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EXTREMAL F -INDICES FOR BICYCLIC GRAPHS WITH k

PENDANT VERTICES

Ruhul Amin a and Sk. Md. Abu Nayeem b, ∗

Abstract. Long back in 1972, it was shown that the sum of the squares of vertex
degrees and the sum of cubes of vertex degrees of a molecular graph both have
large correlations with total π-electron energy of the molecule. Later on, the sum
of squares of vertex degrees was named as first Zagreb index and became one of
the most studied molecular graph parameter in the field of chemical graph theory.
Whereas, the other sum remained almost unnoticed until recently except for a few
occasions. Thus it got the name “forgotten” index or F -index. This paper inves-
tigates extremal graphs with respect to F -index among the class of bicyclic graphs
with n vertices and k pendant vertices, 0 ≤ k ≤ n− 4. As consequences, we obtain
the bicyclic graphs with largest and smallest F -indices.

1. Introduction

A topological index (or molecular structure descriptor) is a numerical value as-

sociated with chemical constitution of some molecule for correlation of chemical

structure with various physical properties, chemical reactivity or biological activity.

By “molecular graph”, we understand a simple graph, representing the carbon atom

skeleton of an organic molecule (usually, of a hydrocarbon). Thus the vertices of a

molecular graph represent the carbon atoms and its edges the carbon-carbon bonds.

Degree based topological indices have been studied extensively by mathematician

and chemist since the introduction of Randic index in 1975 [13]. Although Zagreb

indices are the first degree based topological indices, those were initially intended

for the study of total π- electron energy [9] and were included among the topological

indices much later. In the paper where Zagreb indices were introduced first time

by Gutman and Trinajstić [12], a series of approximate formulas for total π-electron
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energy E were deduced. By means of these formulas, several structural details have

been identified, on which E depends. Among these were the sum of squares and sum

of the cubes of the vertex degrees of the underlying molecular graph. Eventually,

the sum of squares, became known as the first Zagreb index, but the latter term re-

mained unnoticed by researchers until a recent work of Furtula and Gutman, where

they named it as “forgotten” topological index, or F -index [8].

Let G = (V,E) be a simple connected graph with the vertex set V (G) and the

edge set E(G). The set of vertices adjacent to a vertex v in G is denoted by NG(v)

and dG(v) = |NG(v)| denotes the degree of the vertex v in G. Two vertices u and

v are of almost equal degree if |dG(u) − dG(v)| ≤ 1. Let V = {v1, v2, . . . , vn} and

di = dG(vi), 1 ≤ i ≤ n. Then {d1, d2, . . . , dn} is called the degree sequence of G. In

a degree sequence, we use the symbol dtii if the degree di is repeated ti times.

The first Zagreb index and the F -index are defined by

M1(G) =
∑

v∈V (G)

[dG(v)]
2, and F (G) =

∑

v∈V (G)

[dG(v)]
3.

It is easy to follow that

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)], and F (G) =
∑

uv∈E(G)

[dG(u)
2 + dG(v)

2].

Finding the extremal values or bounds for the degree based topological indices of

graphs, as well as related problems of characterizing the extremal graphs, have re-

cently attracted the attention of researchers and many results are obtained. Gutman

and Das [10] have shown that the trees with the smallest and largest first Zagreb

indices are the path and the star, respectively. It has also been shown that the trees

with the smallest and largest second Zagreb indices are the path and the star, re-

spectively [4]. Extremal trees with respect to F -index have been studied by Abdo et

al. [1]. A unified approach to the extremal Zagreb indices for trees, unicyclic graphs

and bicyclic graphs have been studied by Deng [6]. F -index for graph operations

are found in [5]. Some lower and upper bounds for F -index are found in [3, 7].

Zhang et al. [14] introduced the first general Zagreb index as

Mα
1 (G) =

∑

v∈V (G)

[dG(v)]
α,

where α is an arbitrary real number. It is clear that M3
1 (G) coincides with F (G). In

[14], they have obtained the bicyclic graphs with the first three smallest and greatest

Mα
1 when α > 1 among all the n-vertex bicyclic graphs, n ≥ 5.
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Recently, Akhter et al. [2] have determined the extremal graph with respect to

F -index among the classes of connected unicyclic and bicyclic graphs. They have

considered seven subclasses of bicyclic graphs having equal number of pendant edges

attached to given number of vertices, and ordered those subclasses with respect to

F -index. But, in their study, all the graphs across the different subclasses do not

have equal number of vertices. Not all those have equal number of pendant vertices

also.

