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COINCIDENCE THEOREMS VIA CONTRACTIVE MAPPINGS IN

ORDERED NON-ARCHIMEDEAN FUZZY METRIC SPACES

Gopi Prasad a, ∗, Anita Tomar b , Ramesh Chandra Dimri c and
Ayush Bartwal d

Abstract. In this article, we prove coincidence point theorems for comparable
ψ-contractive mappings in ordered non-Archimedean fuzzy metric spaces utilizing
the recently established concept of T -comparability and relatively weaker order
theoretic variants. With a view to show the usefulness and applicability of this
work, we solve the system of ordered Fredholm integral equations as an application.
In the process, this presentation generalize and improve some prominent recent
results obtained in Mihet [Fuzzy Sets Syst., 159 (6), 739-744, (2008)], Altun and
Mihet [ Fixed Point Theory Appl. 2010, 782680, (2010)], Alam and Imdad [Fixed
Point Theory, 18(2), 415-432, (2017)] and several others in the settings of partially
ordered non-Archimedean fuzzy metric spaces.

1. Introduction

In 1988, Grabiec [8] revisited the Banach contraction principle to study the sur-

vival of fixed point in the setting of fuzzy metric spaces. Thereafter, George and

Veeramani [6] presented slight modification of fuzzy metric initiated by Kramosil

and Michalek [14] by obtaining Hausdroff topology on fuzzy metric spaces. Sub-

sequently, numerous authors (see for instance, [3-4], [9-10], [16-17], [22] and [24] )

obtained many useful results in this direction. On another point of note, several

mathematicians followed fixed point results of Nieto-López [18] and Ran-Reurings

[21] in the last fifteen years. The respective authors investigated the fixed point by

considering the monotonicity of mappings and some monotone iterative techniques

in the setting of ordered metric spaces and ordered fuzzy metric spaces, see for in-

stance ([1-2], [5], [26]). However, the first try to investigate the analogous version

of the Banach contraction principle in this setting was performed by Turinici [25].
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Meanwhile, Altun [4] presented a fixed point results under Lukasiewicz t-norm by

considering the partially ordered set with non-Archimedean fuzzy metric settings

and Altun and Mihet [3] presented fuzzy Ψ-contractive mappings in the same set-

ting.

One of the objectives of this presentation is to generalize, improve and extend

the results for a fuzzy Ψ-contractive mapping [16] to a pair of mappings in an or-

dered non-Archimedean fuzzy metric settings exploiting the notion of T -comparable

mapping presented by Alam et al.[1]. To prove the coincidence of a pair of map-

ping satisfying comparable fuzzy ψ-contraction, we use the comparable iterative

technique together with the traditional technique exploiting relatively weaker order

theoretic variants. Further, we present two corollaries which are novel and sharp-

ened versions of celebrated and contemporary results existing in the literature (see,

[3], [9-10], [16] and references therein) as underlying ψ-contraction is presumed to

hold only on the comparable elements of the ordered set. In order to vindicate the

usefulness and applicability of such theorems, we furnish a non-trivial example and

solve the system of Fredholm integral equations.

2. Preliminaries

Firstly, we present basic definitions which will work as a relevant necessary back-

ground for further presentations. Throughout this paper, we use the notation N, to
denote the set of natural numbers and N0, to denote the set of whole numbers (i.e.

N0 = N ∪ {0}).

Definition 2.1 ([23]). Let ∗ : [0, 1]× [0, 1] → [0, 1] be a binary operation. Then ’∗’
is a continuous t-norm if ([0, 1], ∗) is a commutative topological monoid with unit 1

such that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1].

A continuous t-norm ∗ is a Hadžić-type norm if we have a strictly increasing

sequence {bn} ⊂ (0, 1) and the condition bn ∗ bn = bn, n ∈ N.

Definition 2.2 ([14]). Let M : X × X × [0,∞) → [0, 1] be a fuzzy set defined on

a non-empty set X and ’∗’ be a continuous t-norm. Then a triplet (X ,M, ∗) is a

fuzzy metric space if for x, y, z ∈ X and for all t, s > 0, the subsequent assumptions

hold :

(KM1) M(x, y, 0) = 0,

(KM2) M(x, y, t) = 1 iff x = y,
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(KM3) M(x, y, t) = M(y, x, t),

(KM4) M(x, y, .) : [0,∞) → [0, 1] is left continuous,

(KM5) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s).

Moreover, if the triangular inequality (KM5) is restored by

M(x, z,max {t, s}) ≥ M(x, y, t) ∗M(y, z, s), (NA)

then the triplet (X ,M, ∗) is a non-Archimedean fuzzy metric space [11]. It can be

easily observed that (NA) implies (KM5).

