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PROBABILISTIC ANALYSIS OF A SYSTEM CONSISTING OF

TWO SUBSYSTEMS IN THE SERIES CONFIGURATION

UNDER COPULA REPAIR APPROACH
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Abstract. Redundancy is commonly employed to improve system reliability. In
most situations, components in the standby configurations are assumed statisti-
cally similar but independent. In many realistic models, all parts in standby are
not treated as identical as they have different failure possibilities. The operational
structure of the system has subsystem-1 with five identical components working un-
der 2-out-of-5: G; policy, and the subsystem-2 has two units and functioning under
1-out-of-2: G; policy. Failure rates of units of subsystems are constant and assumed
to follow an exponential distribution. Computed results give a new aspect to the
scientific community to adopt multi-dimension repair in the form of the copula.

1. Introduction

Many deteriorating repairable systems, such as aircraft, space shuttles, hydraulic

control systems, nuclear plants, satellite projection systems, electric power gener-

ating systems, and communication system suffer from unavoidable failures due to

complex degradation processes and environmental conditions. In practice, we come

across many complex systems where an unpredicted failure of any of the parts re-

sults in the reduction of efficiency of the whole system or the complete failure of

the system, and because of it, the reliability of the system reduces. Redundancy is

a technique widely used to improve system reliability and availability. It is used in

the form of identical components connected in such a way that when one component

fails the others will keep the system functioning. Moreover, redundancy is highly
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cost-effective in achieving a certain reliability level of the system. Therefore, to en-

hance reliability and adequate performances, a k-out-of-n system structure in which

at least k components out of n must be functioning for the system to be operational,

play a vital role. For example, a communications system with three transmitters,

where the average message load may be such that at least two transmitters must be

operational at all times can be modeled as a 2-out-of-3: G system. Furthermore, it

may be possible to drive a car with an eight-cylinder V configuration engine if only

four cylinders are firing. However, if less than four cylinders fire, then the car cannot

be driven. Thus, the functioning of the engine can be demonstrated by a 4-out-of-8:

G system. Conclusively a k-out-of-n: G/F systems play a very crucial role in system

reliability theory to the proper operation of the system. In the past decade, k-out-of-

n redundant systems have been studied extensively in the context of computing the

reliability and availability, optimization of the system, common cause failures, and

repair facility for fixing failed components. Several articles have been published on

reliability and availability analysis of complex systems by researchers and presented

a highly significant work to improve the reliability of real-life industrial systems.

More than a few authors, including Moustafa [3], Kullstam [4], and Liang et al.

[5] examined the reliability characteristics using k-out-of-n repairable systems with

different failure modes. Park and Pham [6] studied the block replacement policy for

thek-out-of-n system on threshold numbers of fail components and the risk cost of the

system. Among them, Kumar and Gupta [7], Vanderperre [8], Mokaddis et al. [9],

Kumar [10], Dhillon [11] have studied the reliability measures of considered systems

by taking different types of failure and general repair employing the k-out-of-n: G

operation policy. The type of repair approach predicts the performance of repairable

systems. The cited literature from [1] to [11] has considered general repair between

two transition states, while in many real situations, more than one repair is possible.

Such types of possibility insist the researchers to repair a completely failed state by

employing Goumbel-Hougard copula repair distribution developed by Nelson [12].

To cite a few of them, Alka and Singh [13] analyzed the reliability characteristics of

a complex repairable system composed of two subsystems in a parallel configuration

using copula repair strategy. The authors’ considered first subsystem L working un-

der 2-out-of-3: G policy, while the second subsystem M is working on 5-out-of-5: G

policy. Goyal et al. [14] studied a three-unit series system under k-out-of-n redun-

dancy and done the sensitivity analysis for the system. Singh et al. ([15], [16]) have

studied the performance analysis of the complex system in the series configuration
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under different failure and repair disciplines using copula concept. Lado et al. [17]

evaluated the reliability measures (Availability, reliability, and MTTF, sensitivity,

and profit analysis) of the repairable complex system with two subsystems connected

in a series configuration using the supplementary variable and Laplace transforms.

Kumar et al. [18] presented a novel method for availability analysis of an engineer-

ing system involving subsystems in series configuration incorporating waiting time

to repair. Sharma and Kumar [19] analyzed availability improvement for the success

of the k-out-of-n machining system with multiple working vacations. The repairman

can choose multiple working vacations of random length during its dormant time.