If a graph G has n vertices, m edges and p components, then γ = n−m+p is called

the cyclomatic number of G. Gutman et al. [11] have determined the first through

the sixth smallest F -indices among all trees, the first through the third smallest

F -indices among all connected graph with cyclomatic number γ = 1, 2, the first

through the fourth smallest F -indices among all connected graph with cyclomatic

number γ = 3, and the first and the second smallest F -indices among all connected

graph with cyclomatic number γ = 4, 5.

In this paper, we investigate the bicyclic graphs with the largest and smallest

F -indices among all the bicyclic graphs with n vertices and k pendant vertices,

0 ≤ k ≤ n − 4. As consequences, we have also obtained the bicyclic graphs with

largest and smallest F -indices. Those are in agreement with the results in [11] and

[14].

2. Two Transformations which increase the F -indices

Let E1 ⊆ E(G). We denote by G−E1 the subgraph of G obtained by deleting the

edges in E1. Let W ⊆ V (G). G−W denotes the subgraph of G obtained by deleting

the vertices in W and the edges incident with them. Again let, E2 ⊆ E(G), where

G is the complement of G. Then by G+E2 we mean the graph obtained by adding

the edges in E2 to G. Let v be a pendant vertex and u be a non-pendant vertex of

G. A u-v path is said to be a pendant path attached to u if dG(u) ≥ 3, dG(v) = 1 and

every other vertex on the path has degree 2. The vertex w adjacent to the vertex u

in the u-v pendant path is said to be the lead vertex of the pendant path.

We give two transformations which will increase the F -indices as follows.

Transformation A. Let u0 − u1 − · · · − up, p ≥ 1 be a path in the graph G, where

dG(u0) ≥ 3, dG(up) ≥ 3 and dG(ui) = 2 for i ∈ {0, 1, . . . , p} \ {0, p}. Let NG(up) =

{up−1, w1, w2, . . . , ws}, s ≥ 2, and w1, w2, . . . , ws be either pendant vertices or lead
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G

u0 u1 up

w1

w2

ws

...

... A
−→

G1

u0

u1

up
w1

w2

ws

...

...

Figure 1. Transformation A.

vertices of some pendant paths attached to up. Then G1 = G− {upw2, . . . , upws}+

{u0w2, . . . , u0ws}, as shown in Figure 1, is said to be the graph obtained from G by

Transformation A.

Lemma 2.1. Let G1 be obtained from G by Transformation A. Then F (G1) >

F (G).

Proof. Since degree of each vertex except u0 and up in G and G1 are same, we have

F (G1)− F (G) = d3G1
(u0)− d3G(u0) + d3G1

(up)− d3G(up)

= (dG(u0) + s− 1)3 − d3G(u0) + 23 − (s+ 1)3

= 3(s− 1)(dG(u0)− 2)(dG(u0) + s+ 1)

> 0, since dG(u0) > 2 and s > 1.

Hence, F (G1) > F (G). �

Remark 2.2. By repeated application of Transformation A, any bicyclic graph can

be transformed into such a bicyclic graph that every edge is either an edge of a cycle

or an edge of a pendant path and the F -index increases for each such repetition.

Transformation B. Let u and v be two vertices in G. Also let u1, u2, . . . , us, s > 0

are the lead vertices of the pendant paths attached to u; v1, v2, . . . , vt, t > 0 are

the lead vertices of the pendant paths attached to v and dG(u) ≤ dG(v). Then

G1 = G−{uu1, uu2, . . . , uus}+ {vu1, vu2, . . . , vus}, as shown in Figure 2, is said to

be the graph obtained from G by Transformation B.

Lemma 2.3. Let G1 be obtained from G by Transformation B. Then F (G1) >

F (G).
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Figure 2. Transformation B.

