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SOME SPECIAL CURVES IN THREE DIMENSIONAL
f-KENMOTSU MANIFOLDS

PRADIP MAJHI®* AND ABHIJIT BISWAS P

ABSTRACT. In this paper we study Biharmonic curves, Legendre curves and Mag-
netic curves in three dimensional f-Kenmotsu manifolds. We also study 1-type
curves in a three dimensional f-Kenmotsu manifold by using the mean curvature
vector field of the curve. As a consequence we obtain for a biharmonic helix in a
three dimensional f-Kenmotsu manifold with the curvature x and the torsion T,
k2 +712 = —(f>+ f'). Also we prove that if a 1-type non-geodesic biharmonic curve
7 is helix, then A = —(f% + f).

1. INTRODUCTION

In the study of f-Kenmotsu manifolds, Legendre curves on contact manifolds

have been studied by Baikoussis and Blair in the paper [2]. Belkhelfa et al. [3] have
investigated Legendre curves in Riemannian and Lorentzian manifolds.
In [7], Cabrerizo et al. have introduced a geometric approach to the study of mag-
netic fields on three dimensional Sasakian manifolds. A curve + is called a magnetic
curve in three dimensional f-Kenmotsu manifolds if V54 = ¢7 [2]. A magnetic curve
is the trajectory of magnetic fields. Geodesics on a manifold are curves which do not
experience any kind of forces where the magnetic curves experience due to magnetic
fields. If the magnetic field disappears, its magnetic curve become a geodesic. In
this way a magnetic curve is a generalization of a geodesic.

Let M be a 3-dimensional Riemannian manifold. Let «v : I — M, I being an

interval, be a curve in M which is parameterized by arc length, and let V; denote
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the covariant derivative along « with respect to the Levi-Civita connection on M.
It is said that v is a Frenet curve if one of the following three cases hold:
e v is of osculating order 1, i.e,V;t = 0 (geodesic), t = 4. Here, - denotes
differentiation with respect to the arc length parameter.
e v is of osculating order 2, i.e., there exist two orthonormal vector fields ¢(=
%), n and a non-negative function x (curvature) along « such that V.t = kn,
Vin = —kt.
e v is of osculating order 3, i.e., there exist three orthonormal vectors ¢(= %),

n, b and two non-negative functions s(curvature) and 7(torsion) along ~y

such that
(1.1) Vit = kn,
(1.2) Vin = —kt + 70,
(1.3) Vb= —1n.

With respect to the Levi-Civita connection, a Frenet curve of osculating order 3 for
which k is a positive constant and 7 = 0 is called a circle in M; a Frenet curve of
osculating order 3 is said to be a helix in M if x and 7 both are positive constants

and the curve is called a generalized helix if Z is a constant.

2. PRELIMINARIES

Let M be an (2n + 1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (¢,&,n,¢g) [4]. As usually denote by ® the
fundamental 2-form of M, ®(X,Y) = g(X,¢Y), for X, Y € x(M), x(M) being
the Lie algebra of differentiable vector fields on M. For further use, we recall the
following definitions ([4], [5]). The manifold M and its structure (¢,&, 7, g) is said
to be:

e normal if the almost complex structure defined on the product manifold M
xR is integrable (equivalently, [¢, ¢] +2dn ® & = 0),

e almost cosymplectic if dn =0 and d® = 0,

e cosymplectic if it is normal and almost cosymplectic (equivalently, V¢ = 0,

V being covariant differentiation with respect to the Levi-Civita connection).

The manifold M is said to be locally conformal cosymplectic (respectively, almost

cosymplectic) if M has an open covering U; endowed with differentiable functions
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ot : Uy — R such that over each U, the almost contact metric structure (¢, &, 7, g¢)
is defined by

(2.1) by = ¢, & = €T = et g = e 2Tty

is cosymplectic (respectively, almost cosymplectic).

