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WEIERSTRASS SEMIGROUPS AT PAIRS OF

NON-WEIERSTRASS POINTS ON A SMOOTH PLANE CURVE

OF DEGREE 5

Eun Ju Cheon a and Seon Jeong Kim b, ∗

Abstract. We classify all semigroups each of which arises as a Weierstrass semi-
group at a pair of non-Weierstrass points on a smooth plane curve of degree 5. First
we find the candidates of semigroups by computing the dimensions of linear series
on the curve. Then, by constructing examples of smooth plane curves of degree 5,
we prove that each of the candidates is actually a Weierstrass semigroup at some
pair of points on the curve. We need to study the systems of quadratic curves, which
cut out the canonical series on the plane curve of degree 5.

1. Introduction and Preliminaries

Let C be a smooth projective curve of genus g ≥ 2 over the complex field C, M(C)

the field of meromorphic functions on C and N0 the set of all nonnegative integers.

For two distinct points P, Q ∈ C, we define the Weierstrass semigroup H(P ) ⊆ N0

at a point and the Weierstrass semigroup at a pair of points H(P,Q) ⊆ N2
0 by

H(P ) = {α ∈ N0 | ∃f ∈ M(C) with (f)∞ = αP},

H(P,Q) = {(α, β) ∈ N2
0 | ∃f ∈ M(C) with (f)∞ = αP + βQ},

where (f)∞ means the divisor of poles of f ∈ M(C). Indeed, H(P ) and H(P,Q)

form sub-semigroups of N0 and N2
0, respectively.

The cardinality of the set G(P ) = N0\H(P ) is exactly g. We call P a Weierstrass

point if G(P ) ̸= {1, 2, . . . , g}.
The set G(P,Q) = N2

0 \H(P,Q) is also finite, but its cardinality is dependent on

the points P and Q. In [5], the upper and lower bound of cardinality of G(P,Q) are

given as
(
g+2
2

)
− 1 ≤ card G(P,Q) ≤

(
g+2
2

)
− 1− g + g2.
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We review some basic facts concerning the Weierstrass semigroups at a pair of

points on a curve. ([4], [5]).

Lemma 1.1 ([5]). For each α ∈ G(P ), let βα = min{β | (α, β) ∈ H(P,Q)}. Then

α = min{γ | (γ, βα) ∈ H(P,Q)}. Moreover, we have

{βα | α ∈ G(P )} = G(Q).

The above lemma shows that the set H(P,Q) defines a bijective mapping σ =

σ(P,Q) from G(P ) to G(Q) which is defined by α 7→ βα. Homma [4] obtained the

formula for the cardinality of G(P,Q) using the cardinality of the set of pairs (α, α′)

which are reversed by σ. We use the following notations;

Γ = Γ(P,Q) := {(α, βα) | α ∈ G(P )}

= {(pi, qσ(i)) | i = 1, 2, . . . , g},

Γ̃ = Γ̃(P,Q) := Γ(P,Q) ∪
(
H(P )× {0}

)
∪
(
{0} ×H(Q)

)
.

The above set Γ(P,Q) is called the generating subset of the Weierstrass semigroup

H(P,Q). For given distinct two points P,Q, the set Γ(P,Q) determines not only

Γ̃(P,Q) but also the setsH(P,Q) and G(P,Q) completely, as described in the lemma

below. To state the lemma we use the natural partial order on the set N2
0 defined as

(α, β) ≥ (γ, δ) if and only if α ≥ γ and β ≥ δ,

and the least upper bound of two elements (α1, β1), (α2, β2) is defined as

lub{(α1, β1), (α2, β2)} = (max{α1, α2}, max{β1, β2}).

Lemma 1.2 ([5, 6]). (1) The subset H(P,Q) of N2
0 is closed under the lub(least

upper bound) operation. (2) Every element of H(P,Q) is expressed as the lub of one

or two elements of the set Γ̃(P,Q). (3) The set G(P,Q) = N2
0 \H(P,Q) is expressed

as

G(P,Q) =
∪

l∈G(P )

(
{(l, β)|β = 0, 1, . . . , σ(l)− 1} ∪ {(α, σ(l))|α = 0, 1, . . . , l − 1}

)
.

We can characterize the elements of Γ(P,Q) and H(P,Q) using the dimensions of

divisors. We denote dim(α, β) the dimension of the complete linear series |αP+βQ|.

Lemma 1.3 ([5]). Let (α, β) be an element in N2
0 with β ≥ 1 [resp. α ≥ 1]. Then

dim(α, β) = dim(α, β − 1) + 1[resp. dim(α, β) = dim(α− 1, β) + 1]
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if and only if there exists (γ, β) ∈ Γ̃ [resp. (α, δ) ∈ Γ̃ ] with 0 ≤ γ ≤ α [resp.