Proof. Since the degrees of all the vertices in G1 and those of all the vertices in G

are same, except for the vertices u and v, where dG(u) ≤ dG(v), we have

F (G1)− F (G) = d3G1
(v)− d3G(v) + d3G1

(u)− d3G(u)

= (dG(v) + s)3 − d3G(v) + (dG(u)− s)3 − d3G(u)

= 3s(dG(v) + dG(u))(dG(v) − dG(u) + s)

> 0 since dG(v) ≥ dG(u) and s > 0.

Hence, F (G1) > F (G). �

Remark 2.4. Using Transformation B repeatedly, any bicyclic graph can be trans-

formed into such a bicyclic graph that all the pendant paths are attached to the

same vertex, and the F -index increases at such repetition.

3. The Graphs with the Largest F -indices

In this section we obtain the bicyclic graph with the largest F -index.

Let us consider the set of all n vertex bicyclic graphs with k pendant vertices and

denote it by B
k
n. Clearly, each of the graphs in B

k
n with two cycles of lengths p and

q lies into either of the following three classes.

(1) The set of all G ∈ B
k
n in which the cycle Cp and Cq have only one common

vertex. This is denoted by A(p, q). Clearly, 0 ≤ k ≤ n− 5 for all G ∈ A(p, q).

(2) The set of all G ∈ B
k
n in which the cycle Cp and Cq have no common vertex.

This is denoted by B(p, q). For all G ∈ B(p, q), 0 ≤ k ≤ n− 6.

(3) The set of all G ∈ B
k
n in which the cycle Cp and Cq have a common path of

length l. This is denoted by C(p, q, l). For all G ∈ C(p, q, l), 0 ≤ k ≤ n− 4.

We also note that, C(p, q, l) = C(p, p + q − 2l, p − l) = C(p+ q − 2l, q, q − l).

First, we find the bicyclic graph with the largest F -index in A(p, q).
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Cp Cq

· · ·

Figure 3. Sn(p, q).

Let Sn(p, q) be a graph in A(p, q) such that k pendant paths are attached to the

common vertex of Cp and Cq, as shown in Figure 3.

Lemma 3.1. A graph with the largest F -index in A(p, q) is of the form Sn(p, q) .

Proof. Using the Transformation A and B repeatedly on graph G we can get a graph

G1 such that all the edges not on the cycles are edges on the pendant paths attached

to the same vertex u. By Lemma 2.1 and Lemma 2.3, we have F (G) ≤ F (G1) with

the equality if and only if all the edges not on the cycles are edges on the pendant

paths attached to the same vertex in G. If G1 is not of the form Sn(p, q), then u 6= v,

where v is the common vertex of Cp and Cq.

Without loss of generality, we assume that u is on the cycle Cp. Since the degree

of all the vertices of Sn(p, q) and those of G1 are same except for the vertices u and

v, we have

F (Sn(p, q))− F (G1) = {(k + 4)3 + 23} − {(k + 2)3 + 43}

= 6k(k + 6) ≥ 0 since k ≥ 0.

Equality holds if and only if k = 0, or G1 is of the form Sn(p, q).

Thus the proof is complete. �

Remark 3.2. Degree sequence of every graph of the form Sn(p, q) is {1
k, 2n−k−1, k+

4} and so, the F -index of every graph of the form Sn(p, q) is k
3 +12k2 +41k+56+

8n, 0 ≤ k ≤ n − 5. Clearly, it does not depend on the lengths of the pendant paths

or the cycles.

Next we find the bicyclic graph with the largest F -index in B(p, q).

The bicyclic graph obtained by connecting Cp and Cq by a path Pr+1 of length

r and attaching k pendant paths to the common vertex of Cp and Pr is denoted by

T r
n(p, q), (see Figure 4(a)). Similarly, we have T r

n(q, p), see Figure 4(b).
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Cp
Cq...

(a)

Cp Cq...

(b)

Cp Cq

...
(c)

Cp Cq

. . .

(d)

Cp Cq

· · ·

(e)

Figure 4. (a) T r
n(p, q); (b) T

r
n(q, p); (c) Pendant paths are attached

to a vertex of Cp which is not common with Pr+1; (d) Pendant paths
are attached to a vertex of Cq which is not common with Pr+1; (e)
Pendant paths are attached to a vertex of Pr+1 which is neither on
Cp nor on Cq.