Example 2.3 ([3]). Let (X , d) be a metric space and θ : (0,∞) → (0, 1) be a

continuous non-decreasing function so that limt→∞ θ(t) = 1. Let a ∗ b ≤ ab, a, b ∈
[0, 1]. Define

M(x, y, t) = [θ(t)]d(x,y),

t > 0, and x, y ∈ X . Then observe that (X ,M, ∗) is a non-Archimedean fuzzy metric

space.

Definition 2.4 ([6, 8]). Let {xn} be a sequence in a fuzzy metric space (X ,M, ∗)
and t > 0. Then

(a) {xn} is an M-Cauchy sequence, if for ϵ ∈ (0, 1) there exists n0 ∈ N so that

M(xn, xm, t) > 1− ϵ, m,n ≥ n0.

(b) {xn} is convergent, if lim
n→∞

M(xn, x, t) = 1, x ∈ X .
(c) (X ,M, ∗) is M-complete if every M-Cauchy sequence is convergent to a point

in X .
(d) {xn} is a G-Cauchy sequence if lim

n→∞
M(xn, xn+1, t) = 1.

(e) (X ,M, ∗) is G-complete if every G-Cauchy sequence is convergent to a point in

X .

Lemma 2.5 ([3]). An M-complete non-Archimedean fuzzy metric space together

with Hadžić norm is G-complete.

Now we present some ordered theoretic definitions.

Definition 2.6 ([15, 26]). (a) Let X be a non-empty set endowed with a partial

order relation (anti-symmetric, reflexive and transitive ) denoted by ’≼’. Then the

pair (X ,≼) is partially ordered set (or an ordered set).

(b) The element x is comparable to y if either x ≼ y or x ≽ y and is denoted by the

symbol ’≺≻’.

(c) X is linearly ordered or totally ordered if any two elements of X are comparable.
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Definition 2.7 ([2]). Let (X ,≼) be an ordered set and {xn} ⊂ X .
(a) A sequence {xn} is term-wise bounded if for z ∈ X , each term of {xn} is com-

parable with z, i.e.,

xn ≺≻ z, n ∈ N0

and z is a c-bound of {xn}.
(b) A sequence {xn} is term-wise monotonic sequence if consecutive terms of {xn}
are comparable, i.e.,

xn ≺≻ xn+1, n ∈ N0.

In the light of above definitions, it is easy to observe that all bounded below

and bounded above sequences are term-wise bounded and monotonic sequences are

term-wise monotonic.

Definition 2.8 ([2]). The space (X ,M, ∗) endowed with partial order ’≼’ has a

term-wise monotone convergence-c-bound property or in short, TCC-property if

each term-wise monotonic convergent sequence {xn} ⊂ X has a subsequence, which

is term-wise bounded by the limit of {xn} as a c-bound, i.e. xn ↕ x ⇒ there exists

a subsequence {xnk
} of {xn} and xnk

≺≻ x, k ∈ N0.

Definition 2.9 ([2]). A self-mapping T on (X ,M, ∗) equipped with a partial or-

der ’≼’ has a term-wise monotone convergence-c-bound property or in short, T -

TCC-property if each term-wise monotonic convergent sequence {xn} in X has a

subsequence, whose T -image is term-wise bounded by the T -image of the limit of

{xn} as a c-bound, i.e. xn ↕ x ⇒ there exists a subsequence {xnk
} of {xn} with

T (xnk
) ≺≻ T (x), k ∈ N0.

Definition 2.10 ([2]). Let S and T be self-mappings of an ordered set (X ,≼). Then

for x, y ∈ X , (a) S is T -increasing if

T (x) ≼ T (y) ⇒ S(x) ≼ S(y),

(b) S is T -decreasing if

T (x) ≼ T (y) ⇒ S(x) ≽ S(y),

(c) S is T -monotone if S is either T -increasing or T -decreasing.

If T = I, the identity mapping on X in above definitions then, these reduces

to the notions of increasing, decreasing and monotone mapping respectively (see,
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Alam and Imdad [2]). Turinici [26] presented the notion of weakly monotonic or

comparable mappings.

Definition 2.11. Let S be a self-mapping on an ordered set (X ,≼). Then

(1) ([26]). S is comparable (≺≻-preserving or weakly monotonic) mapping if,

x ≺≻ y ⇒ S(x) ≺≻ S(y), x, y ∈ X .

(2) ([1]). S is T -comparable (≺≻-preserving or weakly monotonic ) mapping if,

T (x) ≺≻ T (y) ⇒ S(x) ≺≻ S(y), x, y ∈ X .

Definition 2.12 ([1, 26]). Let E be a subset of an ordered set (X ,≼) and p, q ∈ E .
A subset {e1, e2, ..., ek} of E is said to be ≺≻-chain between p and q in E if

(i) k ≥ 2,

(ii) e1 = p and ek = q,

(iii) e1 ≺≻ e2 ≺≻ ... ≺≻ ek−1 ≺≻ ek.