El-Damcese et al. [20] analyzed availability and reliability for the r-out-of-m: G

system with three types of failures using the Markov model. Ram and Singh [21]

studied availability and cost analysis of a parallel redundant complex system with

two types of failure under preemptive-resume repair discipline using copula repair.

Singh et al. [22] investigated cost analysis of an engineering system involving two

subsystems in a series configuration with controllers and human failure under the

concept of k-out-of-n: G policy using copula repair approach. Xinzhuo Bao [23]

examined reliability characteristics for the series Markovian repairable system by

considering the repair time of the system failure as too short and long and tried to

delay the failure effect. Zheng et al. [24] studied a single unit Markov repairable

system with neglecting repair time. Kumar and Ram [25] mugged upon sensitivity

analysis of coal handling thermal power plant with two subsystems (Wagon Tripler

and Conveyor) in a series configuration with one standby unit in both subsystems

with different failure rates and general repair concept. Sensitivity assessment of air

and refrigeration systems with four equipment (Compressor, condenser, expansion

device, and evaporator) have premediated by Goyal et al. [26] El-Damcese et al.

[27] have illustrated reliability and MTTF for the three-element system in series

and parallel configuration utilizing Fuzzy failure rates. El- Damcese and El- So-

dany [28] have studied reliability and sensitivity analysis of the k-out-of-n: G warm

standby parallel repairable system with replacement at common cause employing

Markov model.

2. Model Description and Notations

2.1. System Description Numerous models carrying the standby unit (s) have

been widely studied in the explored literature above. Moreover, the configuration
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of k-out-of-n: G/F has also been studied by various researchers but the structure

k-out-of-n: G type together with series and parallel configurations have not much

attended by investigator due to the complexity of configuration. Treating the above

realities in this paper, we have developed a system with two subsystems in a series

configuration that includes a switching device. The subsystem-1 has five units that

are working under 2-out-of-5: G; policy, and the subsystem-2 has two units that are

working under 1-out-of-2: G; policy. Moreover, the switching device in the system is

unreliable, and as long as the switch fails, the whole system fails immediately. The

failure rates of units of both the subsystems are constant and assumed to follow an

exponential distribution, but their repair supports two types of distribution namely

general distribution and Gumbel-Hougaard family copula distribution. Furthermore,

the failure rate of all the units in subsystem-1 is the same whereas in subsystem-2 it

is different. We used the supplementary variable technique (Cox, 1; Oliveira et al., 2)

and Laplace transformations to evaluate various characteristics like transition state

probabilities, availability, reliability, MTTF, and profit analysis. Explicit expressions

are obtained with help of MAPLE (software). Some particular cases have also

been discussed for different values of failure rates. The results are demonstrated by

graphs, and conclusions have been drawn. The paper is organized as follows: Section

2 introduces about system description with assumptions and notations, Sections

3 discusses states description of the model, Section 4 presents the mathematical

formulation of the model and Section 5 gives the analytical study of the model

that includes availability, reliability, MTTF and profit analysis. Conclusions of the

proposed analysis are given in Section 6. At last, some special cases are taken to

highlight the reliability characteristics of the system. These are as follows:

(i): Both the subsystems have a switching device.

(ii): Only subsystem-2 has the switching device.

(iii): Only subsystem-1 has the switching device.

(iv): No subsystems have switching devices.

The state description of the considered system is given in Table 1, and the transition

state diagram of the investigated system is shown in Figure 2.

2.2. Assumptions Following assumptions have been considered for the study of

model:

(1) Initially, the system is in state S0, and all the units are in good working

conditions.
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(2) The subsystem-1 has five identical units and works successfully under the

policy 2-out-of-5: G. The subsystem-1 has five identical units and works

successfully under the policy 2-out-of-5: G .

(3) The subsystem-2 has two non-identical units and works successfully under

the policy 1-out-of-2: G.

(4) Both the subsystems are connected via a switching device, which in the

system may be unreliable at the time of need. Moreover, if the switch fails,

the whole system fails immediately.

(5) The units in both the subsystems are in parallel mode and warm standby

and ready to start within a negligible time after the failure of any unit in

the subsystems.

(6) The repairman is available full time with the system and may be called as

soon as the system reaches to wholly or partially failed state.

(7) The failure rate of all the units in subsystem-1 is the same, while the failure

rates of both the units in subsystem-2 are different.