Lemma 3.3. Let G be a graph in B(p, q) and Cp and Cq in G are connected by a

path of length r > 0 and pendant paths are attached to a vertex of Cp which is not

common with the path or pendant paths are attached to a vertex of Cq which is not

common with the path or pendant paths are attached to a vertex of path which is

neither on Cp nor on Cq. Then either

(i) F (G) ≤ F (T r
n(p, q)) with the equality if and only if G ∼= T r

n(p, q);

or

(ii) F (G) ≤ F (T r
n(q, p)) with the equality if and only if G ∼= T r

n(q, p).

Proof. Let W = v1v2...vrvr+1 be the path connecting Cp and Cq in G, and v1 be the

common vertex of W and Cp, vr+1 be the common vertex of W and Cq.

Using the Transformation A and B on the graph G, we can get a graph G1 such

that all the edges not on the cycles are the edges on pendant paths attached to the

same vertex v. By Lemma 2.1 and Lemma 2.3, we have F (G) ≤ F (G1) with the

equality if and only if all the edges not on the cycles are edges on pendant paths

attached to the same vertex in G.
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Cp Cq

· · ·

(a)
· · ·
(b)

Figure 5. (a) θn(p, q); (b) θ
∗
n(3, 3).

Case I. Let v be on the cycle Cp, as shown in Figure 4(c). Since the degree of the

vertices of T r
n(p, q) and those of G1 are same except for the vertices to which the

pendant paths are attached, we have

F (T r
n(p, q))− F (G1) = {(k + 3)3 + 23} − {(k + 2)3 + 33}

= 3k(k + 5) ≥ 0 since k ≥ 0,

with equality if and only if k = 0 or G1 is of the form T r
n(p, q).

Case II. If v is on the cycle Cq, as shown in figure 4(d). The proof is the same as in

Case I.

Case III. Let v be on the path W , as shown in Figure 4(e), then dG1
(v) = k+2 and it

can be shown in a similar fashion that either F (T r
n(p, q)) > F (G1) or F (T r

n(q, p)) >

F (G1). �

Remark 3.4. Every graph of the form T r
n(p, q) or T

r
n(p, q) has the degree sequence

{1k, 2n−k−2, 31, k+3}, and thus each of them has the F -index k3+9k2 +20k+38+

8n, 0 ≤ k ≤ n − 6. Clearly, it does not depend on the lengths of the pendant paths

or the cycles.

Lastly, we find the bicyclic graph with the largest F -index in C(p, q, l).

Let θn(p, q) be a graph in C(p, q, l) such that k pendant paths are attached to

a common vertex of Cp and Cq and their common path, as shown in Figure 5(a).

In particular, θ∗n(3, 3) denotes the graph where k pendant edges are attached to a

common vertex of two triangles having a common edge.

Lemma 3.5. A graph with the largest F -index in C(p, q, l) is of the form θn(p, q) .

Proof. Using the Transformation A and B on graph G, we can get a graph G1 such

that all the edges not on the cycles are on the pendant paths attached to the same
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vertex v in G. By Lemma 2.1 and Lemma 2.3, we have F (G1) ≥ F (G) with the

equality if and only if all the edges not on the cycles are the edges on the pendant

paths attached to the same vertex in G.

If the vertex v is different from either of the common vertex of Cp, Cq and their

common path, then we have

F (θn(p, q))− F (G1) = {(k + 3)3 + 23} − {(k + 2)3 + 33}

= 3k(k + 5) ≥ 0 since k ≥ 0,

with equality if and only if k = 0 or G1 is of the form θn(p, q). �

Remark 3.6. Degree sequence of every graph of the form θn(p, q) being {1
k, 2n−k−2, k+

3, 31}, F -index of every graph of that form is k3+9k2+20k+38+8n, 0 ≤ k ≤ n−4.

Clearly, it does not depend on the lengths of the pendant paths or the cycles.

Finally we have the following theorem.

