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APPLICATIONS OF SUBORDINATION PRINCIPLE

FOR ANALYTIC FUNCTIONS CONCERNED

WITH ROGOSINSKI’S LEMMA

Selin Aydinoğlu a and Bülent Nafi Örnek b, ∗

Abstract. In this paper, we improve a new boundary Schwarz lemma, for analytic
functions in the unit disk. For new inequalities, the results of Rogosinski’s lemma,
Subordinate principle and Jack’s lemma were used. Moreover, in a class of analytic
functions on the unit disc, assuming the existence of angular limit on the bound-
ary point, the estimations below of the modulus of angular derivative have been
obtained.

1. Introduction

The most classical version of the Schwarz Lemma examines the behavior of a

bounded, analytic function mapping the origin to the origin in the unit disc E =

{z : |z| < 1}. It is possible to see its effectiveness in the proofs of many important

theorems. The Schwarz Lemma, which has broad applications and is the direct

application of the maximum modulus principle, is given in the most basic form as

follows:

Let E be the unit disc in the complex plane C. Let f : E → E be an analytic

function with f(0) = 0. Under these conditions, |f(z)| ≤ |z| for all z ∈ E and

|f ′(0)| ≤ 1. In addition, if the equality |f(z)| = |z| holds for any z ̸= 0, or |f ′(0)| = 1,

then f is a rotation; that is f(z) = zeiθ, θ real ([5], p.329). A sharpened version of

this is Rogosinski’s Lemma [11], which say that for all z ∈ E

|f(z)− a1| ≤ r1,
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where

a1 =
zf ′(0)

(
1− |z|2

)
1− |z|2 |f ′(0)|2

and r1 =
|z|2

(
1− |f ′(0)|2

)
1− |z|2 |f ′(0)|2

.

We will use the following definition and lemma to prove our result [5, 6].

Definition 1.1 (Subordination Principle). Let f and g be analytic functions in

E. A function is said to be subordinate to g, written as f(z) ≺ g(z), if there

exists a Schwarz function ω(z), analytic in E with ω(0) = 0, |ω(z)| < 1 such that

f(z) = g(ω(z)).

Lemma 1.2 (Jack’s Lemma). Let f(z) be a non-constant analytic function in E

with f(0) = 0. If

|f(z0)| = max {|f(z)| : |z| ≤ |z0|} ,

then there exists a real number k ≥ 1 such that

z0f
′(z0)

f(z0)
= k.

Let A denote the class of functions f(z) = 1 + c1z + c2z
2 + ... that are analytic

in E. Also, let H be the subclass of A consisting of all functions f(z) satisfying

zf ′(z)

(f(z))2
≺
(
1 + e−2iβ

)
z

(1 + ze−2iβ)
2 , z ∈ E, |β| < π

2
.

The certain anaytic functions which are in the class of H on the unit disc E are con-

sidered in this paper. The subject of the present paper is to discuss some properties

of the function f(z) which belongs to the class of H by applying Jack’s Lemma.

Let f(z) ∈ H and consider the following function

ϕ(z) =
f(z)− 1

f(z) + e−2iβ
.

It is an analytic function in E and ϕ(0) = 0. Now, let us show that |ϕ(z)| < 1 in E.

From the function ϕ(z), we have

zf ′(z)

(f(z))2
=

(
1 + e−2iβ

)
zϕ′(z)

(1 + ϕ(z)e−2iβ)
2 .

We suppose that there exists a z0 ∈ E such that

max
|z|≤|z0|

|ϕ(z)| = |ϕ(z0)| = 1.

From Jack’s lemma, we obtain
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ϕ(z0) = eiθ and
z0ϕ

′(z0)

ϕ(z0)
= k.

