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EMPLOYING GENERALIZED (ψ, θ, φ)-CONTRACTION ON

PARTIALLY ORDERED FUZZY METRIC SPACES

WITH APPLICATIONS

Amrish Handa

Abstract. We establish fixed point and multidimensional fixed point results satis-
fying generalized (ψ, θ, φ)-contraction on partially ordered non-Archimedean fuzzy
metric spaces. By using this result we obtain the solution for periodic boundary
value problems and give an example to show the degree of validity of our hypoth-
esis. Our results generalize, extend and modify several well-known results in the
literature.

1. Introduction

In [21], Shaddad et al. study the existence and uniqueness of fixed points for

complete partially ordered metric spaces, which extends the main results of Harjani

and Sadarangani [13], Nieto and Rodŕıguez-López [17] and Ran and Reurings [18].

They also establish coupled fixed point theorems, which extend and generalize the

results of Harjani et al. [14], Bhaskar and Lakshmikantham [3] and Luong and

Thuan [16]. Some of our basic references are [4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20].

In this paper, we prove a fixed point theorem for G−non-decreasing mappings sat-

isfying generalized (ψ, θ, φ)-contraction on partially ordered non-Archimedean fuzzy

metric spaces. By using this result, we obtain the solution for periodic boundary

value problems and give an example to show the degree of validity of our hypothesis.

In the process, some multidimensional fixed point results are derived from our main

results. We improve and generalize the results of Alotaibi and Alsulami [1], Alsulami

[2], Harjani and Sadarangani [13], Harjani et al. [14], Luong and Thuan [16], Nieto

and Rodriguez-Lopez [17], Razani and Parvaneh [19] and many other results in the

literature.
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2. Fixed Point Results

In the sequel, X is a non-empty set and G : X → X is a mapping. For simplicity,

we denote G(x) by Gx where x ∈ X.

Definition 2.1 ([21]). An altering distance function is a function ψ : [0, +∞) → [0,

+∞) which satisfied the following conditions:

(iψ) ψ is continuous and non-decreasing,

(iiψ) ψ(t) = 0 if and only if t = 0.

Theorem 2.1. Let (X, ≼) be a partially ordered set and (X, M, ∗) be a complete

non-Archimedean fuzzy metric space. Suppose T, G : X → X are two mappings

such that the following properties are fulfilled:

(i) T (X) ⊆ G(X),

(ii) T is (G, ≼)−non-decreasing,

(iii) there exists x0 ∈ X such that Gx0 ≼ Tx0,

(iv) there exist an altering distance function ψ, an upper semi-continuous function

θ : [0, +∞) → [0, +∞) and a lower semi-continuous function φ : [0, +∞) → [0,

+∞) such that

ψ

(
1

M(Tx, Ty, t)
− 1

)
≤ θ

(
1

M(Gx, Gy, t)
− 1

)
− φ

(
1

M(Gx, Gy, t)
− 1

)
,

for all x, y ∈ X with Gx ≼ Gy, where θ(0) = φ(0) = 0 and ψ(t) − θ(t) + φ(t) > 0

for all t > 0. Also assume that, at least, one of the following conditions holds.

(a) (X, M) is complete, T and G are continuous and the pair (T, G) is compatible,

(b) (X, M) is complete, T and G are continuous and commuting,

(c) (G(X), M) is complete and (X, M, ≼) is non-decreasing-regular,

(d) (X, M) is complete, G(X) is closed and (X, M, ≼) is non-decreasing-regular,

(e) (X, M) is complete, G is continuous and monotone non-decreasing, the pair

(T, G) is compatible and (X, M, ≼) is non-decreasing-regular.

Then T and G have a coincidence point. Moreover, if for every x, y ∈ X there

exists u ∈ X such that Tu is comparable to Tx and Ty, and also the pair (T, G) is

weakly compatible. Then T and G have a unique common fixed point.

Proof. We divide the proof into five steps.

Step 1. We claim that there exists a sequence {xn}n≥0 ⊆ X such that {Gxn} is

≼-non-decreasing and Gxn+1 = Txn, for all n ≥ 0. Let x0 ∈ X be arbitrary and since
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Tx0 ∈ T (X) ⊆ G(X), therefore there exists x1 ∈ X such that Tx0 = Gx1. Then

Gx0 ≼ Tx0 = Gx1, as T is (G, ≼)-non-decreasing, Tx0 ≼ Tx1. Now Tx1 ∈ T (X) ⊆
G(X), so there exists x2 ∈ X such that Tx1 = Gx2. Then Gx1 = Tx0 ≼ Tx1 = Gx2.

Since T is (G, ≼)-non-decreasing, Tx1 ≼ Tx2. Continuing this process, there exists

a sequence {xn}n≥0 such that {Gxn} is ≼-non-decreasing, Gxn+1 = Txn ≼ Txn+1 =

Gxn+2 and

(2.1) Gxn+1 = Txn for all n ≥ 0.

Step 2. We claim that {M(Gxn, Gxn+1, t)} → 1. By contractive condition (iv)

and by the monotonicity of ψ, we have

ψ

(
1

M(Gxn+1, Gxn+2, t)
− 1

)
(2.2)

= ψ

(
1

M(Txn, Txn+1, t)
− 1

)
≤ θ

(
1

M(Gxn, Gxn+1, t)
− 1

)
− φ

(
1

M(Gxn, Gxn+1, t)
− 1

)
,

but we have ψ (δn)− θ (δn) + φ (δn) > 0, where δn = 1
M(Gxn, Gxn+1, t)

− 1. Then

ψ (δn+1)

ψ (δn)
≤ θ (δn)− φ (δn)

ψ (δn)
< 1.