Theorem 3.7. The graph with largest F -index in B
k
n is of the form Sn(p, q) if

0 ≤ k ≤ n− 5, and is the unique graph θ∗n(3, 3) if k = n− 4.

Proof. Let G be the graph with largest F -index among all bicyclic graphs with n

vertices and k pendant vertices. From Lemma 3.1, Lemma 3.3, and Lemma 3.5, it is

clear thatG is of the form Sn(p, q), T
r
n(p, q) or θn(p, q). Comparing the corresponding

F -indices, we have

F (G) =

{

k3 + 12k2 + 41k + 56 + 8n, 0 ≤ k ≤ n− 5
k3 + 9k2 + 20k + 38 + 8n, k = n− 4

=

{

k3 + 12k2 + 41k + 56 + 8n, 0 ≤ k ≤ n− 5
n3 − 3n2 + 4n + 38, k = n− 4.

It is easy to follow that if k = n − 4, θ∗n(3, 3) is the only graph of the form

θn(p, q). �

Theorem 3.8. The graph with largest F -index among all bicyclic graphs with n

vertices is θ∗n(3, 3).

Proof. Let f(n, k) = k3 + 12k2 + 41k + 56 + 8n, 0 ≤ k ≤ n − 5. Then ∂f
∂k

=

3k2 + 24k + 41 > 0 for k ≥ 0. Thus f(n, k) is a monotonic increasing function of k.

Hence f(n, 0) ≤ f(n, k) ≤ f(n, n − 5) for 0 ≤ k ≤ n − 5, i.e., 8n + 56 ≤ f(n, k) ≤

n3 − 3n2 + 4n + 28 for 0 ≤ k ≤ n − 5. Thus the result follows from the above

theorem. �
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Figure 6. Transformation C.

4. Two Transformations which decrease the F -index

The following transformations decrease the F -index of a graph.

Transformation C. Let u be a vertex of G and dG(u) ≥ 2. Also let {v,w} ⊆

NG(u) be such that vw /∈ E(G), dG(w) > dG(v), and w1, w2, . . . , ws, s ≥ 2 be the

lead vertices of pendant paths attached to w. Then G′ = G − {uv,ww1, wws} +

{uw1, vw, vws}, as shown in Figure 6, is said to be the graph obtained from G by

Transformation C.

Lemma 4.1. Let G′ be obtained from G by Transformation C. Then F (G′) ≤ F (G).

Proof. Since the degrees of all the vertices in G′ and those of all the vertices in G

are same, except for the vertices v and w, we have

F (G′)− F (G) = d3G′(v) − d3G(v) + d3G′(w)− d3G(w)

= (dG(v) + 1)3 − d3G(v) + (dG(w) − 1)3 − d3G(w)

= 3(dG(v) + dG(w))(dG(v)− dG(w) + 1) ≤ 0 since dG(v) < dG(w).

Hence, F (G′) ≤ F (G). �

Transformation D. Let u and v be two vertices in G. Also let uu1, uu2, . . . , uus

be the pendant edges attached to u, vv1, vv2, . . . , vvt be the pendant edges attached

to v and dG(v) − dG(u) > 1. Then G′ = G− {vv1}+ {uv1}, as shown in Figure 7,

is said to be the graph obtained from G by Transformation D.

Lemma 4.2. Let G′ be obtained from G by Transformation D. Then F (G′) < F (G).

Proof. Since the degrees of all the vertices in G′ and those of all the vertices in G

are same, except for the vertices u and v (where dG(u) ≤ dG(v)), we have
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Figure 7. Transformation D.
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u
w w1
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E
−→

G0

G′

w

u
w1

v

Figure 8. Transformation E.

F (G′)− F (G) = d3G1
(v)− d3G(v) + d3G1

(u)− d3G(u)

= (dG(v)− 1)3 − d3G(v) + (dG(u) + 1)3 − d3G(u)

= 3(dG(v) + dG(u))(−dG(v) + dG(u) + 1)

< 0 since dG(v) > dG(u) + 1.

Hence, F (G′) < F (G). �

5. Graphs with Smallest F -indices

It is clear from the definition of F -index that it depends on the degree sequence

only. There may be several graphs with same F -index if they have same degree

sequences. To understand easily the structure of a class of graphs having smallest

F -indices, we define the following transformation which does not change the degree

sequence of the graph and hence the F -index.