Therefore, we have that

z0f
′(z0)

(f(z0))
2 =

(
1 + e−2iβ

)
z0ϕ

′(z0)

(1 + ϕ(z0)e−2iβ)
2 =

(
1 + e−2iβ

)
kϕ(z0)

(1 + ϕ(z0)e−2iβ)
2 =

(
1 + e−2iβ

)
keiθ

(1 + eiθe−2iβ)
2

which is not contained in
(1+e−2iβ)E

(1+Ee−2iβ)
2 since |ϕ(z0)| = 1 and k ≥ 1. This contradicts

the f(z) ∈ H. This means that there is no point z0 ∈ E such that max
|z|≤|z0|

|ϕ(z)| =

|ϕ(z0)| = 1. Hence, we take |ϕ(z)| < 1 in E. From the Schwarz lemma, we obtain

ϕ(z) =
f(z)− 1

f(z) + e−2iβ
=

c1z + c2z
2 + ...

1 + e−2iβ + c1z + c2z2 + ...

ϕ(z)

z
=

c1 + c2z + ...

1 + e−2iβ + c1z + c2z2 + ...
,∣∣ϕ′(0)

∣∣ = |c1|
|1 + e−2iβ|

≤ 1

and

|c1| =
∣∣f ′(0)

∣∣ ≤ ∣∣∣1 + e−2iβ
∣∣∣ = 2 cosβ.

Lemma 1.3. If f(z) ∈ H, then we have the inequality

(1.1)
∣∣f ′(0)

∣∣ ≤ 2 cosβ.

This result is sharp and the extremal function is

f(z) =
1 + ze−2iβ

1− z
.

Since the area of applicability of Schwarz Lemma is quite wide, there exist many

studies about it. Schwarz lemma has several applications in the field of electrical

and electronics engineering. Use of positive real function and boundary analysis of

these functions for circuit synthesis can be given as an exemplary application of the

Schwarz lemma in electrical engineering. Furthermore, it is also used for analysis

of transfer functions in control engineering and nulti-notch filter design in signal

processing [14, 15]. Others of these studies, which is called the boundary version of

Schwarz Lemma, are about being estimated from below the modulus of the derivative

of the function at some boundary point of the unit disc. The boundary version of

Schwarz Lemma is given as follows:

If f extends continuously to some boundary point c with |c| = 1, and if |f(c)| = 1

and f ′(c) exists, then |f ′(c)| ≥ 1, which is known as the Schwarz lemma on the
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boundary. In addition to conditions of the boundary Schwarz Lemma, if f fixes the

point zero, that is f(0) = 0, then the inequality

(1.2)
∣∣f ′(c)

∣∣ ≥ 2

1 + |f ′(0)|

is obtained [13]. Inequality (1.2) and its generalizations have important applications

in geometric theory of functions and they are still hot topics in the mathematics

literature [1, 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 16]. Mercer [10] proves a version of

the Schwarz lemma where the images of two points are known. Also, he considers

some Schwarz and Carathéodory inequalities at the boundary, as consequences of

a lemma due to Rogosinski [11]. In addition, he obtain a new boundary Schwarz

lemma , for analytic functions mapping the unit disk to itself [12].

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel

(see, [17])

Lemma 1.4 (Julia-Wolff lemma). Let f be an analytic function in E, f(0) = 0

and f(E) ⊂ E. If, in addition, the function f has an angular limit f(c) at c ∈ ∂E,

|f(c)| = 1, then the angular derivative f ′(c) exists and 1 ≤ |f ′(c)| ≤ ∞.

In this study, the modulus of the angular derivative of the f(z) function has been

considered from below at the boundary point in the unit disc. In this evaluation,

f(c) = 1−e−2iβ

2 condition has been taken into account.

2. Main Results

In this section, we discuss different versions of the boundary Schwarz lemma for

H class. Assuming the existence of angular limit on a boundary point, we obtain

some estimations from below for the moduli of derivatives of analytic functions from

a certain class. We also show that these estimations are sharp.

Theorem 2.1. Let f(z) ∈ H. Assume that, for some c ∈ ∂E, f has an angular

limit f(c) at c, f(c) = 1−e−2iβ

2 . Then we have the inequality

(2.1)
∣∣f ′(c)

∣∣ ≥ cosβ

2
.