Therefore we take

(2.3) ψ (δn+1) < ψ (δn) .

Since ψ is non-decreasing, we obtain

(2.4) δn+1 < δn.

Thus the sequence {δn}n≥0 is a decreasing sequence of positive numbers. Hence,

there exists δ ≥ 0 such that

(2.5) lim
n→∞

δn = lim
n→∞

(
1

M(Gxn, Gxn+1, t)
− 1

)
= δ.

We claim that δ = 0. Suppose, to the contrary, that δ > 0. Taking n→ ∞ in (2.2),

by using the property of ψ, θ, φ and (2.5), we obtain

ψ(δ) ≤ θ(δ)− φ(δ) ⇒ ψ(δ)− θ(δ) + φ(δ) ≤ 0,

which is a contradiction. Thus, by (2.5), we get

(2.6) lim
n→∞

δn = lim
n→∞

(
1

M(Gxn, Gxn+1, t)
− 1

)
= 0,
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or

(2.7) lim
n→∞

M(Gxn, Gxn+1, t) = 1.

Step 3. We now claim that {Gxn}n≥0 is a Cauchy sequence in X. If possible,

suppose that {Gxn} is not a Cauchy sequence. Then there exists an ε > 0 for which

we can find two sequences of positive integers {m(k)} and {n(k)} such that for all

positive integers k, and

(2.8) M(Gxn(k), Gxm(k), t) ≤ 1− ε for n(k) > m(k) > k.

Let n(k) be the smallest such positive integer, we get

(2.9) M(Gxn(k)−1, Gxm(k), t) > 1− ε.

Now, by (2.8) and (2.9), we have

1− ε ≥ rk =M(Gxn(k), Gxm(k), t)

≥ M(Gxn(k), Gxn(k)−1, t) ∗M(Gxn(k)−1, Gxm(k), t)

> M(Gxn(k), Gxn(k)−1, t) ∗ (1− ε).

Letting k → ∞ in the above inequality and by using (2.7), we get

(2.10) lim
k→∞

rk = lim
k→∞

M(Gxn(k), Gxm(k), t) = 1− ε.

By (NAFM-4), we have

M(Gxn(k)+1, Gxm(k)+1, t)

≥ M(Gxn(k)+1, Gxn(k), t) ∗M(Gxn(k), Gxm(k), t) ∗M(Gxm(k), Gxm(k)+1, t).

Letting k → ∞ in the above inequalities, using (2.7) and (2.10), we have

(2.11) lim
k→∞

M(Gxn(k)+1, Gxm(k)+1, t) = 1− ε.

Since n(k) > m(k), xn(k) ≽ xm(k), therefore by using contractive condition (iv), we

have

ψ

(
1

M(Gxn(k)+1, Gxm(k)+1, t)
− 1

)
= ψ

(
1

M(Txn(k), Txm(k), t)
− 1

)
≤ θ

(
1

M(Gxn(k), Gxm(k), t)
− 1

)
− φ

(
1

M(Gxn(k), Gxm(k), t)
− 1

)
.
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Letting k → ∞ in the above inequality, by using the property of ψ, θ, φ and (2.10),

(2.11), we have

ψ

(
ε

1− ε

)
≤ θ

(
ε

1− ε

)
− φ

(
ε

1− ε

)
,

which is a contradiction due to ε > 0. Thus {Gxn}n≥0 is a Cauchy sequence in X.

Step 4. We claim that T and G have a coincidence point distinguishing between

cases (a)− (e).

Suppose now that (a) holds, that is, (X, M) is complete, T and G are continuous

and the pair (T, G) is compatible. Since (X, M) is complete, therefore there exists

z ∈ X such that {Gxn} → z. Since Txn = Gxn+1 for all n ≥ 0, therefore {Txn} → z.

As T and G are continuous, so {TGxn} → Tz and {GGxn} → Gz. Since the pair

(T, G) is compatible, therefore we conclude that

M(Gz, Tz, t) = lim
n→∞

M(GGxn+1, TGxn, t) = lim
n→∞

M(GTxn, TGxn, t) = 1,

that is, z is a coincidence point of T and G.

Suppose now that (b) holds, that is, (X, M) is complete, T and G are continuous

and commuting. Thus (a) is applicable.

Suppose now that (c) holds, that is, (G(X), M) is complete and (X, M, ≼) is

non-decreasing-regular. Now, since {Gxn} is a Cauchy sequence in the complete

space (G(X), M). Therefore there exist y ∈ G(X) such that {Gxn} → y. Let

z ∈ X be any point such that y = Gz, then {Gxn} → Gz. Since (X, M, ≼) is

non-decreasing-regular and {Gxn} is ≼ −non-decreasing and converging to Gz, we

obtain that Gxn ≼ Gz for all n ≥ 0. Using the contractive condition (iv), we have

ψ

(
1

M(Gxn+1, T z, t)
− 1

)
= ψ

(
1

M(Txn, T z, t)
− 1

)
≤θ

(
1

M(Gxn, Gz, t)
−1

)
− φ

(
1

M(Gxn, Gz, t)
− 1

)
.

Taking n → ∞ in the above inequality, we get M(Gz, Tz, t) = 1, that is, z is a

coincidence point of T and G.

