzy system.

1. Introduction

The system of equations plays a vital role in various areas such as mathematics,

statistics, social sciences, economics, finance, and engineering. Since many real

world problems requiring a system of equations are too complicated to be defined in

precise terms, uncertainty is often needed. So, the variables or parameters may be

expressed in terms of an interval or a fuzzy number, which was initially introduced

and investigated by Zadeh [11].

The fuzzy system of equations were investigated by various authors using different

approaches. Friedman et al. [5] studied a general fuzzy linear system using the

embedding approach. Wang et al. [10] suggested iteration algorithms for a system of

fuzzy linear equations of the form X = AX+U . Asady et al. [2] developed a method

for solving m × n fuzzy linear system for m ≤ n. Salahuddin [9] used the random

resolvent operator techniques for a fuzzy system of nonlinear equations. Behera and

Chakraverty [3] investigated on fuzzy complex system of linear equations. Rivaz and

Abad [7] presented a domain decomposition method for system of fuzzy sylvester

equations. Allahviranloo et al. [1] proposed a signed decomposition method for fully

fuzzy linear systems.
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Many of those works were done on fuzzy numbers by α-cut approach or an ordered

pair of functions. On the other hand, a slightly different form of fuzzy number so

called a linear fuzzy real number was discussed in [6, 8]. Very few researchers have

developed methods fuzzy system of linear equations on linear fuzzy real numbers. In

this paper, we present numerical algorithms for the fuzzy system of linear equations

with crisp coefficients on linear fuzzy real numbers.

The paper is organized as follows. In Section 2, we provide some preliminary

definitions of linear fuzzy real numbers. In Section 3, numerical algorithms and

experiments are presented to solve a fuzzy system of linear equations. Lastly, we

will make concluding remarks in Section 4.

2. Preliminaries

As preliminaries, we introduce some definitions and properties of linear fuzzy real

numbers which are used in this research. We first define a fuzzy number with an

associated triple of real numbers as follows.

Definition 2.1 ([6, Linear fuzzy real number]). Let R be the set of all real numbers.

For some real numbers a, b, c, let µ : R → [0, 1] be a function defined by

µ(x) =


0, if x < a or x > c,
x−a
b−a , if a ≤ x < b,

1, if x = b,
c−x
c−b , if b < x ≤ c.

Then a notation µ(a, b, c) is called a linear fuzzy real number with an associated

triple of real numbers (a, b, c), where a ≤ b ≤ c, shown in Figure 1.
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Figure 1. Linear fuzzy real number µ(a, b, c)
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Let LFR be the set of all linear fuzzy real numbers. Since any real number t ∈ R

can be written as a linear fuzzy real number r(t) ∈ LFR, where r(t) = µ(t, t, t), we

can see R ⊆ LFR. As a linear fuzzy real number, we consider r(t) to represent the

real number t itself.

Definition 2.2 ([6, Fuzzy arithmetic]). Let µ1 = µ(a1, b1, c1) and µ2 = µ(a2, b2, c2)

be two linear fuzzy real numbers. Then addition, subtraction, multiplication, and

division of µ1 and µ2 ∈ LFR are defined by

(1) µ1 + µ2 = µ(a1 + a2, b1 + b2, c1 + c2)

(2) µ1 − µ2 = µ(a1 − c2, b1 − b2, c1 − a2)

(3) µ1 · µ2 = µ(min{a1a2, a1c2, a2c1, c1c2}, b1b2,max{a1a2, a1c2, a2c1, c1c2})
(4) µ1

µ2
= µ1· 1

µ2
where 1

µ2
= µ(min{ 1

a2
, 1b2 ,

1
c2
},median{ 1

a2
, 1b2 ,

1
c2
},max{ 1

a2
, 1b2 ,

1
c2
}).

We can easily see that t · µ(a, b, c) = µ(t · a, t · b, t · c) for t > 0, because a real

number t can be considered as a linear fuzzy real number r(t) = µ(t, t, t).

Definition 2.3 ([6, Fuzzy sequence]). Let {µ(k)}∞k=0 be a sequence of LFR where

µ(k) = µ(a(k), b(k), c(k)). The LFR sequence {µ(k)} has the limit µ∗ = µ(a∗, b∗, c∗)

and we write limk→∞ µ(k) = µ∗, if the sequences {a(k)}, {b(k)}, and {c(k)} have the

limit a∗, b∗, and c∗, respectively. If limk→∞ µ(k) exists, we say the LFR sequence

{µ(k)} is convergent. Otherwise, we say the sequence is divergent.

3. Solving Fuzzy System of Linear Equations

In this section, we will construct an iterative algorithm for solving a fuzzy system

of linear equations. Consider the following n×n fuzzy system of linear equations of

the form:

(3.1)


a11µx1 + a12µx2 + · · ·+ a1nµxn = b1
a21µx1 + a22µx2 + · · ·+ a2nµxn = b2

...
...

...
...

an1µx1 + an2µx2 + · · ·+ annµxn = bn.