Osaka and Rosa [19] studied normal locally conformal almost cosymplectic manifold.
They gave a geometric interpretation of f-Kenmotsu manifolds and studied some
curvature properties. Among others Calin and Crasmareanu [10] proved that a Ricci
symmetric f-Kenmotsu manifold is an Einstein manifold.

By an f-Kenmotsu manifold we mean an almost contact metric manifold which is
normal and locally conformal almost cosymplectic.

Let M be a real (2n+1)-dimensional differentiable manifold endowed with an almost

contact structure (¢, &, 1, g) satisfying

(2.2) ¢’ =-T+n®E nE) =1,
(2.3) ¢ =0, nop=0, n(X)=g(X,¢),
(2.4) 9(9X,9Y) = g(X,Y) — n(X)n(Y),

for any vector fields X, Y € x(M), where I is the identity of the tangent bundle
TM, ¢ is a tensor field of (1,1)-type, n is a 1-form, £ is a vector field and g is a
metric tensor field. We say that (M, ¢,£,n,¢9) is an f-Kenmotsu manifold if the

covariant differentiation of ¢ satisfies [20]:

(2.5) (Vxo)(Y) = f{g(0X,Y)§ —n(Y)pX},

where f € C°°(M) such that df An = 0. If f = a = constant # 0, then the manifold
is a a-Kenmotsu manifold. 1-Kenmotsu manifold is a Kenmotsu manifold ([16], [21]).
If f =0, then the manifold is cosymplectic [20]. An f-Kenmotsu manifold is said to
be regular if f2 + f' # 0, where f’ = £f, f' denotes covariant derivation of f with
respect to £.

For an f-Kenmotsu manifold from (2.2) it follows that

(2.6) Vx§ = X —n(X)¢}

The condition df An = 0 holds if dim M > 5. In general this does not hold if
dimM = 3 [21].



86 PrADIP MAJHI & ABHLIT BISWAS

In a three dimensional Riemannian manifold, we have

RX,Y)Z =g(Y,2)QX — g(X,Z)QY + S(Y, Z)X — S(X, Z)Y

(2.7) —59(Y. )X = g(X. 2)Y,
In a three dimensional f-Kenmotsu manifold, we have ([18], [21])
RX,Y)Z = (5+2f2+2f)(9(Y, 2)X - g(X, Z)Y)
(5 + 3£+ 3 {n(X)(9(Y, 2)¢ — (&, 2)Y)
(2.8) +0(Y)(9(€. 2)X — g(X, 2)6)}.
(29) S(X,Y) = (5+2f+2f)9(Y. 2)X = (5 +3f +3f (X)n(Y),

where r is a scalar curvature of M and [’ = ¢£f.

From (2.5), we obtain

(2.10) R(X,Y)e = ~(f*+ f)In(Y)X — n(X)Y],
and (2.6) yields
(2.11) S(X,€) = ~(f* + fn(X).

Proposition 2.1. Let v be a unit speed curve on a three dimensional f-Kenmotsu
manifold and T, N and B be the tangent, principal normal and binormal of the

curve vy respectively. Then
n(T) = kn(N) + f(L—n(T)?),
n(N)' = —xn(T) + m0(B) — fn(T)n(N),
and

n(B) = —mn(N) — fn(T)n(B).

Proof. Let v be a unit speed curve on a three dimensional f-Kenmotsu manifold.

Differentiating n(T"), n(N) and n(B) along v, we have

n(T) = g(VrT, &)+ g(T,Vré)
= kn(N) +g(T, f(T' —n(T)¢))
(2.12) = wn(N)+ f(1=n(T)?).
n(N) = g(VrN,§) + g(N,Vre)

= g(_HT + TBaf) + g(Na f(T - H(T)f))
(2.13) = —mn(T) +7n(B) — fa(T)n(N).
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n(B) = g(VrB,&) + g(B,Vre)
= 9(—TN7§)+9(B7]C(T—77(T)§))
(2.14) = —7n(N) = fn(T)n(B).

