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AN EFFICIENT AND ROBUST NUMERICAL METHOD FOR

OPTION PRICES IN A TWO-ASSET JUMP-DIFFUSION MODEL

Chaeyoung Lee a, Jian Wang a, Hanbyeol Jang b, Hyunsoo Han b,

Seongjin Lee b, Wonjin Lee b, Kisung Yang c and Junseok Kim a, ∗

Abstract. We present an efficient and robust finite difference method for a two-
asset jump diffusion model, which is a partial integro-differential equation (PIDE).
To speed up a computational time, we compute a matrix so that we can calculate
the non-local integral term fast by a simple matrix-vector operation. In addition,
we use bilinear interpolation to solve integral term of PIDE. We can obtain more
stable value by using the payoff-consistent extrapolation. We provide numerical
experiments to demonstrate a performance of the proposed numerical method. The
numerical results show the robustness and accuracy of the proposed method.

1. Introduction

It is generally assumed that the return on asset prices follows a normal distri-

bution. However, it can be found in the real financial market that the assumption

is not correct. The sharp decline and fear of sudden movements in financial assets

occur more frequently than if the return on financial assets is assumed to be a nor-

mal distribution. This means that the distribution of the return on asset prices has

a fat tail. This situation results in a discontinuity in asset prices. In other words,

the prices of assets have jumped. This is important for the theory and practice of

derivatives because it has a big impact when valuing financial products. This is why

a jump-term is needed to valuation a financial instrument to more suit for the real

financial market.

A number of models that are more generic and consistent with the empirical be-

havior of market prices have been proposed. To cover normally distributed jumps in
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asset returns, Merton proposed Merton’s jump-diffusion model [17] which extends

the Black–Scholes model (BSM) at first time. The jump process is used in many

areas of modeling [21]. Also, it derives a pricing formula for a single-asset European

option on a stock price with jumps. There is another well-known generalization of

BSM. Kou’s double exponential jump-diffusion model [15] imposed a higher proba-

bility for extreme jumps and allowed asymmetry in the jump distribution. Kou [15]

also developed analytical solutions to several single-asset option pricing problems

including European call and put options. These alternative models are reported

to be superior to the classical BSM in describing empirical observations and their

modeling flexibility [19]. The presence of jumps is also important in multi-asset

option pricing. In general, the price of a multi-asset option is highly sensitive to

the dependence structure among underlying assets [20]. Therefore, modeling jump

is an integral part of multi-asset option pricing. Many authors are interested in

the jump-diffusion model, solve the non-local integral term, and try to calculate

the option that follows the jump-diffusion model using the numerical methodology.

Tankov and Volchkova [20] introduced the jump process by using Fourier trans-

form and Poisson process. The authors in [13] calculated option price of one asset

jump diffusion model by the numerical method. The authors in [5] proposed that

computation of implicit finite difference method included solution of dense linear

systems. Authors used fixed point iteration method and fast Fourier transform to

solve dense linear system. In [8], the authors proposed an explicit finite difference

method with two-dimensional Gauss–Hermite quadrature that solved integral term

of two-asset jump-diffusion partial integro-differential equation (PIDE). In [2], the

authors assessed the basket options where the dynamics of basket assets is described

as a constant-elasticity-of-variance (CEV) jump diffusion system. In [14], the au-

thors applied the PIDE for considering the two-dimensional structural default model

with jumps to compute credit default swaps and first-to-default swaps. The authors

studied its stability and consistency by using the von Neumann stability analysis. In

[9], the authors applied radial basis functions partition of unity (RBF-PU) method

and three time level Crank–Nicolson Leapfrog discretization to compute European

option. Radial basis functions is used to solve multi-dimensional parabolic partial

differential equation (PDE) but it has some difficulties. The authors applied RBF-

PU method to overcome adverse condition in global mesh-free methods. In the jump

diffusion model, option pricing is complex because it has an integral term unlike a

general Black–Scholes PDE.
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In this paper, we are going to price the option of having two underlying assets

that follow the jump-diffusion process, such as call on max and put on min options.