Moreover, the equality in (2.1) occurs for the function

f(z) =
1 + ze−2iβ

1− z
.
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Proof. Let

ϕ(z) =
f(z)− 1

f(z) + e−2iβ
.

ϕ(z) is an analytic function in E, ϕ(0) = 0 and |ϕ(z)| < 1 for z ∈ E. In addition, we

take |ϕ(c)| = 1 for c ∈ ∂E and f(c) = 1−e−2iβ

2 .

From the definition of ϕ(z), with the simple calculations, we get

ϕ′(z) =

(
1 + e−2iβ

)
f ′(z)

(f(z) + e−2iβ)
2 .

Therefore, from on the boundary Schwarz lemma, we obtain

1 ≤
∣∣ϕ′(c)

∣∣ = ∣∣∣∣∣
(
1 + e−2iβ

)
f ′(c)

(f(c) + e−2iβ)
2

∣∣∣∣∣ =
∣∣∣∣∣∣∣
(
1 + e−2iβ

)
f ′(c)(

1−e−2iβ

2 + e−2iβ
)2
∣∣∣∣∣∣∣

=
4

|1 + e−2iβ|
∣∣f ′(c)

∣∣ = 2

cosβ

∣∣f ′(c)
∣∣

and ∣∣f ′(c)
∣∣ ≥ cosβ

2
.

Now, we shall show that the inequality (2.1) is sharp. Let

f(z) =
1 + ze−2iβ

1− z
.

Then

f ′(z) =
1 + e−2iβ

(1− z)2

and ∣∣f ′(−1)
∣∣ = ∣∣1 + e−2iβ

∣∣
4

=
cosβ

2
.

�

The inequality (2.1) can be strengthened as below by taking into account c1 =

f ′(0) which is first coefficient in the expansion of the function f(z).

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

(2.2)
∣∣f ′(c)

∣∣ ≥ 2 cos2 β

2 cosβ + |f ′(0)|
.

The inequality (2.2) is sharp with equality for the function

f(z) =
1 + ze−2iβ

1− z
.
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Proof. Let ϕ(z) be the same as in the proof of Theorem 2.1. Therefore, from Ro-

gosinski’s Lemma, we obtain

|ϕ(z)− a1| ≤ r1,

where

a1 =
zϕ′(0)

(
1− |z|2

)
1− |z|2 |ϕ′(0)|2

and r1 =
|z|2

(
1− |ϕ′(0)|2

)
1− |z|2 |ϕ′(0)|2

.

Without loss of generality, we will assume that c = 1. Thus, we obtain∣∣∣∣ϕ(z)− 1

z − 1

∣∣∣∣ ≥ 1− |a1| − r1
1− |z|

=
1− |z||ϕ′(0)|(1−|z|2)

1−|z|2|ϕ′(0)|2 − |z|2(1−|ϕ′(0)|2)
1−|z|2|ϕ′(0)|2

1− |z|

=
1− |z|2 |ϕ′(0)|2 − |z| |ϕ′(0)|

(
1− |z|2

)
− |z|2

(
1− |ϕ′(0)|2

)
(1− |z|)

(
1− |z|2 |ϕ′(0)|2

)
=

(
1− |z|2

)
(1− |z| |ϕ′(0)|)

(1− |z|)
(
1− |z|2 |ϕ′(0)|2

)
=

1 + |z|
1 + |z| |ϕ′(0)|

.

Passing to the angular limit in the last inequality yields∣∣ϕ′(1)
∣∣ ≥ 2

1 + |ϕ′(0)|
.

Since ∣∣ϕ′(0)
∣∣ = |f ′(0)|

2 cosβ
and ∣∣ϕ′(1)

∣∣ = 2

cosβ

∣∣f ′(1)
∣∣

we take
2

cosβ

∣∣f ′(1)
∣∣ ≥ 2

1 + |f ′(0)|
2 cosβ

=
4 cosβ

2 cosβ + |f ′(0)|

and ∣∣f ′(1)
∣∣ ≥ 2 cos2 β

2 cosβ + |f ′(0)|
.