0 ≤ δ ≤ β ].

Lemma 1.4. For α ≥ 1 and β ≥ 1, the pair (α, β) is an element of Γ(P,Q) [resp.

H(P,Q)] if and only if

dim(α, β) = dim(α− 1, β) + 1 = dim(α, β − 1) + 1

= dim(α− 1, β − 1) + 1

[resp. dim(α, β) = dim(α− 1, β) + 1 = dim(α, β − 1) + 1].

Proof. By Lemma 1.3, since (α, β) ∈ Γ(P,Q) implies that there is no element (α′, β)

[resp. (α, β′)] ∈ H(P,Q) with 0 ≤ α′ ≤ α [resp. 0 ≤ β′ ≤ β], the lemma holds. �

The following two theorems are well-known.

Theorem 1.5 (Riemann-Roch Theorem). Let C be a nonsingular curve of genus g,

and P,Q points on C. Then

dim(αP + βQ) = α+ β − g + h0(K − (αP + βQ)),

where K is the canonical series on the curve C.

Theorem 1.6. The canonical series on a nonsingular curve of degree d ≥ 4 is cut

out by the system of curves of degree d− 3.

Theorem 1.7 ([2, 3]). Let C be a smooth plane curve of degree d ≥ 4. For e ∈ N,
there is no base point free pencil g1e if and only if (n− 1)d+ 1 ≤ e ≤ nd− (n2 + 1)

for some n ∈ N with 1 ≤ n ≤
√
d− 2.

In Section 2, we find all candidates of the Weierstrass semigroup at a pair of

non-Weierstrass points on a smooth plane curve of degree 5. In Section 3, we prove

the existence of curves and points having such semigroups as their Weierstrass semi-

groups.

To construct smooth plane curves satisfying our condition, we use the following

theorems frequently.

Theorem 1.8 ([8, Bertini’s Theorem]). The generic element of a linear system is

smooth away from the base locus of the system.
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Theorem 1.9 ([7, Namba’s Lemma]). Let C, C1 and C2 be plane curves. If P is a

nonsingular point of C, then we have

I(C1 ∩ C2;P ) ≥ min{I(C ∩ C1;P ), I(C ∩ C2;P )}.

Theorem 1.10 ([1, Bezout’s Theorem]). Let Cm and Cn be smooth plane curves of

degree m and n, respectively. If they have no common component, then we have∑
P∈Cm∩Cn

I(Cm ∩ Cn;P ) = mn.

2. A Weierstrass Semigroup at a Pair of Non-Weierstrass
Points

In this section, we let C be a smooth plane curve of degree 5, hence of genus

6. For a point P ∈ C, let LP denote the tangent line to C at P , and Mp denote

the quadratic curve which meets C at P with the highest multiplicity. Since the

dimension of the system of quadratic curves is five, we have MP � C ≥ 5P . For a

curve F , I(F ∩ C;P ) denotes the intersection multiplicity of F and C at P , and

F � C =
∑

P∈F∩C I(F ∩ C;P )P denotes the divisor on C cut out by F .

We have the following lemma.

Lemma 2.1. Let P be a non-Weierstrass point on a smooth plane curve C of degree

5, i.e., G(P ) = {1, 2, . . . , 6}. Then there is no quadratic curve which meets the curve

C with multiplicity ≥ 6, and hence I(LP ∩ C;P ) = 2, I(MP ∩ C;P ) = 5, and MP

is a conic (an irreducible quadratic curve).

Proof. Obvious. �

From now on, we mean P and Q two distinct non-Weierstrass points on the given

curve C. By Lemma 2.1,

I(LP ∩ C;P ) = I(LQ ∩ C;Q) = 2,

and MP and MQ are conics with

I(MP ∩ C;P ) = I(MQ ∩ C;Q) = 5.

For two tangent lines LP and LQ one of the following holds;

I. LP = LQ.

II. LP ∩ LQ = {Q}. [or LP ∩ LQ = {P}.]
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III. LP ∩ LQ = {R} with R ̸= P,Q.

For MP and MQ, we may let MP �C = 5P + aQ+D1, MQ �C = bP + 5Q+D2,

where 0 ≤ a, b ≤ 5 and the divisors D1 and D2 are disjoint from {P,Q}. If a+ b ≥ 5

then MP = MQ and a = b = 5 since MP �MQ ≥ bP + aQ. Thus, if MP ̸= MQ, then

a+ b ≤ 4.