Consider the payoff function as u(x, y, 0). The call on max option whose payoff is

given as u(x, y, 0) = max(max(x, y)−K, 0) with the strike price K, the underlying

asset prices x, y. Likewise, put on min option whose payoff is given as u(x, y, 0) =

max(K − min(x, y), 0). We are going to use the bilinear interpolation and the

simple matrix-vector operation to solve non-local integral term. When we calculate

the price of an option with two underlying assets, we divide it into two areas and use

the bilinear interpolation to address the overestimation of the value of the option in

the part where the option price’s graph bends. To obtain more stable value, we use

the payoff-consistent extrapolation.

This paper is organized as follows. In Section 2, we describe the two-asset jump-

diffusion equation based on the BSM and the proposed numerical scheme in detail.

In Section 3, we present numerical experiments to verify accuracy and efficiency of

our proposed algorithm. In Section 4, conclusions are drawn.

2. Numerical Solution

2.1. Derivation of the Governing equation Black and Scholes found that the

second order PDE for the price of an option u(x, t) on the stock that is called the

BSM [1]. A critical assumption in the BSM is that the dynamics a stock price is

governed by a single Brownian motion [11], thereby yielding a continuous stochastic

process for the stock price movement. However, BSM cannot describe discontinuous

feature such as jump [16] which asset prices have. Rebonato described the use of

the Black–Scholes formula by financial practitioners [18]. There are two typical

examples of sudden drops in asset prices during financial crisis. First, it is noted

for Black Monday, 19 October 1987. On that day, the Dow Jones Industrial average

depreciated almost 25 percent from 2,245 to 1,738 [3]. Second, the shock of 2008

was unexampled in that capital devaluation and loss in fortune were felt widely in

main industry. With this effect, U.S. stock prices fell sharply 37 percent in 2008

[10]. From now on, we shall derive the governing equation based on the original

BSM with the price of the underlying assets x, y and time t. The value of an option

u(x, y, t) is governed by the following two-asset BSM for (x, y, t) ∈ R2
+ × [0, T ):

∂u

∂t
+

σ2
1x

2

2

∂2u

∂x2
+

σ2
2y

2

2

∂2u

∂y2
+ rx

∂u

∂x
+ ry

∂u

∂y
+ ρσ1σ2xy

∂2u

∂x∂y
− ru = 0,(2.1)
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where T is maturity, σ1 and σ2 are the volatilities of x and y, respectively, r is the risk

free interest rate, and ρ is the correlation between x and y. However, as we saw in the

two previous examples, the distribution of stock price returns is more likely to result

in extreme events in the stock market than when normally distributed. For this

reason, Merton proposed a model for option pricing when underlying stock returns

are discontinuous, which is simply called the Merton’s jump-diffusion model [17].

The derivative securities pricing using the Merton’s jump-diffusion model usually

provides efficient and robust valuation. The two-asset jump-diffusion model is as

follows:

dx

x
= (r − λk1)dt+ σ1dz1 + (eξ − 1)dq,(2.2)

dy

y
= (r − λk2)dt+ σ2dz2 + (eη − 1)dq,(2.3)

dq =

{

0 with probability 1− λ dt

1 with probability λ dt
,

where z1 and z2 are standard Brownian motions with correlation E[dz1dz2] = ρdt,

λ is Poisson process of intensity, eξ − 1 and eη − 1 are impulse functions, k1 and

k2 represent the expected relative jump sizes, i.e., k1 = E[eξ − 1] = eµ̂1+
1

2
σ̂2

1 − 1

and k2 = E[eη − 1] = eµ̂2+
1

2
σ̂2

2 − 1. Since x and y have the impulse functions which

produce the jump, the asset price jumps from x to xeξ and from y to yeη if a jump

occurs. Then, we are able to get the PIDE given by

∂u

∂t
+

σ2
1x

2

2

∂2u

∂x2
+

σ2
2y

2

2

∂2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ (r − λk1)x

∂u

∂x
(2.4)

+(r − λk2)y
∂u

∂y
− ru+ λ

(∫ ∞

−∞

∫ ∞

−∞

u(xeξ, yeη)G(ξ, η) dξ dη − u

)

= 0.