Let C(p, q,≺≻, E) denotes the family of ≺≻-chains between p and q in E. Par-

ticularly, if E = X , we abbreviate C(p, q,≺≻) for C(p, q,≺≻,X ).

Definition 2.13 ([7, 13]). Let S and T be self-mappings defined on a non-empty

set X . Then

(a) x ∈ X is a coincidence point of S and T if T (x) = S(x),
(b) if z ∈ X is any point so that z = S(x) = T (x), then z is a point of coincidence

of the mappings S and T .

(c) the pair (S, T ) is weakly compatible if S and T commute at their coincidence

points, i.e., T (S(x)) = S(T (x)), whenever S(x) = T (x).

Definition 2.14 ([17]). Let S and T be self-mappings on a fuzzy metric space

(X ,M, ∗). Then S and T is compatible if for t > 0

lim
n→∞

M(ST xn, T Sxn, t) = 1,(2.1)

whenever {xn} is a sequence in X so that lim
n→∞

Sxn = lim
n→∞

T xn = z, z ∈ X .

Definition 2.15 ([19]). Let S and T be two self-mappings on a fuzzy metric space

(X ,M, ∗). Then S and T are reciprocally continuous, if limn→∞ T (Sxn) = Tz

and limn→∞ S(T xn) = Sz whenever {xn} is a sequence in X so that lim
n→∞

Sxn =

lim
n→∞

T xn = z, z ∈ X .
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Lemma 2.16 ([12]). Let S be a self-mapping defined on a non-empty set X . Then

there exists a subset E ⊆ X such that S(E) = S(X ) and S : E → X is one-one.

Let Ψ be the class of nondecreasing and left continuous functions ψ : [0, 1] →
[0, 1], so that ψ(t) > t, t ∈ (0, 1). Then we refer the following lemma :

Lemma 2.17 ([10]). If ψ ∈ Ψ then limn→∞ ψn(t) = 1 for each t ∈ (0, 1].

3. Main Results

Firstly, we present three coincidence point results for comparable pair of ψ-

contractive mappings and then applicability of these results by solving the ordered

integral equations.

Theorem 3.1. Let S and T be two self-mappings on an M-complete ordered non-

Archimedean fuzzy metric space (X ,M, ∗) together with Hadžić-type norm and equipped

with a partial order ’≼’. Let the subsequent hypotheses hold:

(a) S(X ) ⊆ T (X ),

(b) S is T -comparable,

(c) T (x0) ≺≻ S(x0), limn→∞ ψn(M(T x0,Sx0, t)) = 1, x0 ∈ X ,
(d) there exists ψ ∈ Ψ so that

M(Sx,Sy, t) ≥ ψ(M(T x, T y, t)), ∀ x, y ∈ X with T (x) ≺≻ T (y), t > 0,

(e) a pair (S, T ) is compatible,

(f) S and T are continuous mappings,

or alternately

(f′) (X ,M, ∗) has T -TCC property and S is continuous.

Then S(x) = T (x), x ∈ X , that is, the pair (S, T ) has a coincidence point.

Proof. In pursuance of condition (d), the assumptionM(Sx,Sy, t) ≥ ψ(M(T x, T y, t))
is satisfied under two cases : either T (x) ≼ T (y) or T (x) ≽ T (y), x, y ∈ X . If

it holds for the first case, then by the symmetry condition (KM3) of fuzzy metric

space it must holds for second case too and the same is true for converse considera-

tion. So, on applying the given contractive condition these two cases are the same.

Therefore, we consider only the first to explore our further investigations.

In the light of condition (c), if T (x0) = S(x0), then x0 is a coincidence point of S
and T . So the proof is accomplished.

If T (x0) ̸= S(x0), then we have T (x0) ≺ S(x0). Exploiting the condition (a) (i.e.
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S(X ) ⊆ T (X )), we are able to select x1 ∈ X so that T (x1) = S(x0). Also in the

light of the same condition we may select x2 ∈ X so that T (x2) = S(x1). Following
this pattern, we are able to construct a sequence of Picard’s iterates {xn} in X such

that

T (xn+1) = S(xn), n ∈ N0.(3.1)

Now, we assert that {T xn} is a term-wise monotone sequence, that is,

T (xn) ≺≻ T (xn+1), n ∈ N0.(3.2)

We establish this assertion by using mathematical induction.

Consider assumption (c) and equation (3.1) with n = 0, we obtain T (x0) ≺≻
S(x0) = T (x1). Therefore, (3.2) is true for n = 0. If equation (3.2) is true for

n = r > 0, i.e.,

T (xr) ≺≻ T (xr+1)(3.3)

then we show that (3.2) is true for n = r + 1 too. To assay this, we consider (3.1),

(3.3) and assumption (b) so that

T (xr+1) = S(xr) ≺≻ S(xr+1) = T (xr+2).