Now, we shall show that the inequality (2.2) is sharp. Let

f(z) =
1 + ze−2iβ

1− z
.

Then, we have ∣∣f ′(−1)
∣∣ = cosβ

2
.
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On the other hand whereas, we obtain

1 + c1z + c2z
2 + ... =

1 + ze−2iβ

1− z
,

c1z + c2z
2 + ... =

1 + ze−2iβ

1− z
− 1 =

z
(
1 + e−2iβ

)
1− z

and

c1 + c2z + ... =
1 + e−2iβ

1− z
.

Passing to limit (z → 0) in the last equality yields |c1| = 2 cosβ. Therefore, we

obtain
2 cos2 β

2 cosβ + |f ′(0)|
=

cosβ

2
.

�

In the following theorem, inequality (2.2) has been strengthened by adding the

consecutive terms c1 and c2 of f(z) function.

Theorem 2.3. Let f(z) ∈ H. Assume that, for some c ∈ ∂E, f has an angular

limit f(c) at c, f(c) = 1−e−2iβ

2 . Then we have the inequality

(2.3)
∣∣f ′(c)

∣∣ ≥ cosβ

2

(
1 +

2 (2 cosβ − |c1|)2

4 cos2 β − |c1|2 + 2
∣∣(1 + e−2iβ) c2 − c21

∣∣
)
.

Proof. Let ϕ(z) be the same as in the proof of Theorem 2.1. Let us consider the

function

h(z) =
ϕ(z)

z
and

ϑ(z) =
h(z)− h(0)

1− h(0)h(z)

The function ϑ(z) is analytic in E, ϑ(0) = 0, |ϑ(z)| < 1 for |z| < 1 and

ϑ′(0) =
h′(0)(

1− |h(0)|2
) =

ϕ′′(0)

2
(
1− |ϕ′(0)|2

) .
From Rogosinski’s Lemma and [8, 9], we have

(2.4) |ϕ(z)− a2| ≤ r2,

where

a2 =
z |ϕ′(0)|

(
1− τ2

)
1− τ2 |ϕ′(0)|2

, r2 =
τ |z|

(
1− |ϕ′(0)|2

)
1− τ2 |ϕ′(0)|2

, τ = |z| |z|+ |ϑ′(0)|
1 + |z| |ϑ′(0)|

.
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Without loss of generality, we will assume that c = 1. Thus, from (2.4), we obtain∣∣∣∣ϕ(z)− 1

z − 1

∣∣∣∣ ≥ 1− |a2| − r2
1− |z|

=
1− |z||ϕ′(0)|(1−τ2)

1−τ2|φ′(0)|2 − τ |z|(1−|ϕ′(0)|2)
1−τ2|ϕ′(0)|2

1− |z|

=
1− τ2 |ϕ′(0)|2 − |z| |ϕ′(0)|

(
1− τ2

)
− τ |z|

(
1− |ϕ′(0)|2

)
(1− |z|)

(
1− τ2 |ϕ′(0)|2

)
=

(1− τ |ϕ′(0)|) (1 + |ϕ′(0)| − |z| |ϕ′(0)| − τ |z|)

(1− |z|)
(
1− τ2 |ϕ′(0)|2

)
=

1 + τ |ϕ′(0)| − |z| |ϕ′(0)| − τ |z|
(1− |z|) (1 + τ |ϕ′(0)|)

.