In matrix notation, the above system may be written as [A] {X} = {b}, where the

coefficient matrix [A] = (aij), 1 ≤ i, j ≤ n, is a crisp real n× n matrix, {b} = {bi},
1 ≤ i ≤ n, is a crisp real column vector and {X} = {µxi}, 1 ≤ i ≤ n, is the unknown

vector of linear fuzzy real numbers.

Many researchers have developed methods to solve a fuzzy system of linear equa-

tions. But the existing methods sometimes are lengthy and not computationally
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efficient for the large systems. So, it is important to develop an efficient numerical

procedures to solve a large fuzzy system of linear equations. Solving the fuzzy sys-

tem (3.1) over LFR is possible with a modification of the classical Jacobi iterative

method of a crisp system over real numbers. The intention of this research is to see

if the classical Jacobi method over real numbers R can be extended to linear fuzzy

real numbers LFR in terms of the efficiency and the accuracy.

In order to solve the n × n fuzzy system (3.1) by Jacobi iterative technique, we

start with an initial approximation
{
X(0)

}
=

{
µ
(0)
xi

}
, 1 ≤ i ≤ n, to the solution

{X} = {µxi} and generate a sequence of vectors
{
X(k)

}∞
k=0

=
{
µ
(k)
xi

}∞

k=0
, 1 ≤ i ≤ n,

where

(3.2) µ(k)
xi

=
1

aii

bi − n∑
j=1,j ̸=i

aijµ
(k−1)
xj

 , for i = 1, · · · , n.

Convergence of the sequence
{
X(k)

}∞
k=0

can be seen in the next theorem.

Theorem 3.1. Suppose that
{
X(k)

}∞
k=0

is a sequence generated by (3.2). Then it

converges to the solution {X} of the system (3.1) provided that the diagonal entries

of the crisp matrix [A] are all non-zero.

Proof. See in [4]. �

Now we provide the algorithm of the modified iterative scheme using (3.2), re-

ferred to as LFR Jacobi’s algorithm, to solve the fuzzy system of linear equations

(3.1) over LFR.

Algorithm 3.2. (LFR Jacobi’s algorithm)

INPUT: fuzzy system of n equations, initial value µ
(0)
xi for all i, integer N

OUTPUT: approximate sol. µxi for all i

Step 1: For k = 1, 2, · · · , N do Step 2.

Step 2: For i = 1, 2, · · · , n do Step 3.

Step 3: µ
(k)
xi = 1

aii

[
bi −

∑n
j=1,j ̸=i aijµ

(k−1)
xj

]
Step 4: OUTPUT(all µ

(N)
xi ) and STOP.

Example 3.3. Consider the following 3× 3 fuzzy system of linear equations:

(3.3)

 10µx1 − µx2 + 2µx3 = 10
−µx1 + 11µx2 − µx3 = 20
2µx1 − µx2 + 10µx3 = 10
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Let µ
(0)
x1 = µ(−1, 0, 1), µ

(0)
x2 = µ(0, 1, 2), and µ

(0)
x3 = µ(1, 2, 3)∈ LFR be initial

values of the fuzzy system (3.3). We note that any other values may be chosen as

an initial approximation. Then we can generate an approximate solution sequence{
X(k)

}∞
k=0

using LFR Jacobi’s algorithm. The first seven terms of the sequence of

the fuzzy system (3.3) are listed in Table 1, which is compared with the solution of

the crisp Jacobi method. We can see that the approximate solutions converge to the

exact solution within seven iterations and they are exact up to four decimal places.

In other words, the sequence
{
X(k)

}
=

{
µ
(k)
xi

}
, where i = 1, 2, 3, is convergent to

the solution {X} = {µxi}.