Here, G is taken to be a distributed jump amplitude with bivariate normal proba-

bility density function (PDF) as follows:

G(ξ, η) =
1

2πσ̂1σ̂2
√

1− ρ2ξη

exp

(

−
z

2(1 − ρ2ξη)

)

,

where z = ( ξ−µ̂1

σ̂1
)2 −

2ρξη(ξ−µ̂1)(η−µ̂2)
σ̂1σ̂2

+ (η−µ̂2

σ̂2
)2, σ̂1 and σ̂2 are standard deviations

of the jumps ξ and η, respectively. µ̂1 and µ̂2 are means of the jumps ξ and η,

respectively. ρξη is correlation of ξ and η [5, 8].
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Figure 1. Schematic illustration of the computational domain.

2.2. Discretization with finite differences We solve Eq. (2.4) numerically us-

ing a finite difference method [7]. By the change of variable τ = T − t with maturity

T , we can rewrite Eq. (2.4) as follows:

∂u

∂τ
=

σ2
1x

2

2

∂2u

∂x2
+

σ2
2y

2

2

∂2u

∂y2
+ ρσ1σ2xy

∂2u

∂x∂y
+ (r − λk1)x

∂u

∂x
+ (r − λk2)y

∂u

∂y
(2.5)

−ru+ λ

(
∫ ∞

−∞

∫ ∞

−∞

u(xeξ, yeη)G(ξ, η) dξ dη − u

)

.

Let us discretize the jump-diffusion equation (2.5) on the computational domain.

In the x direction, we use the grid defined by x0 = 0 and xi+1 = xi + hi for

i = 0, · · · , Nx − 1, where Nx is the number of grid intervals. Here, hi is the grid

spacing which is uniform from i = 1 to i = Nx − 2 and the last spatial step size is

hNx−1 = (e − 1)Xmax. We assume that xNx−1 = Xmax, xNx = Xmax + hNx−1, and

xNx = eXmax. In the y direction, the grid is defined in the same way. We denote

the numerical approximation unij ≈ u(xi, yj, n∆τ), where ∆τ = T/Nτ is the time

step size, Nτ is the total number of time steps, and n = 0, 1, ..., Nτ . Then we have

the computational domain of price of the underlying assets x and y, see Figure 1.

Next, we consider the numerical quadrature of the following integral term:
∫ ∞

−∞

∫ ∞

−∞

u(xeξ , yeη)G(ξ, η)dξdη.(2.6)
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Figure 2. Bivariate normal PDF G(ξ, η).

To evaluate the integral term (2.6), we reduce an infinite domain (−∞,∞) ×

(−∞,∞) to a finite domain [−a, b]× [−a, b]. We calculate the option values at point

(S1, S2) = (100, 100) on the different domains used to calculate non-local integral

term (2.6). Here, the value is the price of the European put on the min option and

we use the same parameters as in Section 3. Table 1 lists the option values and the

elapsed times. Even if the values of a and b are greater than 1, there is no difference

from the option value when a = b = 1, but the elapsed time is much longer. To

efficiently calculate the option value with the jump-diffusion model, we can use the

finite domain [−1, 1] × [−1, 1].

Table 1. Effective domain [−a, b]× [−a, b].

a=b 0.5 1 2

value 8.8885 9.1146 9.1147
elapsed time 20.713918 66.014685 258.745284

Therefore, we use the non-local integral term (2.7) instead of the term (2.6).
∫ 1

−1

∫ 1

−1
u(xeξ, yeη)G(ξ, η)dξdη.(2.7)

Figure 2 shows the G value on the domain [−1, 1]× [−1, 1].