Transformation E. Let uv be an edge of a cycle in G. Also let w be the lead vertex

of a pendant path attached to u. Then G′ = G − {uv,ww1}+ {wv, uw1}, as shown

in Figure 8, is said to be the graph obtained from G by Transformation E.
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Figure 9. (a) F1; (b) F2; (c) F3.

Since degree of each vertex of G remains unaltered under Transformation E, it is

clear that F (G′) = F (G) if G′ is obtained from G by Transformation E.

Lemma 5.1. Any bicyclic graph G can be transformed to a graph G′ with either of

the forms F1, F2 or F3 as shown in Figure 9, so that the F (G′) ≤ F (G).

Proof. By repeated applications of Transformation C on G, we get a graph G#

whose each edge is either on a cycle or on a pendant path and F (G#) ≤ F (G).

Now, if we repeat Transformation E on G# successively, we get a graph G′ whose

each edge is either an edge of a cycle or a pendant edge, and F (G#) = F (G′).

Clearly, G′ will have either of the forms F1, F2 or F3, if G is in A(p, q),B(p, q) or

C(p, q, l) respectively. �

Theorem 5.2. A graph of the form F2 or F3 has smallest F -index in B
k
n if 0 ≤

k < (n − 1)/2. A graph with either of the forms F1, F2 or F3 has smallest F -index

in B
k
n if (n− 1)/2 ≤ k ≤ n− 6. A graph of the form F1 or F3 has smallest F -index

in B
k
n if (n − 1)/2 ≤ k = n − 5 and a graph of the form F3 has minimum F -index

in B
k
n if (n− 1)/2 ≤ k = n− 4. In each case, every non-pendant vertex is of almost

equal degree.

Proof. Transformation D can be applied repeatedly to reduce the F -index of a graph

G having the form F1, F2 or F3 until every non-pendant vertex is of almost equal

degree except when k < (n−1)/2 and G ∈ A(p, q). When k < (n−1)/2, the F -index

of G can be reduced by repeated applications of Transformation D until the degree

sequence becomes {1k, 2n−2k−1, 3k, 4} if G ∈ A(p, q), and {1k, 2n−2k−2, 3k+2} if G ∈

B(p, q) or G ∈ C(p, q, l). Now, the F -indices of two graphs with degree sequences

{1k, 2n−2k−1, 3k, 4} and {1k, 2n−2k−2, 3k+2} are 8n + 12k + 58 and 8n + 12k + 38

respectively.
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For k = n− 5, no graph of the form F2 exists, and for k = n− 4, no graph of the

form F1 or F2 is possible. Hence the theorem follows. �

Theorem 5.3. A bicyclic graph with smallest F -index has the degree sequence

{2n−2, 32}.

Proof. From Theorem 5.2, it is evident that the degree sequence of a graph with

smallest F -index in B
k
n is {1k, qn−k−r, (q + 1)r}, where

2(n + 1)− k = (n− k)q + r, 0 ≤ r < n− k.

The F -index of such a graph is

k.13 + (n− k − r)q3 + r(q + 1)3 = g(k) (say).

We shall show that g(k) is a monotonic increasing function of k.

With the above values of q and r, the degree sequence of a graph with smallest

F -index in B
k+1
n is

{1k+1, q(n−k)−(q+r), (q + 1)q+r−1}

if 1 ≤ q + r < n− k, and

{1k+1, (q + 1)2(n−k)−(q+r)−1, (q + 2)(q+r)−(n−k)}

if q + r ≥ n− k since

2(n+1)− (k+1) =

{

(n− k − 1)q + (q + r − 1),when 0 ≤ q + r − 1 < n− k − 1,
(n− k − 1)(q + 1) + (q + r)− (n− k), otherwise.

So,

g(k + 1) =















(k + 1)13 + {(n − k)− (q + r)}q3 + (q + r − 1)(q + 1)3,when
1 ≤ q + r < n− k,
(k + 1)13 + {2(n − k)− (q + r)− 1}(q + 1)3 + {(q + r)− (n− k)}
(q + 2)3, when q + r ≥ n− k.