(8) Both the subsystems, including switching devices, have constant failure rates

and follow an exponential distribution

(9) The complete failed system needs repair immediately. For this, copula repair

can be used to restore the system. No damage has been reported due to the

repair of the system.

(10) As soon as the failed unit repaired, it is ready to perform the task as good

as new.

2.3. Notations

• t Time scale

• s Laplace transform variable

• λ1 The failure rate of each unit in subsystem-1

• λA/λB The failure rate of both the units A and B in subsystem-2.

• λs1/λs1 The failure rate of switching devices between units for subsystem-

1/subsystem-2.

• ϕ1 Repair rate of each unit in subsystem-1.

• ϕA/ϕA Repair rate of each unit A and B in subsystem-2.

• P0(t) The state transition probability that the system is in Si state at an

instant i = 0

• P̄ (s) Laplace transformation of the state transition probability P (t).
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• Pi(x, t) The probability that the system is in the state Si for i = 1 ∼
8, s1, s2 and the system is under repair with elapsed repair time is x, t. x is

repaired variable and t is time variable.

• Ep(t) Expected profit in the interval [0, t).

• K1, K2 Revenue generated and service cost per unit time, respectively.

• µ0 An expression of the joint probability from failed state Si to good state

S0 according to the Gumbel-Hougaard family copula, is given as

µ0 = Cθ {u1, u2} = exp
[
xθ + {log ϕ(x)}θ

] 1
θ

where u1 = ϕ(x), u2 = ex. Here is the parameter 1 < θ < ∞

3. System Configuration and State Transition Diagram

The state description of the model is shown in Table 1 that highlights S is a

perfect state where both the subsystems are in good working condition. S1, S2,

S3, S5, and S6 are the states where the system is in degraded mode and general

repair is employed, while S4, S7, S8 and S9 are the states where the system is in the

total failure mode and repair is being applied using Gumbel-Hougaard family copula

distribution. System configuration is shown in Table 1 while the state transition

diagram in Figure 2.

Table 1. State Description

State Description State Description
S0 Perfect state All Units good. S6 Degraded state Unit B of

subsystem-2 failed General
Repair.

S1 Degraded state One unit of
subsystem-1 failed General
Repair

S4 Totally failed state More than
3 units failed in subsystem-1
Copula Repair.

S2 Degraded state Two units
of subsystem-1 failed General
Repair

S7 Totally failed state Both the
units failed in subsystem-2
Copula Repair.

S3 Degraded state Three units
of subsystem-1 failed General
Repair

S8 Totally failed state Switch-
ing device failed in subsystem-
1Copula Repair.

S5 Degraded state Unit A of
subsystem-2 failed General
Repair

S9 Totally failed state Switching
device failed in subsystem-2
Copula Repair.
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Figure 1. System Configuration

Figure 2. State Transition Diagram of the Model.
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4. Formulation of the Mathematical Model

By a probability of considerations and continuity arguments, we can obtain the

following set of difference-differential equations:

(4.1)

[
∂

∂x
+ 5λ1 + λA + λB + λs1 + λs2

]
P0(t) =

∫ ∞

0
ϕ1(x)P1(x, t)dx

+

∫ ∞

0
ϕA(x)P5(x, t)dx+

∫ ∞

0
ϕB(x)P6(x, t)dx+

∫ ∞

0
µ0(x)Pi(x, t)dx, i = 4, 7, s1, s2

[
∂

∂t
+

∂

∂x
+ 4λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P1(x, t) = 0(4.2) [

∂

∂t
+

∂

∂x
+ 3λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P2(x, t) = 0(4.3) [

∂

∂t
+

∂

∂x
+ 2λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P3(x, t) = 0(4.4) [

∂

∂t
+

∂

∂x
+ λB + λs1 + λs2 + ϕA

]
P5(x, t) = 0(4.5) [

∂

∂t
+

∂

∂x
+ λA + λs1 + λs2 + ϕB

]
P6(x, t) = 0(4.6) [

∂

∂t
+

∂

∂x
+ µ0(x)

]
Pj(x, t) = 0; j = 4, 7, s1, s2(4.7)

Boundary conditions

P1(0, t) = 5λ1P0(t)(4.8)

P2(0, t) = 20λ2
1P0(t)(4.9)

P3(0, t) = 60λ3
1P0(t)(4.10)

P4(0, t) = 120λ4
1P0(t)(4.11)

P5(0, t) = λA[P0(t) + P1(t) + P2(t) + P3(t)](4.12)