For the option price unij, we define the discrete difference operators L
x
OS and Ly

OS

by
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Lx
OSu

n+ 1

2

ij =
(σ1xi)

2

2

u
n+ 1

2

i−1,j − 2u
n+ 1

2

ij + u
n+ 1

2

i+1,j

h2
+ (r − λk1)xi

u
n+ 1

2

i+1,j − u
n+ 1

2

i−1,j

2h
−

r

2
u
n+ 1

2

ij

+
1

2
σ1σ2ρxiyj

uni+1,j+1 − uni−1,j+1 − uni+1,j−1 + uni−1,j−1

4h2
,

Ly
OSu

n+1
ij =

(σ2yj)
2

2

un+1
i,j−1 − 2un+1

ij + un+1
i,j+1

h2
+ (r − λk2)yj

un+1
i,j+1 − un+1

i,j−1

2h
−

r

2
un+1
ij

+
1

2
σ1σ2ρxiyj

u
n+ 1

2

i+1,j+1 − u
n+ 1

2

i−1,j+1 − u
n+ 1

2

i+1,j−1 + u
n+ 1

2

i−1,j−1

4h2

+ λ

(

I1−1I
1
−1[u

(

xie
ξ, yje

η
)

G (ξ, η)]∆ξ∆η − u
n+ 1

2

ij

)

,

respectively. Then, using the operator splitting method [12] to solve Eq. (2.5), we

can consist of the following two discrete equations:

u
n+ 1

2

ij − unij
∆τ

= Lx
OSu

n+ 1

2

ij ,(2.8)

un+1
ij − u

n+ 1

2

ij

∆τ
= Ly

OSu
n+1
ij .(2.9)

According to Eqs. (2.8) and (2.9), the numerical solutions at time level n + 1
2 and

at time level n+ 1 are sequentially updated.

2.3. How to deal with boundary condition and calculation The summation

of Eqs. (2.8) and (2.9) follows that the implicit finite difference form in Eq. (2.5).

un+1
ij − unij

∆τ
= Lx

OSu
n+ 1

2

ij + Ly
OSu

n+1
ij .(2.10)

The numerical solution algorithm using the operator splitting method is by proceed

in two-step. First, we can rewrite Eq. (2.8) as

αiu
n+ 1

2

i−1,j + βiu
n+ 1

2

ij + γiu
n+ 1

2

i+1,j = fij,(2.11)

where

αi = −
σ2
1x

2
i

2h2
+

(r − λk1)xi
2h

, βi =
1

∆τ
+

σ2
1x

2
i

h2
+

r

2
, γi = −

σ2
1x

2
i

2h2
−

(r − λk1)xi
2h

,

fij =
1

2
ρσ1σ2xiyj

uni+1,j+1 − uni+1,j−1 − uni−1,j+1 + uni−1,j−1

4h2
+

unij
∆τ

.

Here, the boundary values at x = 0 and x = Xmax are obtained by the zero Dirich-

let boundary condition and the linear boundary condition, respectively. Then the
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system of discrete equation (2.11) can be rewritten the following tridiagonal form:















β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNx−2 βNx−2 γNx−2

0 . . . 0 αNx−1 − γNx−1 βNx−1 + 2γNx−1



































u
n+ 1

2

1,j

u
n+ 1

2

2,j
...

u
n+ 1

2

Nx−2,j

u
n+ 1

2

Nx−1,j





















(2.12)

=















f∗
1,j

f2,j
...

fNx−2,j

f∗
Nx−1,j















,

where f∗
1,j = f1,j −α1u

n
0,j and f∗

Nx−1,j = fNx−1,j − γNx−1 unNx,j
for every fixed index

j. Next, Eq. (2.9) is rewritten as follows:

αju
n+1
i,j−1 + βju

n+1
ij + γju

n+1
i,j+1 = gij ,(2.13)

where

αj = −
σ2
2y

2
j

2h2
+

(r − λk2)yj
2h

, βj =
1

∆τ
+

σ2
2y

2
j

h2
+

r

2
, γj = −

σ2
2y

2
j

2h2
−

(r − λk2)yj
2h

,

gij =
1

2
ρσ1σ2xiyj

u
n+ 1

2

i+1,j+1 − u
n+ 1

2

i+1,j−1 − u
n+ 1

2

i−1,j+1 + u
n+ 1

2

i−1,j−1

4h2
+

u
n+ 1

2

ij

∆τ

+λ

(

I1−1I
1
−1

[

u
(

xie
ξ, yje

η
)

G (ξ, η)
]

∆ξ∆η − u
n+ 1

2

ij

)

.