Hence, in the light of mathematical induction (3.2) is valid for all n ∈ N0.

If n0 ∈ N, so that M(T xn0 , T xn0+1, t) = 1, this implies that T (xn0) = T (xn0+1),

that is, T (xn0) = S(xn0), then xn0 is a coincidence point of S and T . So the proof

is accomplished.

On the other hand, if T (xn) ≠ T (xn+1), i.e.,M(T xn, T xn+1, t) ̸= 1, n ∈ N0. On

utilizing (3.1) and (3.2) in the light of contractive condition (d), we obtain

M(T xn, T xn+1, t) = M(Sxn−1,Sxn, t)(3.4)

≥ ψ(M(T xn−1, T xn, t)), n ∈ N, t > 0,

so that

M(T xn, T xn+1, t) ≥ ψn(M(T xo,Sx0, t)), n ∈ N, t > 0.(3.5)

Now,

lim
n→∞

M(T xn, T xn+1, t) = 1,(3.6)

t > 0, i.e., {T xn} is a G-Cauchy sequence. As X is M-complete, so in the light of

Lemma 2.5, X must be G-complete. So,

lim
n→∞

T (xn) = z, z ∈ X .(3.7)
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By using (3.1) and (3.7), we attain

lim
n→∞

S(xn) = lim
n→∞

T (xn+1) = z.(3.8)

In the light of assumption (f) (that is, if T is continuous), we attain

lim
n→∞

T (T xn) = T ( lim
n→∞

T xn) = T (z),(3.9)

lim
n→∞

T (Sxn) = T ( lim
n→∞

Sxn) = T (z).(3.10)

As limn→∞ S(xn) = limn→∞ T (xn) = z ( due to (3.7) and (3.8)) on using assumption

(e), we have

lim
n→∞

M(T Sxn,ST xn, t) = 1.(3.11)

Now, consider condition (f). Then by utilizing (3.7) and continuity of S, we obtain

lim
n→∞

S(T xn) = S( lim
n→∞

T xn) = S(z).(3.12)

By using (3.10), (3.11), (3.12) and continuity of M, we obtain

M(T z,Sz, t) = M( lim
n→∞

T Sxn, lim
n→∞

ST xn, t)

= lim
n→∞

M(T Sxn,ST xn, t)

= 1.

Therefore T z = Sz, i.e., z is a coincidence point of S and T . Thus, the proof is done.

Alternately, let S be continuous and (X ,M, ∗) has T -TCC property, on account of

(3.2) and (3.7), we have T xn ↕ z, then there exists a subsequence {xnk
} of {T xn},

with the result that

T (xnk
) ≺≻ T (z), k ∈ N0.

Now {T xn} ⊂ T (X ) and {xnk
} ⊂ {T xn}, then there exists {xnk

} ⊂ X so that

{xnk
} = T (xnk

). Thus, we obtain

T (T xnk
) ≺≻ T (z), for all k ∈ N0.(3.13)

Since T (xnk
) → z, equations (3.7) to (3.12) remain true for {xnk

}, instead of {xn}.
Using (3.13) and assumption (d), we obtain

M(S(T xnk
),S(z), t) ≥ ψ(M(T (T xnk

), T (z), t)), t > 0, k ∈ N0.(3.14)
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By using triangular inequality, equations (3.9), (3.10), (3.11) and (3.14), we have

M(T z,Sz, t)

≥ M(T z, T (Sxnk
), t) ∗M(T (Sxnk

),S(T xnk
), t) ∗M(S(T xnk

),Sz, t)

≥ M(T z, T (Sxnk
), t) ∗M(T (Sxnk

),S(T xnk
), t) ∗ ψ(M(T (T xnk

), T z, t))

→ 1 (as k → ∞),

that is, Sz = T z. Hence z ∈ X is a coincidence point of S and T . �

Theorem 3.2. Let S and T be two self-mappings of an M-complete ordered non-

Archimedean fuzzy metric space(X ,M, ∗) equipped with a partial order ’≼’. Let the

subsequent assumptions hold:

(a) S(X ) ⊆ T (X ),

(b) S is T -comparable,

(c) there exists x0 ∈ X so that T (x0) ≺≻ S(x0), M(T x0,Sx0, t)) > 0,

(d) there exists ψ ∈ Ψ so that

M(Sx,Sy, t) ≥ ψ(M(T x, T y, t)), ∀ x, y ∈ X with T (x) ≺≻ T (y), t > 0,

(e) a pair (S, T ) is compatible,

(f) S and T are continuous mappings,

or alternately

(f′) (X ,M, ∗) has T -TCC property and S is continuous.