This completes the proof. O

A Frenet curve is called a slant curve if it makes a constant angle with the Reeb
vector field £ [9]. If a unit speed curve on an almost contact metric manifold is

slant curve, then n(%) = cos#, where 6 is a constant and is called slant angle. In
5
curve. A slant curve is called proper if it is neither parallel nor perpendicular to the

Reeb vector €.

particular, if the angle is Z, the curve becomes almost contact curve or Legendre

Remark 2.2. For a curve v in a three dimensional f-Kenmotsu manifold, the
following conditions are equivalent

(1) the curve ~ is slant curve,

(id) n(TY = 0,

(iid) n(N) = —£(1 = n(T)?).

Remark 2.3. If a curve 7y is Legendre in a three dimensional f-Kenmotsu manifold,
then from the (2.12), we have

(2.15) n(N) = _g.

3. BIHARMONIC CURVES IN THREE DIMENSIONAL f-KENMOTSU
MANIFOLDS

The theory of biharmonic functions is a rich subject. Biharmonic functions have
been studied by Maxwell in 1862 and Airy to describe a mathematical model of
elasticity. The theory of polyharmonic functions was developed later on. There are
a few results on biharmonic curves in arbitrary Riemannian manifolds. Biharmonic
curves on a surface was studied by R. Caddeo, et al. in the paper [8]. Later, in [17] S.
Montaldo and C. Oniciuc studied biharmonic maps between Riemannian manifolds.
In the paper [12] D. Fetcu studied Biharmonic Legendre curves in Sasakian space
forms. Certain biharmonic curves on different manifolds have been studied by several
authors such as ([6], [13]).
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Definition 3.1. A helix v is said to be biharmonic with respect to the Levi-Civita

connection V if it satisfies [13]
VAT + R(V7T, T)T =0,
where 4 = T, and R is the curvature tensor of type (1,3).

Theorem 3.2. Let v be a biharmonic helix in a three dimensional f-Kenmotsu

manifold with the curvature x and the torsion 7. Then k? 4+ 712 = —(f2 4+ f').

Proof. Let v be a biharmonic helix in a three dimensional f-Kenmotsu manifold.
Then

(3.1) VAT + R(V7T, T)T =0,

where v = T', tangent vector and the curvature x and torsion 7 are constant.
Let N and B be principal normal and binormal respectively. Then the Frenet-Serret

equations are

(3.2) V1T = kN,
(3.3) VrN = —kT + 1B,
and

(3.4) VrB = —7N.

Differentiating (3.2) with respect to T', we have

VAT = Vg(kN)
= kKVpN
= k(—kT +7B)
(3.5) = —w’T + kTB.

Again differentiating the foregoing with respect to T', we get

VAT = Vp(—x*T + kTB)
= —r*(kN) + kT(—TN)
(3.6) = —x3N — kr2N.
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Now
R(VT, T)T = (g + 2% + 2f ) {g(T, T)V7T — g(VT, T)T}
(5 + 317+ 3 ) (Ve T) (9(T, T)E — 9(&, T)T)
+n(T)(g(&, T)VTT — g(VrT, T)E)}
= (G224 20){rN =0} = (5 + 37 +3f)
{rn(N)(§ = n(T)T) + n(T)(n(T)sN — 0)}
= (G277 +2f)AN = (5 +3F7 + 3 ) (kn(N)S
(3.7) —kn(N)n(T)T + n(T)*kN).

Since the curve is biharmonic helix. Then using (3.6) and (3.7) in (3.1), we obtain
—k3N — k72N + (g +2f% +2f")kN
r
(3.8) ~(5 + 3%+ 3f)(ksn(N)§ = rn(N)n(T)T +n(T)*kN) = 0.
Taking inner product in (3.8) with &, we get

—k(i® + Tn(N) + (5 + 26 + 21 Jrn(N)

(3.9) —(g +3f% 4 3f) (kn(N) — kn(N)n(T)* + &n(T)*n(N)) = 0.