Here, the boundary values at y = 0 and y = Ymax are obtained by the zero Dirichlet

boundary condition and the linear boundary condition, respectively. Similarly, the

system of discrete equation (2.13) can be rewritten the following tridiagonal form:














β1 γ1 0 . . . 0
α2 β2 γ2 . . . 0
...

. . .
. . .

. . .
...

0 . . . αNy−2 βNy−2 γNy−2

0 . . . 0 αNy−1 − γNy−1 βNy−1 + 2γNy−1































un+1
i,1

un+1
i,2
...

un+1
i,Ny−2

un+1
i,Ny−1

















(2.14)

=















g∗i,1
gi,2
...

gi,Ny−2

g∗i,Ny−1















,
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(a)

(b)

Figure 3. Schematic illustrations of (a) payoff-consistent and (b) con-
ventional linear extrapolation to find boundary points.

where g∗i,1 = gi,1−α1u
n+ 1

2

i,0 and g∗i,Ny−1 = gi,Ny−1−γNy−1 u
n+ 1

2

i,Ny
for every fixed in-

dex i. To solve the tridiagonal forms (2.13) and (2.15), we use the Thomas algorithm

which can directly obtain the inverse of tridiagonal matrix [6]. In addition, we use the

payoff-consistent extrapolation which is consistent with the value obtained from us-

ing the payoff function at the boundary points: uNx,Ny = 2uNx−1,Ny−1−uNx−2,Ny−2

[4], as shown in Figure 3(a). In the same way, the payoff-consistent extrapolation

is applied at uNx,Ny−1 and uNx−1,Ny . By using this method, the numerical solu-

tion with high correlation can be solved stably. In general, the linear boundary

condition is mostly used in financial engineering: uNx,Ny = 2uNx−1,Ny − uNx−2,Ny .

However, the linear extrapolation at the boundary points generates the discrepancy

of the value obtained from using the payoff function at the boundary points. Figure

3(b) illustrates the schematic diagrams of conventional linear extrapolation to find

boundary points.
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(a) (b)

Figure 4. Schematic illustrations of (a) the option price u(x, y) and
G(ξ, η) function, and (b) area of u(x, y) at x = xie

ξ, y = yje
η.

Therefore, we use the composite Simpson’s rule for the quadrature. Given that

the interval [−1, 1] is divided by M grid points, the subintervals have equal width,

2/(M − 1). Here, M − 1 is a positive integer.

I1−1I
1
−1u(xe

ξ, yeη)G (ξ, η)∆ξ∆η = I1−1I
1
−1g(ξ, η)∆ξ∆η

=
∆ξ∆η

9

[

g(ξ0, η0) + g(ξ0, ηM ) + g(ξM , η0) + g(ξM , ηM )

+4

M/2
∑

l=1

g(ξ0, η2l−1) + 2

M/2−1
∑

l=1

g(ξ0, η2l) + 4

M/2
∑

l=1

g(ξM , η2l−1) + 2

M/2−1
∑

l=1

g(ξM , η2l)

+4

M/2
∑

k=1

g(ξ2k−1, η0) + 2

M/2−1
∑

k=1

g(ξ2k, η0) + 4

M/2
∑

k=1

g(ξ2k−1, ηM ) + 2

M/2−1
∑

k=1

g(ξ2k, ηM )

+16

M/2
∑

l=1

(M/2
∑

k=1

g(ξ2k−1, η2l−1)

)

+ 8

M/2−1
∑

l=1

(M/2
∑

k=1

g(ξ2k−1, η2l)

)

+8

M/2
∑

l=1

(

M/2−1
∑

k=1

g(ξ2k, η2l−1)

)

+ 4

M/2−1
∑

l=1

(

M/2−1
∑

k=1

g(ξ2k, η2l)

)]

.

Figure 4(a) shows a schematic illustration of the option price u(x, y) and G(ξ, η)

function.