Since τ = |z| |z|+|ϑ′(0)|
1+|z||ϑ′(0)| , we take∣∣∣ϕ(z)−1

z−1

∣∣∣ ≥ 1+|ϕ′(0)||z| |z|+|ϑ′(0)|
1+|z||ϑ′(0)|−|z||φ′(0)|−|z||z| |z|+|ϑ′(0)|

1+|z||ϑ′(0)|

(1−|z|)
(
1+|ϕ′(0)||z| |z|+|ϑ′(0)|

1+|z||ϑ′(0)|

)
= 1−|z|3+|z||ϑ′(0)|(1−|z|)−|ϕ′(0)||z|(1−|z|)+|z||ϕ′(0)||ϑ′(0)|(1−|z|)

(1−|z|)(1+|z||ϑ′(0)|+|ϕ′(0)||z|2+|z||ϕ′(0)||ϑ′(0)|)

= 1+|z|+|z|2+|z||ϑ′(0)|−|ϕ′(0)||z|+|z||ϕ′(0)||ϑ′(0)|
1+|z||ϑ′(0)|+|ϕ′(0)||z|2+|z||ϕ′(0)||ϑ′(0)| .

Passing to the angular limit in the last inequality yields∣∣ϕ′(1)
∣∣ ≥ 3 + |ϑ′(0)| − |ϕ′(0)|+ |ϕ′(0)| |ϑ′(0)|

1 + |ϑ′(0)|+ |ϕ′(0)|+ |ϕ′(0)| |ϑ′(0)|

=
3 + |ϑ′(0)| − |ϕ′(0)|+ |ϕ′(0)| |ϑ′(0)|

(1 + |ϑ′(0)|) (1 + |ϕ′(0)|)
.

A little manipulation gives∣∣ϕ′(1)
∣∣ ≥ 1 +

2 (1− |ϕ′(0)|)2

(1 + |ϑ′(0)|)
(
1− |ϕ′(0)|2

)
= 1 +

4 (1− |ϕ′(0)|)2

2
(
1− |ϕ′(0)|2

)
+ |ϕ′′(0)|

.

Since ∣∣ϕ′(0)
∣∣ = |c1|

2 cosβ
,

∣∣ϕ′′(0)
∣∣ = ∣∣(1 + e−2iβ

)
c2 − c21

∣∣
2 cos2 β

and ∣∣ϕ′(1)
∣∣ = 2

cosβ

∣∣f ′(1)
∣∣ ,
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we obtain

∣∣f ′(1)
∣∣ ≥ cosβ

2

1 +
4
(
1− |c1|

2 cosβ

)2
2

(
1−

(
|c1|

2 cosβ

)2)
+

|(1+e−2iβ)c2−c21|
2 cos2 β


=

cosβ

2

(
1 +

2 (2 cosβ − |c1|)2

4 cos2 β − |c1|2 + 2
∣∣(1 + e−2iβ) c2 − c21

∣∣
)
.

�

If f(z) − 1 have zeros different from z = 0, taking into account these zeros, the

inequality (2.3) can be strengthened in another way. This is given by the following

Theorem.

Theorem 2.4. Let f(z) ∈ H. Assume that, for some c ∈ ∂E, f has an angular

limit f(c) at c, f(c) = 1−e−2iβ

2 . Let a1, a2, ..., an be zeros of the function f(z)− 1 in

E that are different from zero. Then we have the inequality

|f ′(c)| ≥ cosβ

2

(
1 +

n∑
i=1

1− |ai|2

|c− ai|2

+

2

(
2 cosβ

n∏
i=1

|ai| − |c1|
)2

4 cos2 β

( n∏
i=1

|ai|
)2

− |c1|2 +
n∏

i=1

|ai|
∣∣∣∣(1 + e−2iβ)

(
c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣

 .

(2.5)

Proof. Let ϕ(z) be as in the proof of Theorem 2.1 and a1, a2, ..., an be zeros of the

function f(z)− 1 in E that are different from zero. Let

B(z) = z

n∏
i=1

z − ai
1− aiz

.

B(z) is an analytic function in E and |B(z)| < 1 for |z| < 1. By the maximum

principle for each z ∈ E, we have |ϕ(z)| ≤ |B(z)|. Consider the function

h(z) =
ϕ(z)

B(z)
=

f(z)− 1

f(z) + e−2iβ

1

z
n∏

i=1

z − ai
1− aiz
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=
c1z + c2z

2 + ...

1 + e−2iβ + c1z + c2z2 + ...