Suppose now that (d) holds, that is, (X, M) is complete, G(X) is closed and (X,

M, ≼) is non-decreasing-regular. Since a closed subset of a complete metric space is

also complete. Therefore, (G(X), M) is complete and (X, M, ≼) is non-decreasing-

regular. Thus (c) is applicable.

Suppose now that (e) holds, that is, (X, M) is complete, G is continuous and

monotone non-decreasing, the pair (T, G) is compatible and (X, M, ≼) is non-

decreasing-regular. Since (X, M) is complete, therefore there exists z ∈ X such
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that {Gxn} → z. As Txn = Gxn+1 for all n ≥ 0 and so {Txn} → z. Also G is

continuous, then {GGxn} → Gz. Furthermore, since the pair (T, G) is compatible

and {GGxn} → Gz, it follows that {TGxn} → Gz.

Again, since (X, M, ≼) is non-decreasing-regular and {Gxn} is ≼-non-decreasing

and converging to z, we obtain that Gxn ≼ z for all n ≥ 0, which, by the mono-

tonicity of G, implies GGxn ≼ Gz. Applying the contractive condition (iv), we

get

ψ

(
1

M(TGxn, T z, t)
− 1

)
≤ θ

(
1

M(GGxn, Gz, t)
− 1

)
− φ

(
1

M(GGxn, Gz, t)
− 1

)
.

Taking n → ∞ in the above inequality, we get M(Gz, Tz, t) = 1, that is, z is a

coincidence point of T and G.

Step 5. As the set of coincidence points of G and T is non-empty, so suppose

that x and y are coincidence points of T and G, that is, Tx = Gx and Ty = Gy.

Now, we claim that Gx = Gy. Since, there exists u ∈ X such that Tu is comparable

with Tx and Ty. Put u0 = u and choose u1 ∈ X so that Gu0 = Tu1. Then, we

can inductively define sequences {Gun} where Gun+1 = Tun for all n ≥ 0. Hence

Tx = Gx and Tu = Tu0 = Gu1 are comparable. Suppose that Gu1 ≼ Gx (the proof

is similar to that in the other case). We claim that Gun ≼ Gx for each n ∈ N. In
fact, we will use mathematical induction. Since Gu1 ≼ Gx, our claim is true for

n = 1.

We assume that Gun ≼ Gx holds for some n > 1. Since T is G-nondecreasing

with respect to ≼, we get Gun+1 = Tun ≼ Tx = Gx and this proves our claim.

Since Gun ≼ Gx, by (2.1) and (iv), we have

ψ

(
1

M(Gx, Gun+1, t)
− 1

)
(2.12)

= ψ

(
1

M(Tx, Tun, t)
− 1

)
≤ θ

(
1

M(Gx, Gun, t)
− 1

)
− φ

(
1

M(Gx, Gun, t)
− 1

)
,

but we have ψ (∆n)− θ (∆n) + φ (∆n) > 0 where ∆n = 1
M(Gx, Gun, t)

− 1. Then

ψ (∆n+1)

ψ (∆n)
≤ θ (∆n)− φ (∆n)

ψ (∆n)
< 1.
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Thus

ψ (∆n+1) ≤ (∆n) .

Since ψ is non-decreasing, therefore

∆n+1 < ∆n.

This shows that the sequence {∆n}n≥0 defined by

∆n =
1

M(Gx, Gun, t)
− 1,

is a decreasing sequence of positive numbers. Then there exists ∆ ≥ 0 such that

(2.13) lim
n→∞

∆n = lim
n→∞

(
1

M(Gx, Gun, t)
− 1

)
= ∆.

We claim that ∆ = 0. Suppose to the contrary that ∆ > 0. Taking n→ ∞ in (2.12),

by using the property of ψ, θ, φ and (2.13), we obtain

ψ(∆) ≤ θ(∆)− φ(∆) ⇒ ψ(∆)− θ(∆) + φ(∆) ≤ 0,

which is a contradiction. Thus, by (2.13), we get

lim
n→∞

∆n = lim
n→∞

(
1

M(Gx, Gun, t)
− 1

)
= 0.

It follows that limn→∞M(Gx, Gun, t) = 1. Similarly, one can prove that

lim
n→∞

M(Gy,Gun, t) = 1.

Hence, we get Gx = Gy. Since Tx = Gx, therefore by weak compatibility of T and

G, we have TGx = GTx = GGx. Let z = Gx, then Tz = Gz. Thus z is a coincidence

point of T and G. Then y = z, it follows that Gx = Gz, that is, Tz = Gz = z.

Therefore, z is a common fixed point of T and G. To prove the uniqueness, assume

that w is another common fixed point of T and G. Then, we have w = Gw = Gz = z.

Hence the common fixed point of T and G is unique. �

Take ψ(t) = t and φ(t) = 0 for all t ≥ 0 in Theorem 2.1, we obtain the following

corollary.

Corollary 2.2. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is a

complete non-Archimedean fuzzy metric space. Suppose T, G : X → X are two map-

pings satisfying (i)− (iii) of Theorem 2.1 and there exists an upper semi-continuous

function θ : [0, +∞) → [0, +∞) such that

1

M(Tx, Ty, t)
− 1 ≤ θ

(
1

M(Gx, Gy, t)
− 1

)
,
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for all x, y ∈ X such that Gx ≼ Gy, where θ(0) = 0 and t − θ(t) > 0 for all t > 0.

Also assume that, at least, one of the conditions (a) − (e) of Theorem 2.1 holds.