Then S(x) = T (x), x ∈ X , i.e., the pair (S, T ) has a coincidence point.

Proof. Firstly, we recall Theorem 3.1 above and follow similar pattern till the fol-

lowing contractive condition (3.4) holds :

M(T xn, T xn+1, t) ≥ ψ(M(T xn−1, T xn, t))(3.15)

≥ M(T xn−1, T xn, t), n ∈ N, t > 0.

So, {M(T xn−1, T xn, t)} is a nondecreasing sequence of real numbers in (0, 1]. In

the light of Lemma 2.17, we obtain

(3.16) lim
n→∞

M(T xn−1, T xn, t) = 1.

Next, we assert that {T xn} is an M-Cauchy sequence. Let {T xn} be not an M-

Cauchy. Then there exists ϵ ∈ (0, 1) so that for each k ∈ N,mk > nk ≥ k, mk, nk ∈ N
and

M(T xnk
, T xmk

, t) ≤ 1− ϵ.(3.17)
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Let mk be the least integer exceeding nk so that

M(T xnk
, T xmk−1

, t) > 1− ϵ.(3.18)

Then for each k

1− ϵ ≥ M(T xnk
, T xmk

, t)

≥ M(T xnk
, T xmk−1, t) ∗M(T xmk

, T xmk−1, t)

≥ (1− ϵ) ∗M(T xmk
, T xmk−1, t).

Letting k → ∞ in the light of (3.16), we obtain

lim
n→∞

M(T xnk
, T xmk

, t) = 1− ϵ.(3.19)

However, T xnk
≺≻ T xmk

, k ∈ N and t > 0, we obtain

M(T xnk
, T xmk

, t)

≥ M(T xnk
, T xnk+1, t) ∗M(T xnk+1, T xmk+1, t) ∗M(T xmk+1, T xmk

, t),

≥ M(T xnk
, T xnk+1, t) ∗ ψ(M(T xnk

, T xmk
, t)) ∗M(T xmk+1, T xmk

, t).

Letting k → ∞ in the light of (3.16) and (3.19), we have

1− ϵ ≥ 1 ∗ ψ(1− ϵ) ∗ 1 = ψ(1− ϵ) > 1− ϵ,

this is a contradiction. Therefore, {T xn} is anM-Cauchy sequence. M-completeness

of X implies that

lim
n→∞

T xn = z, z ∈ X ,

which is equivalent to (3.7) of Theorem 3.1. Again tracing back the proof of Theorem

3.1 along with the assumptions (a)- (f’) this theorem may be proved. �

Theorem 3.3. Let S and T be two self-mappings of an M-complete ordered non-

Archimedean fuzzy metric space (X ,M, ∗) equipped with a partial order ’≼’. Let the

subsequent assumptions hold:

(a) S(X ) ⊆ T (X ),

(b) S is T -comparable,

(c) there exists x0 ∈ X so that T (x0) ≺≻ S(x0), M(T x0,Sx0, t)) > 0,

(d) there exists ψ ∈ Ψ so that

M(Sx,Sy, t) ≥ ψ(M(T x, T y, t)), ∀ x, y ∈ X with T (x) ≺≻ T (y), t > 0,
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(e) a pair (S, T ) is compatible,

(f) S and T are reciprocally continuous mappings.

Then S(x) = T (x), x ∈ X , i.e., the pair (S, T ) has a coincidence point.

Proof. On the pattern of Theorem 3.1 and 3.2, we are able to define a sequence

{xn} ⊂ X so that, we obtain equations (3.7) and (3.8). Therefore,

lim
n→∞

S(xn) = lim
n→∞

T (xn) = z.

In the light of assumption (f) (that is, if S and T are reciprocally continuous), we

obtain

lim
n→∞

T (Sxn) = Tz, lim
n→∞

S(T xn) = Sz,(3.20)

and using assumption (e), we have

lim
n→∞

M(T Sxn,ST xn, t) = 1.(3.21)

Now, on utilizing (3.20), (3.21), we obtain

M(T z,Sz, t) = M( lim
n→∞

T Sxn, lim
n→∞

ST xn, t)

= lim
n→∞

M(T Sxn,ST xn, t)

= 1.

Therefore T z = Sz, i.e., z is a coincidence point of S and T . �

Remark 3.4. We also highlight the fact that Theorems 3.1, 3.2 and 3.3 are valid

if we restore the assumption (a) S(X ) ⊆ T (X ) by (a′) S(X ) ⊆ T (X ) ∩ Y, Y ⊆ X ,
where the necessity of X to be an M-complete is relaxed. Alternatively, we need

at least, one of the subspace of X is to be M-complete,i.e., any one from these

three subspaces (S(X ),M, ∗), (Y,M, ∗), (T (X ),M, ∗) must be M-complete and

other assumptions of the theorems remain the same. Then the proof of these newly

identified results may be obtained by utilizing the Lemma 2.16 of Haghi et al.[12],

in the light of the proof of the Theorem 3.5 presented in [1].