We find the possible Weierstrass semigroups of the pair (P,Q) case by case. First,

we compute the dim(a, b) := dim(aP + bQ) for each (a, b) ∈ N0 × N0.

Lemma 2.2. We have the following:

(1) dim(a, 0) = 0 for any a with 0 ≤ a ≤ 6 and dim(0, b) = 0 for any b with

0 ≤ b ≤ 6.

(2) dim(a, b) = 0 for any (a, b) with a+ b ≤ 3.

Proof. Since P and Q are non-Weierstrass point, (1) is obvious. By Theorem 1.7,

(2) holds. �

As corollaries of Lemma 1.4, we obtain the following two lemmas which we use

frequently to find an element of Γ. Recall that (α, β) is said to be special if there

exists a canonical divisor ≥ αP + βQ, which is equivalent to the fact that there is a

quadratic curve M such that M � C ≥ αP + βQ.

Lemma 2.3. If (α− 1, β − 1) is a maximal special element, then (α, β) ∈ Γ.

Proof. Since (α, β− 1), (α− 1, β) and (α, β) are nonspecial, by Riemann-Roch The-

orem and Lemma 1.4, the lemma holds. �

Lemma 2.4. If dim(α− 1, β) = 0 = dim(α, β− 1) and dim(α, β) = 1, then (α, β) ∈
Γ.

Proof. Since dim(α− 1, β − 1) = 1, it is obvious by Lemma 1.4. �

For a curve F , we use the notation r(F �C) = F �C−(I(F∩C;P )P+I(F∩C;Q)Q),

the remaining divisor of degree (degF )(degC)− (I(F ∩C;P ) + I(F ∩C;Q)), with

the support disjoint from {P,Q}.

Case I. LP = LQ Then LP � C = 2P + 2Q + r(LP � C). Note that r(LP � C) is a

point distinct from P and Q. In this case, by Bezout’s Theorem, we have
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MP � C = 5P + 0Q+ r(MP � C),

MQ � C = 0P + 5Q+ r(MQ � C).

Using these, we prove the theorem below.

Theorem 2.5. We have

(1) Γ = {(1, 6), (2, 2), (3, 4), (4, 3), (5, 5), (6, 1)}.

Proof. Since there is no quadratic curve cut out the divisor 6Q or P + 5Q, by

Riemann-Roch Theorem, we have dim(0, 6) = 0 = dim(1, 5). By Lemma 1.4 and

2.2, we have (1, 6) ∈ Γ. Similarly, we can prove (6, 1) ∈ Γ.

Since LP = LQ cut out 2P + 2Q, any quadratic curve passing through 2P + 2Q

contains the line LP as a component, by Bezout’s Theorem. Thus the dimension of

quadratic curves passing through 2P + 2Q is equal to the dimension of the systems

of all lines, which is 3. By Riemann-Roch Theorem, we have dim(2, 2) = 1. By

Lemma 2.2, (2, 2) ∈ Γ.

Any quadratic curves passing through (2+ c)P +(2+d)Q, c+d ≥ 2, 0 ≤ c, d ≤ 2

is unique. By Riemann-Roch Theorem, we have dim(2, 4) = 1, dim(3, 3) = 1,

dim(3, 4) = 2. On the other hand, the dimension of quadratic curves passing through

2P + 3Q is equal to that of lines passing through Q, by Bezout’s Theorem. By

Riemann-Roch Theorem, dim(2, 3) = 1. By Lemma 1.4, (3, 4) ∈ Γ. Similarly, we

can prove (4, 3) ∈ Γ.

L2
P is the unique quadratic curve cut out 4P + 4Q. Thus there is no quadratic

curve passing through 4P+5Q or 5P+4Q. By Riemann-Roch Theorem, dim(4, 4) =

dim(4, 5) = dim(5, 4) = 3 and dim(5, 5) = 4. By Lemma 1.4, (5, 5) ∈ Γ. �

Case II. LP ∩ LQ = {Q}
Then LP � C = 2P +Q + r(LP � C) and LQ � C = 0P + 2Q + r(LQ � C). In this

case, by Bezout’s Theorem, we have

MP � C = 5P + 0Q+ r(MP � C),

MQ � C = aP + 5Q+ r(MQ � C) for a = 0, 1.