P6(0, t) = λB[P0(t) + P1(t) + P2(t) + P3(t)](4.13)

P7(0, t) = λAP6(t) + λBP5(t)(4.14)

Ps1(0, t) = λs1 [P0(t) + P1(t) + P2(t) + P3(t) + P5(t) + P6(t)](4.15)

Ps2(0, t) = λs2 [P0(t) + P1(t) + P2(t) + P3(t) + P5(t) + P6(t)](4.16)

Initial conditions

(4.17) P0(0) = 1
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and other state probabilities are zero at t = 0. Taking Laplace transformation of

equations (4.1) to (4.16) and using equation (4.17), we obtain

(4.18) [s+ 5λ1 + λA + λB + λs1 + λs2 ] P̄0(s) = 1 +

∫ ∞

0
ϕ1(x)P̄1(x, s)dx

+

∫ ∞

0
ϕA(x)P̄5(x, s)dx+

∫ ∞

0
ϕB(x)P̄6(x, s)dx+

∫ ∞

0
µ0(x)P̄i(x, s)dx; i = 4, 7, s1, s2

[
s+

∂

∂x
+ 4λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P̄1(x, s) = 0(4.19) [

∂

∂x
+ 3λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P̄2(x, s) = 0(4.20) [

s+
∂

∂x
+ 2λ1 + λA + λB + λs1 + λs2 + ϕ1

]
P̄3(x, s) = 0(4.21) [

s+
∂

∂x
+ λB + λs1 + λs2 + ϕA

]
P̄5(x, s) = 0(4.22) [

s+
∂

∂x
+ λA + λs1 + λs2 + ϕB

]
P̄6(x, s) = 0(4.23) [

s+
∂

∂x
+ µ0(x)

]
P̄j(x, s) = 0; j = 4, 7, s1, s2(4.24)

Boundary conditions

P̄1(0, s) = 5λ1P̄0(s)(4.25)

P̄2(0, s) = 20λ2
1P̄0(s)(4.26)

P̄3(0, s) = 60λ3
1P̄0(s)(4.27)

P̄4(0, s) = 120λ4
1P̄0(s)(4.28)

P̄5(0, s) = λA

(
1 + 5λ1 + 20λ2

1 + 60λ3
1

)
P̄0(s)(4.29)

P̄6(0, s) = λB

(
1 + 5λ1 + 20λ2

1 + 60λ3
1

)
P̄0(s)(4.30)

P̄7(0, s) = 2λAλB

(
1 + 5λ1 + 20λ2

1 + 60λ3
1

)
P̄0(s)(4.31)

P̄s1(0, s) = λs1(1 + λA + λB)
(
1 + 5λ1 + 20λ2

1 + 60λ3
1

)
P̄0(s)(4.32)

P̄s2(0, s) = λs2(1 + λA + λB)
(
1 + 5λ1 + 20λ2

1 + 60λ3
1

)
P̄0(s)(4.33)

Solving all the above equations with the implications of boundary conditions and

and

P̄i(s) =

∫ ∞

0
P̄i(x, s)dx
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we may get Laplace transform of state transition probabilities as:

P̄0(s) =
1

D(s)
(4.34)

P̄1(s) =
5λ1

D(s)

1

(s+ 4λ1 + λA + λB + λs1 + λs2 + ϕ1)
(4.35)

P̄2(s) =
20λ2

1

D(s)

1

(s+ 3λ1 + λA + λB + λs1 + λs2 + ϕ1)
(4.36)

P̄3(s) =
60λ3

1

D(s)

1

(s+ 2λ1 + λA + λB + λs1 + λ2 + ϕ1)
(4.37)

P̄4(s) =
120λ4

1

D(s)

1

(s+ µ0)
(4.38)

P̄5(s) =
λA

D(s)

1

(s+ λB + λs1 + λs2 + ϕA)
(4.39)

P̄6(s) =
λB

D(s)

1

(s+ λA + λs1 + λs2 + ϕB)
(4.40)

P̄7(s) =
2λAλB

D(s)

1

(s+ µ0)
(4.41)

P̄s1(s) =
λs1(1 + λA + λB)

D(s)

1

(s+ µ0)
(4.42)

P̄s2(s) =
λs2(1 + λA + λB)

D(s)

1

(s+ µ0)
(4.43)