Now, we present uniqueness results related to a coincidence point corresponding

to earlier above mentioned results.

Theorem 3.5. Besides the assumptions (a)-(f) together with (f ′) of Theorem 3.1,

3.2 and 3.3, if the subsequent assumption holds :

(g) C(Sx,Sy ≺≻, T (X )) is non-empty, x, y ∈ X .
Then the pair (S, T ) has a unique point of coincidence.
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Proof. In Theorems 3.1, 3.2 and 3.3, suppose that x̄ and ȳ be two points of coinci-

dences of the mappings S and T , then there exist x, y ∈ X , so that

x̄ = T (x) = S(x) and ȳ = T (y) = S(y).(3.22)

As S(x),S(y) ∈ S(X ) ⊆ T (X ), in the light of assumption (g), we obtain a ≺≻-

chain between S(x) and S(y) in T (X ) as {T (z1), T (z2), ...., T (zk−1), T (zk)} for

z1, z2, ..., zk ∈ X . By using (3.22), we are able to choose z1 = x and zk = y.

Thus, we obtain

T (z1) ≺≻ T (z2) ≺≻ ..... ≺≻ T (zk−1) ≺≻ T (zk).(3.23)

Now define z1n = x and zkn = y as a constant sequences and utilizing (3.22), we obtain

T (z1n+1) = S(z1n) = x̄ and T (zkn+1) = S(zkn) = ȳ, N0. Put z2 = z20 , z3 = z30 , ..., zk−1 =

zk−1
0 . Again as S(X ) ⊆ T (X ), recalling Theorem 3.1 above, we are able to con-

struct a sequence {z2n}, {z3n}, ..., {zk−1
n } in X , so that T (z2n+1) = S(z2n), T (z3n+1) =

S(z3n), ..., T (zk−1
n+1) = S(zk−1

n ), n ∈ N0. Thus, we obtain

T (zin+1) = S(zin), n ∈ N0, and i (1 ≤ i ≤ k − 1).(3.24)

We assert that

T (z1n) ≺≻ T (z2n) ≺≻ ..... ≺≻ T (zk−1
n ) ≺≻ T (zkn), n ∈ N0.(3.25)

We determine this assertion by using mathematical induction. In the light of (3.23),

(3.25) is valid for n = 0. Let (3.25) be true for n = r > 0, i.e.,

T (z1r ) ≺≻ T (z2r ) ≺≻ T (z3r ) ≺≻ ..... ≺≻ T (zk−1
r ) ≺≻ T (zkr ).

On utilizing the T -comparability of S, we obtain

S(z1r ) ≺≻ S(z2r ) ≺≻ S(z3r ) ≺≻ ..... ≺≻ S(zk−1
r ) ≺≻ S(zkr ),

by using (3.24), produces

T (z1r+1) ≺≻ T (z2r+1) ≺≻ T (z3r+1) ≺≻ ..... ≺≻ T (zk−1
r+1 ) ≺≻ T (zkr+1).

It results that (3.25) is valid for n = r + 1. Consequently, using induction, (3.25) is

true for all n ∈ N0.
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Now we define 

m1
n = M(T z1n, T z2n, t)

m2
n = M(T z2n, T z3n, t)
.
.
.

mk−2
n = M(T zk−2

n , T zk−1
n , t)

mk−1
n = M(T zk−1

n , T zkn, t), n ∈ N0, t > 0.

By using (3.25), in the light of contractive assumption (d), we obtain

mi
n+1 ≥ ψ(mi

n) ∀ n ∈ N0 , for each t > 0 and, i (1 ≤ i ≤ k − 1).

By applying mathematical induction, we have

mi
n+1 ≥ ψ(mi

n) ≥ ψ2(mi
n−1)... ≥ ψn+1(mi

0)

so that

mi
n+1 ≥ ψn+1(mi

0).

Letting n→ ∞ and in the light of the Lemma 2.17, we obtain

lim
n→∞

mi
n = 1.(3.26)

Finally, by using triangular inequality and (3.26), we have

M(x̄, ȳ, t) ≥ m1
n ∗m2

n ∗ ...mk−1
n → 1.

As n→ ∞, we have

x̄ = ȳ.

Consequently, the pair (S, T ) has a unique point of coincidence. �

Remark 3.6. In Theorems 3.1, 3.2 and 3.3, S and T have unique common fixed

point if we assume these self-mappings to be weakly compatible. These results are

extensions and improvements of Altun and Mehit [3], Mehit [16] and references

therein to ordered non-Archimedean fuzzy metric space as ψ-contraction for a pair

of mappings holds only on comparable elements of the underlying partial ordering

set.