Then T and G have a coincidence point. Moreover, if for every x, y ∈ X there

exists u ∈ X such that Tu is comparable to Tx and Ty and also the pair (T, G) is

weakly compatible. Then T and G have a unique common fixed point.

Take φ(t) = 0 and θ(t) = kψ(t) with 0 ≤ k < 1, for all t ≥ 0 in Theorem 2.1, we

have the following corollary.

Corollary 2.3. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is

a complete non-Archimedean fuzzy metric space. Suppose T, G : X → X are two

mappings satisfying (i)− (iii) of Theorem 2.1 and there exists an altering distance

function ψ such that

ψ

(
1

M(Tx, Ty, t)
− 1

)
≤ kψ

(
1

M(Gx, Gy, t)
− 1

)
,

for all x, y ∈ X such that Gx ≼ Gy, where 0 ≤ k < 1. Also assume that, at least, one

of the conditions (a)− (e) of Theorem 2.1 holds. Then T and G have a coincidence

point. Moreover, if for every x, y ∈ X there exists u ∈ X such that Tu is comparable

to Tx and Ty and also the pair (T, G) is weakly compatible. Then T and G have a

unique common fixed point.

If we take ψ(t) = θ(t) for all t ≥ 0 in Theorem 2.1, we obtain the following

corollary.

Corollary 2.4. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is

a complete non-Archimedean fuzzy metric space. Suppose T, G : X → X are two

mappings satisfying (i) − (iii) of Theorem 2.1 and there exist an altering distance

function ψ and a lower semi-continuous function φ : [0, +∞) → [0, +∞) such that

ψ

(
1

M(Tx, Ty, t)
− 1

)
≤ ψ

(
1

M(Gx, Gy, t)
− 1

)
− φ

(
1

M(Gx, Gy, t)
− 1

)
,

for all x, y ∈ X such that Gx ≼ Gy, where φ(0) = 0. Also assume that, at least, one

of the conditions (a)− (e) of Theorem 2.1 holds. Then T and G have a coincidence

point. Moreover, if for every x, y ∈ X there exists u ∈ X such that Tu is comparable

to Tx and Ty and also the pair (T, G) is weakly compatible. Then T and G have a

unique common fixed point.
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If we take ψ(t) = θ(t) = t for all t ≥ 0 in Theorem 2.1, we get the following

corollary.

Corollary 2.5. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is a

complete non-Archimedean fuzzy metric space. Suppose T, G : X → X are two map-

pings satisfying (i)− (iii) of Theorem 2.1 and there exists a lower semi-continuous

function φ : [0, +∞) → [0, +∞) such that

1

M(Tx, Ty, t)
− 1 ≤

(
1

M(Gx, Gy, t)
− 1

)
− φ

(
1

M(Gx, Gy, t)
− 1

)
,

for all x, y ∈ X such that Gx ≼ Gy, where φ(0) = 0. Also assume that, at least, one

of the conditions (a)− (e) of Theorem 2.1 holds. Then T and G have a coincidence

point. Moreover, if for every x, y ∈ X there exists u ∈ X such that Tu is comparable

to Tx and Ty and also the pair (T, G) is weakly compatible. Then T and G have a

unique common fixed point.

If we take ψ(t) = θ(t) = t and φ(t) = (1−k)t with k < 1 for all t ≥ 0 in Theorem

2.1, we get the following corollary.

Corollary 2.6. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is

a complete non-Archimedean fuzzy metric space. Suppose T, G : X → X are two

mappings satisfying (i)− (iii) of Theorem 2.1 such that

1

M(Tx, Ty, t)
− 1 ≤ k

(
1

M(Gx, Gy, t)
− 1

)
,

for all x, y ∈ X such that Gx ≼ Gy, where k < 1. Also assume that, at least, one

of the conditions (a)− (e) of Theorem 2.1 holds. Then T and G have a coincidence

point. Moreover, if for every x, y ∈ X there exists u ∈ X such that Tu is comparable

to Tx and Ty and also the pair (T, G) is weakly compatible. Then T and G have a

unique common fixed point.

Example 2.1. Suppose thatX = [0, 1], equipped with the usual metric d : X×X →
[0, +∞) with the natural ordering of real numbers ≤ and ∗ is defined by a ∗ b = ab,

for all a, b ∈ [0, 1]. Define

M(x, y, t) =
t

t+ d(x, y)
, for all x, y ∈ X and t > 0.
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Clearly (X, M, ∗) is a complete non-Archimedean fuzzy metric space. Let T, G :

X → X be defined as

Tx =
x2

3
and Gx = x2 for all x ∈ X.

Let ψ(t) = θ(t) = t and φ(t) = 2t
3 for t ≥ 0. Clearly, T and G satisfied the contractive

condition of Theorem 2.1. In addition, all the other conditions of Theorem 2.1 are

satisfied and z = 0 is a unique common fixed point of T and G.

3. Coupled Fixed Point Results

Next, we deduce the two dimensional version of Theorem 2.1. Given n ∈ N where

n ≥ 2, let Xn be the nth Cartesian product X × X × ... × X (n times). For the

ordered fuzzy metric space (X, M, ≼), let us consider the ordered fuzzy metric space

(X2, Mδ, ⊑), where Mδ : X
2 ×X2 × [0, ∞) → [0, 1] defined by

Mδ(Y, V, t) = min{M(x, u, t), M(y, v, t)}, ∀Y = (x, y), V = (u, v) ∈ X2.