In order to speed up the calculation, we store the factors of each point (xi, yj)

used in bilinear interpolation as a matrices before the main time-step iterations. The

factor matrix A and B are defined as A = (ai,k)Nx×(M−1) and B = (bj,l)Ny×(M−1),

where ai,k = (xie
ξk − xik)/hik , xik−1 ≤ xie

ξk < xik , for some 2 ≤ ik ≤ Nx + 1 and

bj,l = (yje
ηl − yjl)/hjl , yjl−1 ≤ yje

ηl < yjl, for some 2 ≤ jl ≤ Ny + 1. Then, we can
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use bilinear interpolation as

g(ξk, ηl) = G(ξk, ηl)
(

u(xik , yjl)(1− ai,k)(xik − xik−1)(1− bj,l)(yjl − yjl−1)

+u(xik−1, yjl−1)ai,k(xik − xik−1)bj,l(yjl − yjl−1)

+u(xik−1, yjl)ai,k(xik − xik−1)(1 − bj,l)(yjl − yjl−1)

+u(xik , yjl−1)(1 − ai,k)(xik − xik−1)bj,l(yjl − yjl−1)
)

/

(xik − xik−1)(yjl − yjl−1).

Figure 4(b) schematically illustrates the method of bilinear interpolation. If xie
ξk >

xNx and yje
ηl > yNy , we divide it into two regions α and β as shown in Figure 4(b)

and execute interpolation using the plane equation with three points to resolve the

overestimate of the option value.

3. Numerical Experiment

In this section, we perform numerical tests to show efficiency and robustness of

the proposed numerical scheme under the jump-diffusion model. All computations

were run in MATLAB R2018a. We consider a European put on min option whose

payoff is given as u(x, y, 0) = max(K −min(x, y), 0), where K is strike price. We

select K = 100, risk-free interest rate r = 0.05, the diffusion parameters σ1 = 0.12,

σ2 = 0.15, ρ = 0.3, and the jump parameters λ = 0.6, µ̂1 = −0.1, µ̂2 = 0.1,

σ̂1 = 0.17, σ̂2 = 0.13, ρξη = −0.2. We discretize the operator in space by localization

of the computational domain Ω = [0, Lx] × [0, Ly ], where Lx = Ly = 300. We use

a reference value in [5] and compare our numerical value with the reference value

using a percentage error.

3.1. Convergence test To find a suitable grid of interval [−1, 1] for numerical inte-

gration, we test the effect of grid of interval [−1, 1] with M = 13, 15, 17, 19, 21, 23, 25.

We evaluate the numerical solution with Nx = Ny = 121 and Nτ = 360. Table 2

shows the value of European put on min option price and percentage error between

the numerical and reference values at point (S1, S2) = (100, 100). Here, the reference

value at the same point in [5] is 9.1178. We define the percentage error as

percentage error =
|uNτ

ij − ū|

ū
× 100.(3.1)
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The values of i and j will be taken to let S1 = 100 and S2 = 100, respectively, and

ū is the reference value. We set a tolerance of percentage error as 0.05. The result

suggests that the value with M = 17 is accurate enough.

Table 2. Nτ = 360, Nx = Ny = 121.

M 13 15 17 19 21 23 25

value 9.2109 9.0909 9.1146 9.1152 9.1121 9.1140 9.1144
percentage error 1.0211 0.2950 0.0351 0.02852 0.0625 0.0417 0.0373

Next, we find a suitable grid of time step. We evaluate the numerical solution

with Nx = Ny = 121 and M = 17. Table 3 lists the results and shows that the value

with Nτ = 360 is accurate enough.

Table 3. Nx = Ny = 121, M = 17.

Nτ 30 90 180 360 720 1080 1440

value 9.0975 9.1100 9.1131 9.1146 9.1154 9.1157 9.1158
percentage error 0.2226 0.0855 0.0515 0.0351 0.0263 0.0230 0.0219

Table 4. Nτ = 360, M = 17.