Where

D(s) = (s+ 5λ1 + λA + λB + λs1 + λs2)− 5λ1S̄ϕ1

(
s+ 4λ1 + λA + λB + λs1 + λs2

)
− 120λ4

1S̄µ0(s)−
(
λAS̄ϕA(s+ λB + λs1 + λs2) + λBS̄ϕB(s+ λA + λs1 + λs2)

)
− S̄µ0(s)

[
(1 + λA + λB)(λs1 + λs2) + 2λAλB

]
S̄ϕ1(s+ 4λ1 + λA + λB + λs1 + λs2) =

ϕ1

s+ 4λ1 + λA + λB + λs1 + λs2 + ϕ1

S̄ϕA(s+ λA + λs1 + λs2) =
ϕA

s+ λA + λs1 + λs2 + ϕA

S̄ϕB(s+ λA + λs1 + λs2) =
ϕB

s+ λA + λs1 + λs2 + ϕB

The up and downstate probabilities of the system are given by

P̄up =
1

D(s)

[
1 +

5λ1

(4λ1 + V )
+

20λ2
1

(3λ1 + V )
+

60λ3
1

(2λ1 + V )
+

λA

(λB + ϕA +W )

+
λB

(λA + ϕB +W )

]
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where V = (s+ λA + λB + λs1 + λs2 + ϕ1) and W = (s+ λs1 + λs2)

(4.44) P̄down =
1

D(s)

[
120λ4

1

(s+ µ0)
+

2λAλB

(s+ µ0)
+

(λs1 + λs2)(1 + λA + λB)

(s+ µ0)

]

5. Analytical Study

5.1. Availability Analysis When repair follows two types of distributions as gen-

eral and Gumbel-Hougaard family copula distribution, then we have

S̄µ(s) = S̄
exp[xθ+{log ϕ(x)}θ]

1
θ
=

exp
[
xθ + {log ϕ(x)}θ

] 1
θ

s+ exp [xθ + {log ϕ(x)}θ]
1
θ

Let us choose the values of parameters as λ1 = 0.02, λA = 0.03, λB = 0.021,

λs1 = 0.022, λs2 = 0.025, x = 1, ϕi = 1 for = 1, A and B then taking inverse

Laplace transform, and we obtain the availability of the system as per the following

three cases on switching device:

(a): When both the subsystems have switching device, we get,

P̄up(t) = −0.0002e−1.1170t − 0.002738e−1.136006 + 0.018651e−2.7717t

−0.030599e−1.2752t + 0.014734e−1.0847t + 1.02123e−0.0057t(5.1)

−0.021033e−1.0980t

(b): When subsystem-1 does not have a switching device, i.e λs1 = 0.

(c): When subsystem-2 does not have a switching device, i.e λs2 = 0.

(d): When both subsystems 1 and 2 do not have a switching device, i.e. λs1 =

λs2 = 0.

We can write similar expressions for availability in case (b),(c) and (d) using Maple.

For different values of time-variable units of time t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,

100, one may get different values of P̄up(t) as shown in Table 2 and the corresponding

Figure 3.

5.2. Reliability of the system Taking all repair rates equal to zero and obtain

inverse Laplace transform, we get an expression for the reliability of the system

after taking the failure rates as λ1 = 0.02, λA = 0.03, λB = 0.021, λs1 = 0.022,

λs2 = 0.025 in in (4.44). Now consider the same cases as availability, we have
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Table 2. Variation of availability with respect to time in various cases

Time(t) P̄up(t)(a) P̄up(t)(b) P̄up(t)(c) P̄up(t)(d)
0 1.00 1.00 1.00 1.00
10 0.699 0.769 0.782 0.918
20 0.554 0.625 0.641 0.830
30 0.439 0.509 0.525 0.750
40 0.347 0.414 0.430 0.679
50 0.275 0.337 0.353 0.637
60 0.219 0.274 0.289 0.555
70 0.173 0.223 0.237 0.502
80 0.137 0.181 0.194 0.454
90 0.108 0.147 0.159 0.410
100 0.086 0.120 0.130 0.371

0 10 20 30 40 50 60 70 80 90 100
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0.7

0.8

0.9
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Availability in case (c)

Availability in case (d)

Figure 3. Availability as a function of Time

(a): When both the subsystems have switching device, we obtain,

R(t) = 0.31037e−0.0980t − 20.0000e−0.1780t + 0.21626e−0.1360t − 0.008571e−0.1170t

+20.14812e−0.1730t + 0.136708e−0.0680t(5.2)

(b): When Subsystem-1 does not have switching devices, i.e. λs1 = 0.