It is easy to check that Mδ is a non-Archimedean fuzzy metric on X2. Moreover,

(X, M, ∗) is complete if and only if (X2, Mδ, ∗) is complete and ⊑ was introduced

in

(u, v) ⊑ (x, y) ⇔ x ≽ u and y ≼ v, for all (u, v), (x, y) ∈ X2.

We define the mapping TF , TG : X2 → X2, for all (x, y) ∈ X2, by

TF (x, y) = (F (x, y), F (y, x)) and TG(x, y) = (Gx, Gy).

Under these conditions, the following properties hold.

Lemma 3.1. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is a

complete non-Archimedean fuzzy metric space. Let F : X2 → X and G : X → X be

two mappings. Then

(1) (X, M) is complete if and only if (X2, Mδ) is complete.

(2) If (X, M, ≼) is regular, then (X2, Mδ, ⊑) is also regular.

(3) If F is M−continuous, then TF is Mδ-continuous.

(4) F has the mixed monotone property with respect to ≼ if and only if TF is

⊑-non-decreasing.

(5) F has the mixed G−monotone property with respect to ≼ if and only if then

TF is (TG, ⊑)-non-decreasing.
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(6) If there exist two elements x0, y0 ∈ X with Gx0 ≼ F (x0, y0) and Gy0 ≽ F (y0,

x0), then there exists a point (x0, y0) ∈ X2 such that TG(x0, y0) ⊑ TF (x0, y0).

(7) If F (X2) ⊆ G(X), then TF (X
2) ⊆ TG(X

2).

(8) If F and G are commuting in (X, M, ≼), then TF and TG are also commuting

in (X2, Mδ, ⊑).

(9) If F and G are compatible in (X, M, ≼), then TF and TG are also compatible

in (X2, Mδ, ⊑).

(10) If F and G are weak compatible in (X, M, ≼), then TF and TG are also

weak compatible in (X2, Mδ, ⊑).

(11) A point (x, y) ∈ X2 is a coupled coincidence point of F and G if and only

if it is a coincidence point of TF and TG.

(12) (x, y) ∈ X2 is a coupled fixed point of F if and only if it is a fixed point of

TF .

Proof. Items (1), (2), (3), (4), (5), (6), (7), (11) and (12) are obvious.

(8) Let (x, y) ∈ X2. Since G and F are commutative, by the definition of TG and

TF , we have TGTF (x, y) = TG(F (x, y), F (y, x)) = (GF (x, y), GF (y, x)) = (F (Gx,

Gy), F (Gy, Gx)) = TF (Gx, Gy) = TFTG(x, y), which shows that TG and TF are

commutative.

(9) Let {(xn, yn)} ⊆ X2 be any sequence such that TF (xn, yn)
Mδ→ (x, y) and

TG(xn, yn)
Mδ→ (x, y). Therefore,

(F (xn, yn), F (yn, xn))
Mδ→ (x, y) ⇒ F (xn, yn)

M→ x and F (yn, xn)
M→ y,

and

(Gxn, Gyn)
Mδ→ (x, y) ⇒ Gxn

M→ x and Gyn
M→ y.

Thus

lim
n→∞

F (xn, yn) = lim
n→∞

Gxn = x ∈ X,

lim
n→∞

F (yn, xn) = lim
n→∞

Gyn = y ∈ X.

Since the pair {F, G} is compatible, we have

lim
n→∞

M(F (Gxn, Gyn), GF (xn, yn), t) = 1,

lim
n→∞

M(F (Gyn, Gxn), GF (yn, xn), t) = 1.
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In particular, we have

lim
n→∞

Mδ(TGTF (xn, yn), TFTG(xn, yn), t)

= lim
n→∞

Mδ(TG(F (xn, yn), F (yn, xn)), TF (Gxn, Gyn), t)

= lim
n→∞

Mδ ((GF (xn, yn), GF (yn, xn)), (F (Gxn, Gyn), F (Gyn, Gxn)), t)

= lim
n→∞

min

{
M(GF (xn, yn), F (Gxn, Gyn), t),
M(GF (yn, xn), F (Gyn, Gxn), t)

}
= 1.

Hence, the mappings TF and TG are compatible in (X2, Mδ, ⊑).

(10) Let (x, y) ∈ X2 be a coincidence point TG and TF . Then TG(x, y) = TF (x,

y), that is, (Gx, Gy) = (F (x, y), F (y, x)), that is, Gx = F (x, y) and Gy = F (y,

x). Since G and F are weak compatible, by the definition of TG and TF , we have

TGTF (x, y) = TG(F (x, y), F (y, x)) = (GF (x, y), GF (y, x)) = (F (Gx, Gy), F (Gy,

Gx)) = TF (Gx, Gy) = TFTG(x, y), which shows that TG and TF commute at their

coincidence point, that is, TG and TF are weak compatible. �

Theorem 3.1. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is a

complete non-Archimedean fuzzy metric space. Assume F : X2 → X and G : X →
X are two mappings such that F has the mixed G−monotone property with respect

to ≼ on X for which there exist an altering distance function ψ, an upper semi-

continuous function θ : [0, +∞) → [0, +∞) and a lower semi-continuous function

φ : [0, +∞) → [0, +∞) satisfying

ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
(3.1)

≤ θ

(
1

min{M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
−φ

(
1

min{M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
,

for all x, y, u, v ∈ X, with Gx ≼ Gu and Gy ≽ Gv, where θ(0) = φ(0) = 0 and

ψ(t) − θ(t) + φ(t) > 0 for all t > 0. Suppose that F (X2) ⊆ G(X), G is continuous

and monotone non-decreasing and the pair {F, G} is compatible. Also suppose that

either

(a) F is continuous or

(b) (X, M, ≼) is regular.
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If there exist two elements x0, y0 ∈ X with

Gx0 ≼ F (x0, y0) and Gy0 ≽ F (y0, x0).