Case I. (1 ≤ q + r < n− k)

Here, g(k) < g(k + 1) if

0 < 1− q.q3 + (q − 1)(q + 1)3

i.e., if q4 < 1 + (q − 1)(q + 1)3

i.e., if q4 < 1 + (q2 − 1)(q2 + 2q + 1)

i.e., if q4 < 1 + q4 + 2q3 + q2 − q2 − 2q − 1

i.e., if 0 < 2q(q2 − 1).

Since q ≥ 2, the last inequality is true indeed. Hence, g(k) < g(k + 1).
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Case II. (q + r ≥ n− k)

Here, g(k) < g(k + 1) if

(n− k − r)q3 + r(q + 1)3 < 1 + {2(n − k)− (q + r)− 1}(q + 1)3 +

{(q + r)− (n− k)}(q + 2)3

i.e., if (n− k)q3 − rq3 + r(q + 1)3 < 1 + (n− k)(q + 1)3 + {(q + r)− (n− k)}

{(q + 2)3 − (q + 1)3} − (q + 1)3

i.e., if r{(q + 1)3 − q3} < 1 + (n− k){(q + 1)3 − q3}+ {(q + r)−

(n− k)}(3q2 + 9q + 7)− (q + 1)3

i.e., if r(3q2 + 3q + 1) < 1 + (n− k)(3q2 + 3q + 1) + {(q + r)−

(n− k)}(3q2 + 9q + 7)− (q + 1)3

i.e., if r(3q2 + 3q + 1) < 1 + (n− k)(3q2 + 3q + 1− 3q2 − 9q − 7) +

(q + r)(3q2 + 9q + 7)− (q + 1)3

i.e., if r(3q2 + 3q + 1) < 1− 6(n− k)(q + 1) + (q + r)(3q2 + 9q + 7)

−(q + 1)3

i.e., if r(3q2 + 3q + 1) < −6(n− k)(q + 1) + (q + r)(3q2 + 9q + 7)

−(q3 + 3q2 + 3q)

i.e., if 6(n − k)(q + 1) < r(3q2 + 9q + 7− 3q2 − 3q − 1) +

(3q3 + 9q2 + 7q)− (q3 + 3q2 + 3q)

i.e., if 6(n − k)(q + 1) < 6r(q + 1) + 2q3 + 6q2 + 4q

i.e., if 6(n − k − r)(q + 1) < 2q(q2 + 3q + 2)

i.e., if 6(n − k − r)(q + 1) < 2q(q + 2)(q + 1)

i.e., if 3(n− k − r) < q(q + 2).

Now, q + r ≥ n− k gives n− k− r ≤ q and so, 3(n− k− r) ≤ 3q < q2 + 2q since

q < q2 for all q > 1. Therefore, g(k) < g(k + 1).

Thus, in both cases g(k) is monotonic increasing in k, and so g(k) ≥ g(0) for

k ≥ 0.

Now, from Theorem 5.2, g(0) = 8n + 38 and the corresponding degree sequence

is {2n−2, 32}.

Hence the theorem. �
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6. Discussion and Conclusion

In this paper, we have obtained the graphs with smallest and largest F -indices

among the bicyclic graphs with k pendant vertices. As consequences, we have also

obtained the bicyclic graphs with smallest and largest F -indices. In [14], Zhang et

al. have obtained the bicyclic graphs with smallest and largest general Zagreb index

Mα
1 , α > 1 as the graphs with degree sequences {22, 3, n − 1, 1n−4} and {2n−2, 32}

respectively. Clearly, M3
1 is nothing but the F -index. Also in [11], it is found that the

bicyclic graph with smallest F -index has the degree sequence {2n−2, 32}. We have

obtained those results as corollaries of our main results. Hence, our results generalize

some previous works. In [2], Akhter et al. have considered seven subclasses of bicyclic

graphs having equal number of pendant edges attached to given number of vertices,

and ordered those subclasses with respect to F -index. But, in their study, all the

graphs across the different subclasses do not have equal number of vertices. Not all

those have equal number of pendant vertices also. So, the results obtained there are

not comparable with our results. Rather, our work is a genaralization of that work

also.
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