(c): When subsystem-2 does not have a switching device, i.e λs2 = 0.

(d): When both subsystem-1 and 2 do not have a switching device, i.e λs1 =

λs1
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We can write similar expressions for reliability in case (b), (c) and (d) using Maple.

By taking different values of time-variable t = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

units of time, one may get reliability R(t) with the help of as shown in Table 3 and

the corresponding Figure 4.

Table 3. Computed values of reliability corresponding to the differ-
ent cases

Time(t) a b c d
0 1.00 1.00 1.00 1.00
10 0.534 0.543 0.586 0.728
20 0.205 0.226 0.226 0.410
30 0.078 0.096 0.126 0.242
40 0.032 0.047 0.070 0.159
50 0.014 0.025 0.040 0.133
60 0.006 0.014 0.023 0.085
70 0.003 0.008 0.014 0.0.66
80 0.002 0.005 0.010 0.052
90 0.001 0.003 0.006 0.041
100 0.001 0.002 0.004 0.033
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Figure 4. Availability as a function of Time

5.3. Mean Time to Failure (MTTF) Taking all repair rate and Laplace param-

eters to zero in (4.44) for the exponential distribution, we can obtain the meantime
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to failure as:

MTTF =
1

(5λ1 + λA + 5λB + λs1 + λs2)

[
1 +

5λ1

4λ1 + µ
+

20λ2
1

3λ1 + µ
+

60λ3
1

2λ1 + µ

+
λAν

µ− λA
+

λBν

µ− λB

]
(5.3)

where µ = λs1+λs2 and ν = 1+5λ1+20λ2
1+60λ3

1. Now taking the values of different

parameters as λ1 = 0.02, λA = 0.03, λB = 0.021, λs1 = 0.022, and λs2 = 0.025 and

varying λ1, λ2, λs1 and λs1 one by one respectively as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.10 in (5.3), the variation in MTTF, with respect to failure rates,

can be obtained as per Table 4 and Figure 5.

Table 4. Computation of MTTF corresponding to the failure rates

Failure rates λ1 λA λB λs1 λs2

0.01 14.388 12.732 12.750 14.048 14.624
0.02 12.157 12.375 12.201 12.434 12.876
0.03 10.601 12.157 11.834 11.167 11.518
0.04 9.482 12.030 11.585 10.141 10.428
0.05 8.654 11.963 11.415 9.289 9.529
0.06 8.027 11.937 11.302 8.570 8.774
0.07 7.542 11.940 11.229 7.954 8.129
0.08 7.163 11.963 11.185 7.420 7.572
0.09 6.865 12.001 11.164 6.952 7.086
0.10 6.629 12.048 11.158 6.538 6.657

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

6

8

10

12

14

16

M
e
a

n
 T

im
e
 t

o
 F

a
il

u
r
e

Failure Rates

� �� �� �
s �

s

Figure 5. MTTF as a function of failure rates
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5.4. Cost Analysis If the service facility is always available, then expected profit

during the interval [0, t)

(5.4) Ep(t) = K1

∫ t

0
Pup(t)dt−K2t

For the same set of parameters defined in (4.44), one can obtain (50). Therefore,

Ep(t) = K1{0.149e−1.0000t − 0.043e−3.480t + 0.0420e−2.119t − 0.037e−1.471t

−13.394e−0.077t + 13.283} −K2t(5.5)

Setting K1 = 1, and K2 = 0.6, 0.5, 0.4, 0.3 and 0.2 respectively and varying t =

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 units of time, the results for expected profit

can be seen in Table 5 and Figure 6.

Table 5. Profit computation for different values of time

Time K2 K2 K2 K2 K2

0 0.000 0.000 0.000 0.000 0.000
10 5.124 6.124 7.124 8.124 9.124
20 12.522 14.522 16.522 18.522 20.522
30 22.621 25.621 28.621 31.621 34.621
40 35.966 39.966 43.966 47.966 51.966
60 75.135 81.135 86.135 92.135 98.135
70 102.695 109.695 116.695 123.695 130.695
80 137.061 145.061 153.185 161.061 169.061
90 179.465 188.465 197.465 206.465 215.465
100 231.679 241.679 251.679 261.679 271.679
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Figure 6. Expected profit as a function of time
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6. Conclusion

Warm-standby redundancy has been used as an effective technique for improving

the availability and reliability of the system while attaining the equilibrium between

fast repair and low process cost. Depending on the level of operation promptness

of standby units, there can exist many standby modes, each categorized by altered

standby maintenance and startup costs. In this paper, we have considered two

subsystems in a series configuration with a switching device. The subsystems-1 has

five identical units, while subsystem-2 has two non-identical units, and both are

connected via switching device.