1

z

n∏
i=1

z − ai
1− aiz

=
c1 + c2z + ...

1 + e−2iβ + c1z + c2z2 + ...

1
n∏

i=1

z − ai
1− aiz

.

h(z) is analytic in E and |h(z)| < 1 for z ∈ E. In particular, we have

|h(0)| = |c1|

2 cosβ
n∏

i=1

|ai|

and

∣∣h′(0)∣∣ =
∣∣∣∣∣(1 + e−2iβ

)(
c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣
4 cos2 β

n∏
i=1

|ai|
.

In addition, with the simple calculations, we take

cϕ′(c)

ϕ(c)
=
∣∣ϕ′(c)

∣∣ ≥ ∣∣B′(c)
∣∣ = cB′(c)

B(c)

and ∣∣B′(c)
∣∣ = 1 +

n∑
i=1

1− |ai|2

|c− ai|2
.

The composite function

m(z) =
h(z)− h(0)

1− h(0)h(z)

is analytic in the unit disc E, m(0) = 0, |m(z)| < 1 for z ∈ E and |m(c)| = 1 for

c ∈ ∂E. From (1.2), we obtain

2

1 + |m′(0)|
≤

∣∣m′(c)
∣∣ = 1 + |h(0)|2∣∣∣1− h(0)h(b)

∣∣∣2
∣∣h′(c)∣∣

≤ 1 + |h(0)|
1− |h(0)|

{∣∣ϕ′(c)
∣∣− ∣∣B′(c)

∣∣} .
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Since

∣∣m′(0)
∣∣ =

|h′(0)|
1− |h(0)|2

=

∣∣∣∣∣∣∣(1+e−2iβ)

c2+c1

n∑
i=1

1− |ai|2

ai

−c21

∣∣∣∣∣∣∣
4 cos2 β

n∏
i=1

|ai|

1−

 |c1|

2 cosβ

n∏
i=1

|ai|


2

=

n∏
i=1

|ai|

∣∣∣∣∣(1 + e−2iβ
)(

c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣
4 cos2 β

(
n∏

i=1

|ai|

)2

− |c1|2
,

we get
2

1+

n∏
i=1

|ai|

∣∣∣∣∣(1 + e−2iβ
)(

c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣
4 cos2 β

(
n∏

i=1

|ai|

)2

− |c1|2

≤

1+
|c1|

2 cos β

n∏
i=1

|ai|

1− |c1|

2 cos β

n∏
i=1

|ai|

{
2

cosβ |f ′(c)| − 1−
n∑

i=1

1− |ai|2

|c− ai|2

}
,

2

4 cos2 β

 n∏
i=1

|ai|


2

−|c1|2


4 cos2 β

 n∏
i=1

|ai|


2

−|c1|2+

n∏
i=1

|ai|

∣∣∣∣∣(1 + e−2iβ
)(

c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣
≤

2 cosβ

n∏
i=1

|ai|+ |c1|

2 cosβ

n∏
i=1

|ai| − |c1|

{
2

cosβ |f ′(c)| − 1−
n∑

i=1

1− |ai|2

|c− ai|2

}
,
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2

2 cosβ

n∏
i=1

|ai| − |c1|


2

4 cos2 β

 n∏
i=1

|ai|


2

−|c1|2+

n∏
i=1

|ai|

∣∣∣∣∣(1 + e−2iβ
)(

c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣
≤ 2

cosβ |f ′(c)| − 1−
n∑

i=1

1− |ai|2

|c− ai|2

and

|f ′(c)| ≥ cosβ
2

(
1 +

n∑
i=1

1− |ai|2

|c− ai|2

+

2

2 cosβ

n∏
i=1

|ai| − |c1|


2

4 cos2 β

 n∏
i=1

|ai|


2

−|c1|2+

n∏
i=1

|ai|

∣∣∣∣∣(1 + e−2iβ
)(

c2 + c1

n∑
i=1

1− |ai|2

ai

)
− c21

∣∣∣∣∣

 . �
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