Nx = Ny 31 61 91 121 151 181 211

value 8.7415 9.0572 9.0991 9.1146 9.1219 9.1259 9.1284
percentage error 4.1271 0.6646 0.2051 0.0351 0.0450 0.0888 0.1163

Now, to find a suitable grid of space step, we take suitable parameters of grid of

interval [−1, 1] and time step size, M = 17 and Nτ = 360. Table 4 shows that the

error is decreasing and converges to the reference solution as we refine the grid. If

Nx = Ny are greater than 121, the error increases because of roundup error. As the

result of this test, the value with Nx = Ny = 121 is accurate enough.

In Figure 5, we calculate the option value in a two-asset jump-diffusion model at

point (S1, S2) = (100, 100) for different grid of time step and space step, V is the

option value.

Unless otherwise specifically stated, we use the parameters such as M = 17,

Nτ = 360, and Nx = Ny = 121 for the following test.



NUMERICAL METHOD FOR A TWO-ASSET JUMP-DIFFUSION MODEL 243

1500
8.7

8.8

250 1000

8.9

9

200

9.1

9.2

150 500

9.3

100
50

00

Figure 5. Result of the convergence test
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Figure 6. European put on min option value in a two-asset jump-
diffusion model.

3.2. Numerical solution of European put on min option In this section, we

demonstrate the performance of the proposed method for approximation of two-

asset European put on min option pricing. The implementation of the proposed

method and experiments has been divided into the two cases, option pricing and

option Greeks. The two-asset initial values of S1 and S2 are defined by the domain

(0, Lx) × (0, Ly). Figure 6 shows the option value in a two-asset jump-diffusion

model.

We calculate the Delta (∆ = ∂V/∂S) and Gamma (Γ = ∂2V/∂S2) of the two-

asset jump-diffusion model. ∆ is the first derivative with respect to the underlying



244 Chaeyoung Lee et al.

300
-1

300 200

-0.8

250

-0.6

200

-0.4

100150

-0.2

100
50

0

00

(a) ∆S1

300
-1

300 200

-0.8

250

-0.6

200

-0.4

100150

-0.2

100
50

0

00

(b) ∆S2

300

-0.02

300 200

0

250

0.02

200

0.04

100150
100

0.06

50

0.08

00

(c) ΓS1

300

-0.02

300 200

0

250

0.02

200

0.04

100150
100

0.06

50

0.08

00

(d) ΓS2

Figure 7. Numerical solution of the derivatives of European put on
min option in a two-asset jump-diffusion model. (a) and (b) are the
first derivative with respect to S1 and S2, respectively; (c) and (d)
are the second derivative with respect to S1 and S2, respectively.

asset S and Γ is the second derivative with respect to the underlying asset S. To

compute Greeks, we apply the central finite difference method, i.e, ∆ ≈ [V (S +

∆S)−V (S−∆S)]/(2∆S) and Γ ≈ [V (S−∆S)− 2V (S)+V (S+∆S)]/∆S2, where

V is the option value, S is the underlying asset, and ∆S = Lx/(Nx − 1).

Figure 7 shows the numerical solution of the derivatives of European put on min

option in a two-asset jump-diffusion model. Figure 7(a)–(d) represent ∆S1
, ∆S2

,

ΓS1
, and ΓS2

, respectively. Here, ∆S1
and ∆S2

are the first derivatives with respect

to the underlying assets of S1 and S2, respectively, and ΓS1
and ΓS2

are the second

derivatives with respect to the underlying asset S1 and S2, respectively.

3.3. Comparison of interpolation methods In Section 2.3, we explained the

bilinear interpolation to solve the integral term of PIDE. In this test, we compare

the option prices using different interpolation methods with the value obtained by

the bilinear interpolation at point (S1, S2) = (100, 100). Table 5 lists the option
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prices with three different interpolation methods and shows similar results. However,

we can get a more stable option price by using the payoff-consistent extrapolation

at boundary points and the bilinear interpolation method to solve the integral term

of PIDE.

Table 5. Comparison of option prices with different interpolation methods.