Table 1. Approximate solutions by LFR Jacobi and crisp Jacobi

k Sol. µ
(k)
xi by LFR Jacobi Sol. x

(k)
i by crisp Jacobi

µ
(0)
x1 = µ(−1.0000, 0.0000, 1.0000) x

(0)
1 = 0.0000

0 µ
(0)
x2 = µ(0.0000, 1.0000, 2.0000) x

(0)
2 = 1.0000

µ
(0)
x3 = µ(1.0000, 2.0000, 3.0000) x

(0)
3 = 2.0000

µ
(1)
x1 = µ(0.6000, 0.7000, 0.8000) x

(1)
1 = 0.7000

1 µ
(1)
x2 = µ(1.8182, 2.0000, 2.1818) x

(1)
2 = 2.0000

µ
(1)
x3 = µ(1.0000, 1.1000, 1.2000) x

(1)
3 = 1.1000

µ
(2)
x1 = µ(0.9782, 0.9800, 0.9818) x

(2)
1 = 0.9800

2 µ
(2)
x2 = µ(1.9636, 1.9818, 2.0000) x

(2)
2 = 1.9818

µ
(2)
x3 = µ(1.0582, 1.0600, 1.0618) x

(2)
3 = 1.0600

µ
(3)
x1 = µ(0.9847, 0.9862, 0.9876) x

(3)
1 = 0.9862

3 µ
(3)
x2 = µ(2.0033, 2.0036, 2.0040) x

(3)
2 = 2.0036

µ
(3)
x3 = µ(1.0007, 1.0022, 1.0036) x

(3)
3 = 1.0022

µ
(4)
x1 = µ(0.9997, 0.9999, 1.0002) x

(4)
1 = 0.9999

4 µ
(4)
x2 = µ(1.9987, 1.9989, 1.9992) x

(4)
2 = 1.9989

µ
(4)
x3 = µ(1.0029, 1.0031, 1.0034) x

(4)
3 = 1.0031

µ
(5)
x1 = µ(0.9992, 0.9993, 0.9993) x

(5)
1 = 0.9993

5 µ
(5)
x2 = µ(2.0002, 2.0003, 2.0003) x

(5)
2 = 2.0003

µ
(5)
x3 = µ(0.9999, 0.9999, 0.9999) x

(5)
3 = 0.9999

µ
(6)
x1 = µ(1.0000, 1.0000, 1.0000) x

(6)
1 = 1.0000

6 µ
(6)
x2 = µ(1.9999, 1.9999, 1.9999) x

(6)
2 = 1.9999

µ
(6)
x3 = µ(1.0002, 1.0002, 1.0002) x

(6)
3 = 1.0002

µ
(7)
x1 = µ(1.0000, 1.0000, 1.0000) x

(7)
1 = 1.0000

7 µ
(7)
x2 = µ(2.0000, 2.0000, 2.0000) x

(7)
2 = 2.0000

µ
(7)
x3 = µ(1.0000, 1.0000, 1.0000) x

(7)
3 = 1.0000
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It should be pointed that, for the sake of simplicity, Jacobi method is applied

to the fuzzy system (3.1). However, other iterative methods may be applied to the

system, too. For example, if Gauss-Seidel (GS) iterative method is used, then Step

3 in the algorithm mentioned above will be changed to the following:

(3.4) µ(k)
xi

=
1

aii

bi − i−1∑
j=1

aijµ
(k)
xj

−
n∑

j=i+1

aijµ
(k−1)
xj

 , for i = 1, · · · , n.

The first four terms of the sequence of the fuzzy system (3.3) based on Eq. (3.4) are

listed in Table 2. As expected, LFR GS method is faster than LFR Jacobi method

for the same problem of fuzzy system.

Table 2. Approximate solutions by LFR GS and crisp GS

k Sol. µ
(k)
xi by LFR GS Sol. x

(k)
i by crisp GS

µ
(0)
x1 = µ(−1.0000, 0.0000, 1.0000) x

(0)
1 = 0.0000

0 µ
(0)
x2 = µ(0.0000, 1.0000, 2.0000) x

(0)
2 = 1.0000

µ
(0)
x3 = µ(1.0000, 2.0000, 3.0000) x

(0)
3 = 2.0000

µ
(1)
x1 = µ(0.6000, 0.7000, 0.8000) x

(1)
1 = 0.7000

1 µ
(1)
x2 = µ(1.9818, 2.0636, 2.1455) x

(1)
2 = 2.0636

µ
(1)
x3 = µ(1.0382, 1.0664, 1.0945) x

(1)
3 = 1.0664

µ
(2)
x1 = µ(0.9905, 0.9931, 0.9956) x

(2)
1 = 0.9931

2 µ
(2)
x2 = µ(2.0026, 2.0054, 2.0082) x

(2)
2 = 2.0054

µ
(2)
x3 = µ(1.0017, 1.0019, 1.0022) x

(2)
3 = 1.0019

µ
(3)
x1 = µ(0.9999, 1.0002, 1.0004) x

(3)
1 = 1.0002

3 µ
(3)
x2 = µ(2.0001, 2.0002, 2.0002) x

(3)
2 = 2.0002

µ
(3)
x3 = µ(0.9999, 1.0000, 1.0000) x

(3)
3 = 1.0000

µ
(4)
x1 = µ(1.0000, 1.0000, 1.0000) x

(4)
1 = 1.0000

4 µ
(4)
x2 = µ(2.0000, 2.0000, 2.0000) x

(4)
2 = 2.0000

µ
(4)
x3 = µ(1.0000, 1.0000, 1.0000) x

(4)
3 = 1.0000

In this research, the coefficient matrix is considered as a real crisp, whereas an

unknown variable vector is considered as linear fuzzy real numbers. In the future,

we plan to extend our research to a fuzzy system whose coefficient matrix is fuzzy.

Finally, in Figure 2, we provide graphical representation of the fuzzy solutions of

Table 1 in three-dimension as a visual reference of the solution of the fuzzy system

(3.3). We can see the convergence of approximate solution sequence using LFR

Jacobi method.
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(a) Approximations of µx1 (b) Approximations of µx2

(c) Approximations of µx3

Figure 2. Graphical representation of fuzzy solutions by LFR Jacobi method

4. Conclusion

In this paper, we present numerical methods for solving a fuzzy system of linear

equations over linear fuzzy real numbers with a modification of the crisp Jacobi

method over real numbers. The numerical experiments show that the LFR Jacobi

method is very efficient and accurate for solving a fuzzy system of linear equations

over linear fuzzy real numbers. Graphical representation of the fuzzy solutions is

also provided as a visual reference in three-dimension.
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