Then F and G have a coupled coincidence point. In addition, suppose that for

every (x, y), (x∗, y∗) ∈ X2, there exists a (u, v) ∈ X2 such that (F (u, v), F (v, u))

is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)), and also the pair

(F, G) is weakly compatible. Then F and G have a unique coupled common fixed

point, that is, there exists a unique (x, y) ∈ X2 such that x = Gx = F (x, y) and

y = Gy = F (y, x).

Proof. Let x, y, u, v ∈ X, with Gx ≼ Gu and Gy ≽ Gv. Then, by using (3.1), we

have

ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
≤ θ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
−φ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
.

Furthermore taking into account that Gy ≽ Gv and Gx ≼ Gu, (3.1) also guarantees

that

ψ

(
1

M(F (y, x), F (v, u), t)
− 1

)
≤ θ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
−φ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
.

Combining them, we get

max

{
ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
, ψ

(
1

M(F (y, x), F (v, u), t)
− 1

)}
≤ θ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
−φ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
.

Since ψ is non-decreasing, we take
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ψ

(
max

{(
1

M(F (x, y), F (u, v), t)
− 1

)
,

(
1

M(F (y, x), F (v, u), t)
− 1

)})(3.2)

≤ θ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
− φ

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
.

Thus, it follows from (3.2) that

ψ

(
1

Mδ(TF (x, y), TF (u, v), t)
− 1

)
= ψ

(
1

min {M(F (x, y), F (u, v), t), M(F (y, x), F (v, u), t)}
− 1

)
= ψ

(
max

{(
1

M(F (x, y), F (u, v), t)
− 1

)
,

(
1

M(F (y, x), F (v, u), t)
− 1

)})
≤ θ

(
1

min {M(Gx, Gu, t),M(Gy, Gv, t)}
− 1

)
− φ

(
1

min {M(Gx, Gu, t),M(Gy, Gv, t)}
− 1

)
≤ θ

(
1

Mδ(TG(x, y), TG(u, v), t)
− 1

)
− φ

(
1

Mδ(TG(x, y), TG(u, v), t)
− 1

)
.

It is only need to apply Theorem 3.1 to the mappings T = TF and G = TG in the

partially ordered metric space (X2, Mδ, ⊑) with the help of Lemma 3.1. �

Corollary 3.2. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is a

complete non-Archimedean fuzzy metric space. Assume F : X2 → X and G : X →
X are two mappings such that F has the mixed G−monotone property with respect

to ≼ on X for which there exist an altering distance function ψ, an upper semi-

continuous function θ : [0, +∞) → [0, +∞) and a lower semi-continuous function

φ : [0, +∞) → [0, +∞) satisfying (3.1), for all x, y, u, v ∈ X, with Gx ≼ Gu and

Gy ≽ Gv, where θ(0) = φ(0) = 0 and ψ(t) − θ(t) + φ(t) > 0 for all t > 0. Suppose

that F (X2) ⊆ G(X), G is continuous and monotone non-decreasing and the pair

{F, G} is commuting. Also suppose that either

(a) F is continuous or

(b) (X, M, ≼) is regular.

If there exist two elements x0, y0 ∈ X with

Gx0 ≼ F (x0, y0) and Gy0 ≽ F (y0, x0).
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Then F and G have a coupled coincidence point. In addition, suppose that for

every (x, y), (x∗, y∗) ∈ X2, there exists a (u, v) ∈ X2 such that (F (u, v), F (v, u))

is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)), and also the pair

(F, G) is weakly compatible. Then F and G have a unique coupled common fixed

point, that is, there exists a unique (x, y) ∈ X2 such that x = Gx = F (x, y) and

y = Gy = F (y, x).

Corollary 3.3. Let (X, ≼) be a partially ordered set and suppose (X, M, ∗) is

a complete non-Archimedean fuzzy metric space. Assume F : X2 → X has mixed

monotone property with respect to ≼ and there exist an altering distance function

ψ, an upper semi-continuous function θ : [0, +∞) → [0, +∞) and a lower semi-

continuous function φ : [0, +∞) → [0, +∞) such that

ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
≤ θ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
−φ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
.

for all x, y, u, v ∈ X, with x ≼ u and y ≽ v, where θ(0) = φ(0) = 0 and ψ(t) −
θ(t) + φ(t) > 0 for all t > 0. Also suppose that either

(a) F is continuous or

(b) (X, M, ≼) is regular.

If there exist two elements x0, y0 ∈ X with

x0 ≼ F (x0, y0) and y0 ≽ F (y0, x0).

Then F has a coupled fixed point.

In a similar way, we may state the results analog of Corollary 2.2, Corollary 2.3,

Corollary 2.4, Corollary 2.5 and Corollary 2.6 for Theorem 3.1, Corollary 3.2 and

Corollary 3.3.

4. Application to Ordinary Differential Equations

In this section, we study the existence of a solution for the following first-order

periodic problem:

(4.1)

{
u′(t) = f(t, u(t), u(t)), t ∈ [0, T ],

u(0) = u(T ),
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where T > 0 and f : I × R × R → R is a continuous function. Evidently the space

X = C(I, R) (I = [0, T ]) of all continuous functions from I to R is a complete

metric space with respect to the sup metric

d(x, y) = sup
t∈I

|x(t)− y(t)| , for all x, y ∈ X.