This implies

(3.10) —k(K* +72)n(N) = (f* + f)en(N) = 0.

Since k and n(IN) are non-zero, we have

(3.11) 2+t = (2 + ).

This completes the proof. ]

Definition 3.3. A curve ~ is called a curve with proper mean curvature vector field
H if there exist A € C*(v) such that

AH = )\H.

The curve + is also called 1- type.

In particular, if A = 0 then ~ is known as a curve with the harmonic mean
curvature vector field [14]. Hence the Laplace operator A acts on the vector valued

function H and it is given by

AH = -NpVrVrT.
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Making use of Frenet equations, we get

(3.12) —3kiT 4 (k — K3 — KkT?)N + (267 4+ k7)B = —AkN.
If both x and 7 are constants, then

(3.13) A=r%+ 12

For more details see ([1], [14] and [15]).

Theorem 3.4. If a 1-type non-geodesic biharmonic curve 7y is helix, then \ =
—(f2+ 1)

Proof. Let v be a biharmonic helix. Then x and 7 are constants. From (3.11), we

have

(3.14) RE4+72=—(f2+ 1.

Also for a 1-type non-geodesic curve, we have from (3.13)
(3.15) A= k2472,

Comparing the equations (3.14) and (3.15), we obtain
(3.16) A=—(FA+ 1.

This completes the proof of the theorem. U

4. LEGENDRE CURVES IN THREE DIMENSIONAL f-KENMOTSU MANIFOLDS

A Frenet curve 7 in a Riemannian manifold is said to be a Legendre curve if it
is an integral curve of the contact distribution D = kern, i.e., if n(¥) = 0. Legendre
curves have been studied by ([22], [23]). For more details we refer ([2], [3]).

Proposition 4.1. Let M be a three dimensional f-Kenmotsu manifold. If a Le-
gendre curve v : I — M 1is not geodesic, then it’s curvature and torsion are given
by
= T,
and ‘ ‘
fo—of

K2

)

where § is a function on I.
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Proof. Let v be a Legendre curve on a 3-dimensional f-Kenmotsu manifold. Note
that 4, ¢¥ and £ are orthonormal vector fields along +. Differentiating g(%,£) = 0

along v, we get

(4.1) 9(V53,8) + 9(f (7 = (1)), 7) = 0.
It follows that

(4.2) 9(Vs1,8) + f =0,

and hence

(4.3) 9(V49.8) = —f.
Therefore

(4.4) VB = Vi = —f€ + 3¢,

where 0 is certain function on I. Hence the curvature k of the curve ~y is given by

(4.5) k= f?+

Differentiating the following vector field Fy

(4.6) E; = %VA/EI = —£§ + gm
along ~y, we obtain
ViBy = 5o fﬁf—ivyﬁntms 5K¢V+ V(%)
— 2 5 — 6F
- ——"‘fﬂzf“g—%v PRI
2402 Kf—fi § — o
(4.7) = - “f el
Again
kf—fic  80f—fo
(48) K2 kK2
and
(49) W — 8k _ f [ 5f

K2 K K2
Thus using (4.8), (4.9) in (4.7), we have

(4.10) VyEy = —rY + fé + ﬁé 7,
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where a = £ 5_25f . Therefore from (4.10), we get

K

TEHy = V»'YEQ + kEq
da fa .
(4.11) = —&+ —097.
K K
Hence from the foregoing equation it follows that
oa fa
— %2 4 (L%y2
r o= ey
f8—6f
4.12 = a= .
(112) a=1"
This completes the proof. O

The curvature measures the extent to which a curve is not contained in a straight
line so that straight lines have zero curvature, and the torsion measures the extent
to which a curve is not contained in a plane so that plane curves have zero torsion

[11]. Thus for a plane curve torsion 7 = 0.