Remark 3.7. Theorems 3.1(together with Hadžić-type norm) and 3.2 are exten-

sions and generalizations of Alam and Imdad [1] to ordered non-Archimedean fuzzy

metric space (X ,M, ∗) wherein continuity of both the self mappings is not essen-

tial. Further, in Theorem 3.3 continuity of self mappings is completely relaxed by

replacing it by its weaker variant, reciprocal continuity.
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Also, if we set the identity mapping I, in place of the mapping T , that is, T = I
in Theorem 3.1 and Theorem 3.2 respectively (along with the Theorem 3.5), then

the consequences are as follows :

Corollary 3.8. Let S be a self-mapping of an M-complete ordered non-Archimedean

fuzzy metric space with Hadžić-type norm and a partial order ’≼’. Let the subsequent

assumptions hold:

(a) S is a comparable mapping,

(b) there exists x0 ∈ X so that x0 ≺≻ S(x0), limn→∞ ψn(M(x0,Sx0, t)) = 1,

(c) there exists ψ ∈ Ψ so that

M(Sx,Sy, t) ≥ ψ(M(x, y, t)), ∀ x, y ∈ X with x ≺≻ y, t > 0,

(d) S is a continuous mapping or (X ,M, ∗) has TCC-property,

(e) C(Sx,Sy ≺≻) is non-empty.

Then S has a unique fixed point.

Corollary 3.9. Let S be a self-mapping of an M-complete ordered non-Archimedean

fuzzy metric space with a partial order ’≼’. Let the subsequent assumptions hold:

(a) S is a comparable mapping,

(b) there exists x0 ∈ X so that x0 ≺≻ S(x0), M(x0,Sx0, t) > 0,

(c) there exists ψ ∈ Ψ so that

M(Sx,Sy, t) ≥ ψ(M(x, y, t)), ∀ x, y ∈ X with x ≺≻ y, t > 0,

(d) S is continuous mapping or (X ,M, ∗) has TCC-property,

(e) C(Sx,Sy ≺≻) is non-empty.

Then the mapping S has a unique fixed point.

Now, we provide an example to appreciate the hypotheses of Corollaries 3.8 and

3.9, which assure the survival of a unique fixed point.

Example 3.10. Let X = R and the order relation be defined by x ≼ y ⇐⇒ |x| ≤
|y| and xy ≥ 0. Let a ∗ b = ab and

M(x, y, t) =

{
min{x,y}
max{x,y} , if x > 0, t > 0
max{x,y}
min{x,y} , if x ≤ 0, t > 0.

(3.27)

Then (X ,M, ∗) is an M-complete ordered non-Archimedean fuzzy metric space,

where M(x, y, t) > 0, t > 0 holds. Define a self-mapping S on X as
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S(x) =


3x+ 3 if x < −1,
1 + x if − 1 ≤ x ≤ 0,
1− 1

2x if x > 0.
(3.28)

Then S is a comparable (i.e, weakly monotone ) continuous mapping but not mono-

tone. For x0 = 0, we have Sx0 = 1, i.e. 0 = x0 ≼ Sx0 = 1, however if we take

x0 = 1 we obtain 1 = x0 ≽ Sx0 = 1
2 . Now we observe that the mapping S satisfies

an ordered fuzzy ψ-contraction condition with ψ(t) =
√
t. If x, y ∈ R with x ≼ y,

then

M(x, y, t) =
max{Sx,Sy}
min{SxSy}

=
max{3x+ 3, 3y + 3}
min{3x+ 3, 3y + 3}

=
3x+ 3

3y + 3

≥
√
x

y

= ψ(M(x, y, t)).

Hence S is an ordered fuzzy ψ-contractive mapping. Thus all the assumptions of

Corollary 3.8 and 3.9 are verified and S has a unique fixed point at x = −3
2 .

In consideration of the above non-trivial example, we ensure that Corollary 3.8

and 3.9 are generalized and sharpened versions of Theorem 2.3 and 2.4 respectively,

presented in the paper [3]. We annotate the following considerations :

• In respect to Theorem 2.3 and Theorem 2.4 [3], the nondecreasing (i.e.

monotonic ) self-mapping S is replaced by comparable ( weakly monotonic

) self-mapping which is relatively a weaker assumption.

• The condition (2.3) of the mentioned theorems is replaced by TCC-property

introduced by Alam and Imdad [1] which is again relatively weak property.

• In consideration of an additional hypothesis (e) in Theorem 3.5, ( that is,

≺≻-chain), we provide the uniqueness of the corresponding results.