Define

M(x, y, t) =
t

t+ d(x, y)
, for all x, y ∈ X and t > 0.

Then (X, M, ∗) is a complete fuzzy metric space with a ∗ b = min{a, b} for all a,

b ∈ [0, 1]. Also X equipped with the following partial order:

(4.2) x ≼ y ⇐⇒ x(t) ≤ y(t), for all t ∈ I and for all x, y ∈ X.

Definition 4.1. A coupled lower-upper solution for (4.1) is a function (p, q) ∈ C1(I,

R)× C1(I, R) such that

p′(t) ≤ f(t, p(t), q(t)) and q′(t) ≥ f(t, q(t), p(t)) for t ∈ I,

p(0) = p(T ) = q(0) = q(T ) = 0.

Theorem 4.1. Consider problem (4.1) with f : I × R× R → R continuous and for

x, y, u, v ∈ X with x ≽ u and y ≼ v,

0 ≤ f(t, x, y) + λx− f(t, u, v)− λu ≤ λ

6
((x− u) + (y − v)) ,

Then the existence of a coupled upper-lower solution of (4.1) provides the existence

of a solution of (4.1).

Proof. (4.1) reduces to the following integral equation

u(t) =

∫ T

0
G(t, s)[f(s, u(s), u(s)) + λu(s)]ds,

where G(t, s) is the Green function given by

G(t, s) =

{
eλ(T+s−t)

eλT−1
, 0 ≤ s < t ≤ T,

eλ(s−t)

eλT−1
, 0 ≤ t < s ≤ T.

Define F : X2 → X by

F (x, y)(t) =

∫ T

0
G(t, s)[f(s, x(s), y(s)) + λx(s)]ds.

If x1 ≽ x2, then by using our assumption, we have

f(t, x1, y) + λx1 ≥ f(t, x2, y) + λx2.
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Since G(t, s) > 0, that for t ∈ I, it implies

F (x1, y)(t) =

∫ T

0
G(t, s)[f(s, x1(s), y(s)) + λx1(s)]ds

≥
∫ T

0
G(t, s)[f(s, x2(s), y(s)) + λx2(s)]ds

= F (x2, y)(t).

Also, if y1 ≽ y2, then by using our assumption, we have

f(t, x, y1) ≤ f(t, x, y2).

Since G(t, s) > 0, that for t ∈ I, it implies

F (x, y1)(t) =

∫ T

0
G(t, s)[f(s, x(s), y1(s)) + λx(s)]ds

≤
∫ T

0
G(t, s)[f(s, x(s), y2(s)) + λx(s)]ds

= F (x, y2)(t).

Therefore F has mixed monotone property. Now, for x ≽ y and y ≼ v, we have

d(F (x, y), F (u, v))

= sup
t∈I

|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

∣∣∣∣∫ T

0
G(t, s)[f(s, x(s), y(s)) + λx(s)− f(s, u(s), v(s))− λu(s)]ds

∣∣∣∣
≤ sup

t∈I

∣∣∣∣∫ T

0
G(t, s) · λ

6
((x(s)− u(s)) + (y(s)− v(s))) ds

∣∣∣∣
≤ λ

6
(d(x, u) + d(y, v)) sup

t∈I

∣∣∣∣∫ T

0
G(t, s)ds

∣∣∣∣
≤ λ

6
(d(x, u) + d(y, v)) sup

t∈I

∣∣∣∣∣
∫ t

0

eλ(T+s−t)

eλT − 1
ds+

∫ T

t

eλ(s−t)

eλT − 1
ds

∣∣∣∣∣
≤ d(x, u) + d(y, v)

6
.

Thus

1

M(F (x, y), F (u, v), t)
− 1 ≤ 1

3

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
.
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Put ψ(t) = θ(t) = t and φ(t) = 2t
3 for t ≥ 0. Obviously ψ is an altering distance

function, ψ(t), θ(t) and φ(t) satisfy the condition of ψ(t) − θ(t) + φ(t) > 0 for all

t > 0. Thus for x ≽ u and y ≼ v, we get

ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
≤ θ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
−φ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
.

Finally, assume that (p, q) ∈ X2 be a coupled upper-lower solution of (4.1), then

p′(s) + λp(s) ≤ f(s, p(s), q(s)) + λp(s), for t ∈ I.

Multiplying by G(t, s), we get

∫ T

0
p′(s)G(t, s)ds+ λ

∫ T

0
p(s)G(t, s)ds ≤ F (p, q)(t), for t ∈ I.

Then, for all for t ∈ I, we have

∫ t

0
p′(s)

eλ(T+s−t)

eλT − 1
ds+

∫ T

t
p′(s)

eλ(s−t)

eλT − 1
ds+ λ

∫ T

0
p(s)G(t, s)ds ≤ F (p, q)(t).

Using an integration by parts and since p(0) = p(T ) = 0, for all t ∈ I, we get

p(t) ≤ F (p, q)(t).

This implies that p ≼ F (p, q). Similarly, one can show that q ≽ F (q, p). Thus

hypothesis of Corollary 3.3 holds. Consequently, F has a coupled fixed point (x,

y) ∈ X2 which is the solution to (4.1) in X = C(I, R).

Now, we study the existence and uniqueness of solution to the two-point boundary

value problem.