Theorem 4.2. Let vy be a Legendre curve on a three dimensional f-Kenmotsu man-
ifold. If the unit vector £ is parallel to principal normal vector N or binormal vector

B. Then the manifold is cosymplectic and the curve is plane curve.

Proof. Let v be a Legendre curve on a three dimensional f-Kenmotsu manifold. If
¢ is along binormal vector B. Then {7, ¢,&} are orthonormal vector field along ~y
and

T=4 N=¢% B=¢

Let k and 7 be the curvature and torsion of the curve . Then

(4.13) Vi = nord,
(4.14) Vi) = —k7y + 7€
and

(4.15) ViE = —7¢.
Also

Vidy = (V40)7 + ¢(Vsd)
= [(9(¢%,%) — n()E) + o™y
= 0+ k(=Y +n(9)E)
(4.16) = —K7.
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and
Vi& = f(y—n(1)
(4.17) = fA.

Then comparing the equations (4.14), (4.15) with (4.16), (4.17) respectively, we get

(4.18) T =0,
and
(4.19) f=0.

If ¢ is along principal normal vector N, then the proof is same as above. This

completes the proof Theorem. O

Theorem 4.3. A Legendre curve in three dimensional f-Kenmotsu manifold is of

1-type with X\ = H2];_f, where yf = f.

Proof. Let v be a Legendre curve in a three dimensional f-Kenmotsu manifold.

Then 7(%) = 0, where tangent 7" = 4. Differentiating (%) = 0 with respect to 7, we

get

(4.20) 9(V57,8) + 9(7, V5€) = 0.
From which it follows that

(4.21) 9(V5%,8) = —Ff.
Differentiating again with respect to 7, we have

(4.22) 9(V34,€) +9(V579,V4€) = —f.
This implies

(4.23) 9(V34,6) = - f.
Differentiating the foregoing equation along ~ , we obtain
(4.24) 9(V39.€) + 9(V33, V58) = —f.

It follows that

(4.25) 9(V33,) + g(kV5N + &N, [4) = —f,
and hence

(4.26) 9(V34,8) = k> f — f.
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If v is a 1-type curve with A € C*¥. Then V%"y = —AkN. Then from (4.26), we get

- §
4.27 A=— .
427 ()
Using (2.15) in (4.27), we have

24 _
(4.28) A b

f

This completes the proof. O

Theorem 4.4. If~ is a magnetic heliz in three dimensional f-Kenmotsu manifolds,
then n(N) =0 and % =T

Proof. Let v be a magnetic helix curve in a three dimensional f-Kenmotsu manifold.
Then

(4.29) Vid = ¢4,

where 4 = T'(tangent vector). Using Frenet formula, we have
(4.30) kN = ¢T.

Taking inner product of (4.30) with &, we get

(4.31) n(N) = 0.
Differentiating (4.29) with respect to T', we have

(4.32) VAT = Vr(oT).

It follows that

(4.33) Vi(rN) = n(T)( - foT) - T.
This implies

(4.34) —K2T + wTB =n(T)(€ — f¢T) —T.

Taking inner product of (4.34) with &, we obtain

(4.35) —k*(T) + krn(B) = n(T) — n(T).
Therefore

nT) 7
(4.36) B = =

This completes the proof. ]



SOME SPECIAL CURVES IN THREE DIMENSIONAL f-KENMOTSU MANIFOLDS 95

Theorem 4.5. Any magnetic helixz curve on three dimensional f-Kenmotsu mani-
folds is of 1-type and

)2 B)? T)2 B)2
(4.37) A;:;H2ﬂ£4)4;tlgggl,::TQHEAlAj;%ﬁgjf
n(B) n(T)

Proof. Let v be a magnetic helix on a three dimensional f-Kenmotsu manifold.

From (4.36), we get

438 K2 _ 2 _ /@'24—72
(4.38) (B~ (@2~ T+ n(B)?

If v is a 1-type curve, then there exists A € C*°(y) such that x? + 72 = X. Then
from (4.38), we get

_ 2T +n(B)* _ 5n(T)* +n(B)*
(4.39) AT me T

This completes the proof of the theorem. O
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