The availability of the system can be seen from Table 2 and Figure 3 when

failure rates are fixed at λ1 = 0.02, λA = 0.03, λB = 0.021. It is moving down as the

value of t increases in all the three cases considered based on switching device and

eventually become stable after a sufficiently long interval of time. On the other hand,

the reliability experiences a steep fall in all three cases for the same failure rates, as

it is evident from Table 3 and Figure 4. Moreover, resultant values of availability

are more significant than the values of reliability, which highlights the necessity of

regular repair for repairable systems. Furthermore, the study for availability and

reliability reveals that switching devices for both the subsystems have a significant

effect on the output.

Table 4 and Figure 5 yield the MTTF of the system concerning variation in

failure rates λ1, λA, λB, λs1 and λs2 respectively when other parameters are fixed.

We observe that on average basis MTTF for the failure rate λs1 and λs2 is maximum

with little variation, while similar variation for subsystem-1 and switching device.

Thus, the failure rates λ1, λA and λB are more responsible for the effective operation

of the system. The expected profit can be revealed from Table 5 and Figure 6, which

is maximum for K1 = 0.2 and minimum for K2 = 0.6. Conclusively, we can observe

that as service cost decreases, profit increases with a variation of time. The model

given in this paper is suitable for several real systems such as power plant and

transmission system, server design for the network, and so on.

Conflict of Interest

The work is original and has not been submitted anywhere for publication.



PROBABILISTIC ANALYSIS OF A SYSTEM 153

References

1. D.R. Cox: The analysis of non-Markov stochastic processes by the inclusion of supple-

mentary variables. Proceedings of the Cambridge Philosophical Society. Mathematical

and Physical Sciences 51 (1955), no. 3, 433-441.

2. E.A. Oliveira, A.C.M. Alvim & P.F.F. Melo: Unavailability analysis of safety systems

under aging by supplementary variables with imperfect repair. Annals of Nuclear Energy

32 (2005), no. 2, 241-252.

3. M.S. Moustafa: Availability of k-out-of-n: G systems with M failure modes. Microelec-

tron Reliability 36 (1996), 385-388.

4. P.A. Kullstam: Availability, MTBF, MTTR for the repairable m-out-of-n system. IEEE

Transaction Reliability R-30 (1981), 393-394.

5. X. Liang, Y. Xiong & Z. Li: Exact reliability formula for consecutive k-out-of-n re-

pairable systems. IEEE Transactions on Reliability 59 (2010), no. 2, 313-318.

6. M. Park & H. Pham: A generalized block replacement policy for a k-out-of-n system

with respect to a threshold number of failed components and risk costs. IEEE Trans.

System Man, Cybernet. A Syst. Humans 42 (2012), no. 2, 453-463.

7. P. Kumar & R. Gupta: Reliability analysis of a single unit M—G—1 system model with

helping unit. Journal of Combinatorics, Information and System Sciences 32 (2007), no.

1-4, 209-219.

8. E.J. Vanderperre: Reliability analysis of a warm standby system with general distribu-

tions. Microelectron Reliab. 30 (1990), no. 3, 487-490.

9. G.S. Mokaddis & M.L. Tawfik: Stochastic analysis of a two-dissimilar unit warm

standby redundant system with two types of repair facilities. Microelectron Reliab.

35 (1995), no. 12, 1467-1472.

10. P. Kumar & A. Sirohi: Stochastic analysis of a two-priority unit standby system with

imperfect switch and correlated failure and repair times. Int. Journal of Adv Research

in computer science and software engineering 4 (2014), no. 8, 621-628.

11. B.S. Dhillon: Reliability and availability analysis of a system with warm standby and

common cause failures. Microelectron Reliab. 33 (1993), no. 9, 1343-1349.

12. R.B. Nelson: An Introduction to Copulas. (2006), 2nd edn, Springer, New York.

13. A. Munjal & S.B. Singh: Reliability analysis of a complex repairable system com-

posed of two 2-out-of-3: G subsystems connected in parallel. Journal of reliability and

statistical studies 7 (2014), 89-111.