Method bilinear nearest spline

value 9.1146 9.1425 9.1080

3.4. Comparison with benchmark paper In this section, we compare the com-

putational times to price the European put on min option between our proposed

method and benchmark paper’s method. Fakharany et al. [8] proposed an explicit

finite difference method with two-dimensional Gauss–Hermite quadrature for the

integral term of two-asset jump-diffusion PIDE. We conduct the test with varying

the values Nx, Ny, and Nτ . Other parameters are the same as in [8]. Table 6 shows

that our method is faster than the reference method because we can use a relatively

large time step size without the stability problem.

Table 6. Comparison of CPU time and the number of grid points (Nx, Ny, Nτ ).

Our proposed method Fakharany et al. [8]
0.27 (64,32,10) 0.17 (64,32,50)
1.15 (128,64,25) 2.63 (128,64,100)
4.99 (256,128,50) 10.72 (256,128,200)

35.15 (512,256,100) 59.17 (512,256,400)

3.5. Numerical solution of European call on max option In this section,

we present numerical tests with a European call on max option using our proposed

model. The option is given as u(x, y, 0) = max(max(x, y) − K, 0) with the strike

price K. We use the same parameters as in Section 3.2. To show the efficiency and

accuracy of our algorithm, we also calculate the European call on max option value

with the traditional BSM. We take grid M = 17 of interval [−1, 1] for numerical

integration. The value of the European call on the max option of jump-diffusion

model at point (S1, S2) = (100, 100) is 16.7712 and the value of the same option of

BSM at the same point is 12.0026.
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Figure 8. Numerical solutions of the European call on max option
in (a) a two-asset jump-diffusion model, (b) BSM, and (c) difference
between two models.
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Figure 9. Numerical solution of the derivatives of European call on
max option in a two-asset jump-diffusion model. (a) and (b) are the
first derivative with respect to S1 and S2, respectively; (c) and (d)
are the second derivative with respect to S1 and S2, respectively.

As shown in Figure 8, schematic illustrations from the left to right illustrates

option value surfaces of the proposed model and BSM, and the difference of the two

models, respectively. Contrary to BSM, the proposed model considers the jump,

and there is a particularly large difference in the part where there is a discontinuity.
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Our proposed model considering the jump is more fitted to the real financial market

than BSM. When dividends occur among shares or unexpected bad news causes a

sharp decline in the market, the jumps happen. This is the reason why we say the

jump-diffusion model is more fitted to the real financial market.

Figure 9 shows the numerical solution of the derivatives of European call on max

option in a two-asset jump-diffusion model. From Figure 9(a) to (d), we present

∆S1
, ∆S2

, ΓS1
, and ΓS2

of the European call on max option in the two-asset jump-

diffusion model. Option traders primarily take positions through underlying assets

or other options to hedge risks, and the use of greeks can make the hedging more

efficient and useful. As shown in Figures 7 and 9, there are many changes nearby in

the events of the strike price. Both options are sensitive to the strike price nearby

because they may have or may have not payoff depending on whether the underlying

price is higher or lower than around the strike price.

4. Conclusions

In this paper, we proposed an efficient and robust finite difference method for

option pricing using a two-asset jump-diffusion model, which is a two-dimensional

PIDE. To speed up the computational time, we computed the factor matrix A and

B so that we can calculate the non-local integral term fast by a simple matrix-vector

operation. We used the bilinear interpolation and composite Simpson’s rule to solve

the integral term of PIDE. We divided it into two regions α and β as shown in

Fig. 4(b) and executed interpolation using the plane equation with three points to

resolve the overestimate of the option value. In addition, we applied the payoff-

consistent extrapolation to get a stable numerical solution. To verify the superiority

of the proposed method, we carried out the numerical tests for the valuation of

European call on max and European put on min options. The computational results

demonstrated that the proposed method is accurate and practical in computing two-

asset jump-diffusion model. In this paper, we calculate the option price using jump-

term to consider the real financial market. However, we used the constant volatility

when we valued the option price. In general, the volatility of the underlying asset

is not constant. Therefore, in future work, we will apply the proposed method to

a variable volatility option pricing model for more practical application. Moreover,

we plan to apply this model to more complicated derivative securities such as ELS

(Equity-Linked Securities) that is widely issued in South Korea.
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