(4.3)

{
−x′′(t) = f(t, x(t), x(t)), x ∈ (0, +∞), t ∈ [0, 1],

x(0) = x(1) = 0.

where f : [0, 1] × R × R → R is a continuous function. The space X = C(I, R)
(I = [0, 1]) denote the set of all continuous functions from I to R.
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Theorem 4.2. Under the assumptions

(a) f : [0, 1]× R× R → R is continuous.

(b) Suppose that there exists 0 ≤ γ ≤ 6 such that for all t ∈ I, x ≽ u and y ≼ v,

0 ≤ f(t, x, y)− f(t, u, v) ≤ γ

6
(ζ(x− u) + ζ(y − v)),

where ζ(t) : [0, +∞) → [0, +∞) is a right upper semi-continuous and non-decreasing

function with ζ(0) = 0, ζ(t) ≤ t, for all t > 0.

(c) There exists (α, β) ∈ C2(I, R)× C2(I, R) solution to

(4.4)

 −p′′(t) ≤ f(t, p(t), q(t)), t ∈ [0, 1],
−q′′(t) ≥ f(t, q(t), p(t)), t ∈ [0, 1],

p(0) = p(1) = q(0) = q(1) = 0.

Then (4.3) has one and only one solution in C2(I, R).

Proof. Clearly the solution (in C2(I, R)) of (4.3) is equivalent to the solution (in

C(I, R)) of the following Hammerstein integral equation:

x(t) =

∫ 1

0
G(t, s)f(s, x(s), x(s))ds for t ∈ [0, 1],

where G(t, s) is the Green function of differential operator − d2

dt2
with Dirichlet

boundary condition x(0) = x(1) = 0, that is,

(4.5) G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Define F : X2 → X by

F (x, y)(t) =

∫ 1

0
G(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1] and x, y ∈ X.

From (b), F has the mixed monotone property with respect to ≼ in X. Let x, y, u,

v ∈ X such that x ≽ u and y ≼ v. From (b), we have

d(F (x, y), F (u, v))

= sup
t∈I

|F (x, y)(t)− F (u, v)(t)|

= sup
t∈I

∫ 1

0
G(t, s)[f(s, x(s), y(s))− f(s, u(s), v(s))]ds

≤ γ

6
sup
t∈I

∫ 1

0
G(t, s) · (ζ(x(s)− u(s)) + ζ(y(s)− v(s)))ds

≤ γ

3

(
ζ(d(x, u)) + ζ(d(y, v))

2

)
sup
t∈I

∫ 1

0
G(t, s)ds.
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Now, since G is non-decreasing, we have

ζ(d(x, u)) ≤ ζ(d(x, u) + d(y, v)),

ζ(d(y, v)) ≤ ζ(d(x, u) + d(y, v)),

which implies

ζ(d(x, u)) + ζ(d(y, v))

2
≤ ζ(d(x, u) + d(y, v)).

Therefore, we take

d(F (x, y), F (u, v))(4.6)

≤ γ

3
(ζ(d(x, u) + d(y, v))) sup

t∈I

∫ 1

0
G(t, s)ds.

It is evident that ∫ 1

0
G(t, s)ds = − t

2

2
+
t

2
,

and

sup
t∈[0, 1]

∫ 1

0
G(t, s)ds =

1

8
.

Thus the inequality (4.6) and 0 < γ ≤ 6 gives

d(F (x, y), F (u, v)) ≤ γ

24
(ζ(d(x, u) + d(y, v)))

≤ 1

4
(ζ(d(x, u) + d(y, v)))

≤ d(x, u) + d(y, v)

4
.

Thus

1

M(F (x, y), F (u, v), t)
− 1 ≤ 1

2

(
1

min {M(Gx, Gu, t), M(Gy, Gv, t)}
− 1

)
.

Put ψ(t) = θ(t) = t and φ(t) = t
2 for t ≥ 0. It is evident that ψ is an altering

distance function, ψ(t), θ(t) and φ(t) satisfy the condition of ψ(t)− θ(t) + φ(t) > 0

for all t > 0. From the above inequality, for x ≽ u and y ≼ v, we obtain

ψ

(
1

M(F (x, y), F (u, v), t)
− 1

)
≤ θ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
−φ

(
1

min {M(x, u, t), M(y, v, t)}
− 1

)
.
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which is the contractive condition of Corollary 3.3. Assume (p, q) ∈ C2(I, R)×C2(I,

R) be a solution to (4.3). Then

−p′′(s) ≤ f(s, p(s), q(s)), s ∈ [0, 1].

Multiplying by G(t, s), we get∫ 1

0
−p′′(s)G(t, s)ds ≤ F (p, q)(t), t ∈ [0, 1].

Then, for all t ∈ [0, 1], we have

−(1− t)

∫ t

0
sp′′(s)ds− t

∫ 1

t
(1− s)p′′(s)ds ≤ F (p, q)(t).

Since p(0) = p(1) = 0, for all t ∈ [0, 1], we get

−(1− t)(tp′(t)− p(t))− t(−(1− t)p′(t)− p(t)) ≤ F (p, q)(t).

Thus, we have

p(t) ≼ F (p, q)(t), for t ∈ [0, 1].

It means that p ≼ F (p, q). Similarly, one can prove that q ≽ F (q, p). Thus hypothesis

of Corollary 3.3 holds. Consequently, F has a coupled fixed point (x, y) ∈ X2 which

is the solution to (4.3) in X = C(I, R). �

Remark. Applying the same techniques, it is possible to find tripled, quadruple

and in general, multidimensional coincidence point theorems from Theorem 2.1.
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