14. N. Goyal, M. Ram, S. Amoli & A. Suyal: Sensitivity analysis of a three-unit series

system under k-out-of-n redundancy. International Journal of Quality Reliability and

Management 34 (2017), no. 6, 770-784.

15. V.V. Singh, J. Gulati, D.K. Rawal & C.K. Goel: Performance analysis of the complex

system in the series configuration under different failure and repair disciplines using



154 Dhruv Raghav et al.

a copula. International Journal of reliability quality and safety engineering 23 (2016),

1-21.

16. V.V. Singh, M. Ram & D.K. Rawal: Cost Analysis of an Engineering System involving

subsystems in Series Configuration. IEEE Transactions on Automation Science and

Engineering 10 (2013), 1124-1130.

17. A.K. Lado, V.V. Singh, K.H. Ismial & I. Yusuf: Performance and cost assessment of

the repairable complex system with two subsystems connected in a series configuration.

International Journal of Reliability and Applications 19 (2018), no. 1, 27-42.

18. A. Kumar, S. Pant & S.B. Singh: Availability and cost analysis of an engineering

system involving subsystems in series configuration. International Journal of Quality

and Reliability Management 34 (2017), no. 6, 879-894.

19. R. Sharma & G. Kumar: Availability improvement for the successive k-out-of-n ma-

chining system-using standby with multiple working vacations. International Journal of

Reliability and Safety 11 (2017), no. 3/4, 256-267.

20. M.A. El-Damcese & N.H. El-Sodany: Availability and Reliability Analysis for the k-

out-of-n: G system with three failures using Markov model. International Journal of

Scientific and Engineering Research 5 (2014), no. 12, 383-389.

21. M. Ram & S.B. Singh: Availability and Cost Analysis of a parallel redundant com-

plex system with two types of failure under preemptive-resume repair discipline using

Gumbel-Hougaard family copula in repair. Int. J. Reliabil., Quality Safety Engineering

15 (2008), no. 4, 341-365.

22. V.V. Singh, S.B. Singh, M. Ram & C.K. Goel: Availability, MTTF and cost analysis

of a system having two units in a series configuration with a controller. International

Journal of System Assurance and Management 4 (2013), no. 4, 341-352.

23. X. Bao & L. Cui: An analysis of availability for series Markov repairable system with

neglected or delayed failures. IEEE Trans. Rel. 59 (2010), no. 4, 734-743.

24. Z. Zheng, L. Cui & A.G. Hawkes: A study on a single-unit Markov repairable system

with repair time omission. IEEE Transaction on Reliability 55 (2006), no. 2, 182-188.

25. A. Kumar & M. Ram: Reliability measures improvement and sensitivity analysis of

a coal-handling unit for thermal power plant.. IJE Transactions C: Aspects 26 (2013),

no. 9, 1059-1066.

26. N. Goyal, M. Ram & S. Banga: Sensitivity assessment of air and refrigeration. Kuwait

Journal of Science 45 (2018), no. 1, 29-38.

27. M. El-Damcese, F. Abbas & E. El-Ghamry: Reliability analysis of three elements in

series and parallel systems under time-varying Fuzzy failure rate. IJE Transactions A:

Basics 27 (2014), no. 4, 553-560.

28. M.A El- Damcese & N.H. El-Sodany: Reliability and Sensitivity analysis of the k-

out-of- n: G warm standby parallel repairable system with replacement at common



PROBABILISTIC ANALYSIS OF A SYSTEM 155

cause failure using Markov model. Journal. Stat. and Appl. Probability 5 (2016), no. 3,

521-533.

aDepartment of Computer Science, ITS Engineering College,Greater Noida, Dr. APJ
Abdul Kalam Technical University, Lucknow, India
Email address: dhruvraghav287@gmail.com

bDepartment of General Requirement, Sur College of Applied Sciences, Sur, Oman
Email address: pkpmrt@gmail.com

cDepartment of Mathematics, Mewar University Chittorgarh, Rajasthan, India
Email address: monikagahlot12@gmail.com

dDepartment of Mathematics, Yusuf Maitama Sule University, Kano, Nigeria
Email address: singh−vijayvir@yahoo.com

eDepartment of Mathematics, Yusuf Maitama Sule University, Kano, Nigeria
Email address: ayagi2010@nwu.edu.ng

fDepartment of Mathematics, Kano university of science and technology wudil, Nige-
ria
Email address: ameernigeria@gmail.com