An Application

As an application, we present a unique solution for the system of ordered Fred-

holm integral equations wherein our main results are applicable. Consider the system
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of integral equations with partial order as follows:{
x(ρ) = ϕ(ρ) +

∫ 1
0 K1(ρ, ω, x(ω))dω,

y(ρ) = ϕ(ρ) +
∫ 1
0 K2(ρ, ω, y(ω))dω,

(3.29)

where the function ϕ ∈ X = (C[0, 1],R) and the kernel K1,K2 : [0, 1]×[0, 1]×R → R.
For x(ρ), y(ρ) ∈ X , we define the partial order relation as : x(ρ) ≼ y(ρ) ⇐⇒
|x(ρ)| ≤ |y(ρ)|, for all ρ ∈ [0, 1]. Let a ∗ b = ab and

M(x(ρ), y(ρ), t) = e−
d(x,y)

t

where, d(x, y) = ||x(ρ) − y(ρ)||∞ = max
0≤ρ≤1

|x − y| with t > 0. Then (X ,M, ∗) is an

M-complete ordered non-Archimedean fuzzy metric space, with M(x(ρ), y(ρ), t) >

0, t > 0.

Theorem 3.11. Let S and T be two self-mappings of an M-complete ordered non-

Archimedean fuzzy metric space (X ,M, ∗) equipped with a partial order ’≼’. Con-

sider the problem (3.29), and let for x(ρ), y(ρ) ∈ X with x(ρ) ≼ y(ρ), the subsequent

assumptions hold :

(1)

∣∣∣∣ ∫ 1

0
[{K2

1(ρ, ω, x(ω))−K2
1(ρ, ω, y(ω))}+2ϕ(ρ){K1(ρ, ω, x(ω))−K1(ρ, ω, y(ω))}]dω

∣∣∣∣
≤

∣∣∣∣ ∫ 1

0
{K2(ρ, ω, x(ω))−K2(ρ, ω, y(ω))}dω

∣∣∣∣,
(2) there exists a sequence {xn(ρ)} in X satisfying

lim
n→∞

Sxn(ρ) = lim
n→∞

T xn(ρ) = z(ρ), z(ρ) ∈ X ,

so that lim
n→∞

T (Sxn(ρ)) = Tz(ρ), lim
n→∞

S(T xn(ρ)) = Sz(ρ), and lim
n→∞

ST xn(ρ) =

lim
n→∞

T Sxn(ρ),
(3) Sx(ρ) = T x(ρ) implies T (Sx(ρ)) = S(T x(ρ)), x(ρ) ∈ X .
Then then the problem (3.29) has a solution.

Proof. Define S and T as

Sx(ρ) = ϕ(ρ) +

∫ 1

0
K1(ρ, ω, x(ω))dω

and T y(ρ) = ϕ(ρ) +

∫ 1

0
K2(ρ, ω, y(ω))dω.

For x(ρ), y(ρ) ∈ X , T x(ρ) ≺≻ T y(ρ), that is, either |T x(ρ)| ≤ |T y(ρ)| or |T x(ρ)| ≥
|T y(ρ)|. We consider the first |T x(ρ)| ≤ |T y(ρ)|. Then in the light of the assumption
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(a) of the Theorem 3.1, we have Sx(ρ) ≺≻ Sy(ρ), that is, S is T comparable.

For the contractive condition, using assumption (1), we have

|S2x(ρ)− S2y(ρ)| =
∣∣∣∣ ∫ 1

0
[{K2

1(ρ, ω, x(ω))−K2
1(ρ, ω, y(ω))}+ 2ϕ(ρ){K1(ρ, ω, x(ω))

−K1(ρ, ω, y(ω)}]dω
∣∣∣∣

≤
∣∣∣∣ ∫ 1

0
{K2(ρ, ω, x(ω))−K2(ρ, ω, y(ω))}dω

∣∣∣∣
= |T x(ρ)− T y(ρ)|.

Therefore, for ρ ∈ [0, 1], we obtain

e−
d(S2x,S2y)

t ≥ e−
d(T x,T y)

t .

Now consider a non-decreasing function ψ ∈ Ψ such that ψ(s) =
√
s, we obtain

M(Sx(ρ),Sy(ρ), t) = ψ(e−
d(S2x,S2y)

t ) ≥ ψ(e−
d(T x,T y)

t )

= ψ(M(T x(ρ), T y(ρ), t)).

So, for x(ρ), y(ρ) ∈ X and T x(ρ) ≺≻ T y(ρ), we obtain

M(Sx(ρ),Sy(ρ), t) ≥ ψ(M(T x(ρ), T x(ρ), t)).

Using assumption (2), the other assumptions of the Theorem 3.1, 3.2, and 3.3 may

be easily verified. Moreover, if the assumption (3) holds, i.e, if the pair (S, T ) is

weakly compatible, then the system of ordered Fredholm integral equations (3.29)

have a solution. �
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