Theorem 2.6. We obtain

(2) Γ = {(1, 5), (2, 6), (3, 4), (4, 2), (5, 3), (6, 1)} for a = 1;

and

(3) Γ = {(1, 6), (2, 5), (3, 4), (4, 2), (5, 3), (6, 1)} for a = 0.
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Proof. Let a = 1, i.e. MQ � C = P + 5Q + r(MQ � C). Then, by Riemann-Roch

Theorem, dim(1, 5) = 1. Since MQ is irreducible, dim(0, 5) = 1 = dim(1, 4), by

Bezout’s Theorem. Thus (1, 5) ∈ Γ by Lemma 1.4. Since 2P + 5Q and P = 6Q

are nonspecial (i.e., there is no quadratic polynomial passing through such divisors),

we have (2, 6) ∈ Γ. The quadratic curves L2
P is the unique quadratic curve passing

through 3P + 2Q or 4P +Q or 4P + 2Q. Thus dim(4, 2) = 1 and (4, 2) ∈ Γ. Since

5P +2Q and 4P +3Q are nonspecial, we have (5, 3) ∈ Γ. Since 3P +4Q and 6P +Q

are nonspecial and of dimension 1, we get (3, 4), (6, 1) ∈ Γ.

If a = 0, then MQ �C = 0P +5Q+r(MQ �C). Then P +5Q and 6Q are nonspecial

and dim(1, 6) = 1 and hence (1, 6) ∈ Γ. Similarly we can prove (2, 5) ∈ Γ. The other

elements are obtained similarly as in (2) �

Case III. LP ∩ LQ = {R} with R ̸= P, Q

We have LP � C = 2P + 0Q + r(LP � C) and LQ � C = 0P + 2Q + r(LQ � C). In

this case, we have

MP � C = 5P + bQ+ r(MP � C) for 0 ≤ b ≤ 5,

MP � C = aP + 5Q+ r(MP � C) for 0 ≤ a ≤ 5.

If a + b ≥ 5, then MP = MQ by Bezout’s Theorem. Thus, if MP ̸= MQ, then

a+ b ≤ 4.

Subcase III-1. MP � C = 5P + 5Q, i.e., MP = MQ and r(MP � C) = 0

Theorem 2.7. We have

(4) Γ = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 6)}.

Proof. For any a = 1, . . . , 5, MP is the unique quadratic curve passing through

aP +(6−a)Q, hence dim(a, 6−a) = 1. By Bezout’s Theorem, MP is also the unique

quadratic curve passing through (a−1)P +(6−a)Q [resp. aP +(6−a−1)Q]. Thus

dim(a− 1, 6− a) = 0 = dim(a, 6− a− 1). By Lemma 2.4, we have (a, 6− a) ∈ Γ for

all a = 1, . . . , 5.

By Lemma 2.3, we get (6, 6) ∈ Γ. �

Subcase III-2. MP � C = 5P + 4Q+ r(MP � C)

Then MQ � C = 0P + 5Q+ r(MP � C).
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Theorem 2.8. We have

(5) Γ = {(1, 6), (2, 4), (3, 3), (4, 2), (5, 1), (6, 5)}.

Proof. By Lemma 2.4, we have (a, 6− a) ∈ Γ for all a = 2, . . . , 5.

By Lemma 2.3, we have (1, 6), (6, 5) ∈ Γ. �

Subcase III-3. MP �C = 5P +3Q+ r(MP �C) and MQ �C = 1P +5Q+ r(MQ �C)

Theorem 2.9. We have

(6) Γ = {(1, 5), (2, 6), (3, 3), (4, 2), (5, 1), (6, 4)}.

Proof. The pairs (1, 5), (3, 3), (4, 2), (5, 1) are elements of Γ by Lemma 2.4. The pairs

(2, 6) and (6, 4) are elements of Γ by Lemma 2.3. �

Subcase III-4. MP �C = 5P +3Q+ r(MP �C) and MQ �C = 0P +5Q+ r(MQ �C)

Theorem 2.10. We have

(7) Γ = {(1, 6), (2, 5), (3, 3), (4, 2), (5, 1), (6, 4)}.

Proof. Using Riemann-Roch Theorem and Lemma 2.4, the pairs (1, 6), (2, 5), (3, 3),

(4, 2), (5, 1) are elements of Γ. The pair (6, 4) is an element of Γ by Lemma 2.3. �

Subcase III-5. MP �C = 5P +2Q+ r(MP �C) and MQ �C = 2P +5Q+ r(MQ �C)

Theorem 2.11. We have

(8) Γ = {(1, 5), (2, 4), (3, 6), (4, 2), (5, 1), (6, 3)}.

Proof. Using Lemma 2.4, the pairs (1, 5), (2, 4), (4, 2), (5, 1) are elements of Γ. The

pair (3, 6), (6, 3) is an element of Γ by Lemma 2.3. �

Subcase III-6. MP �C = 5P +2Q+ r(MP �C) and MQ �C = P +5Q+ r(MQ �C)

Theorem 2.12. We have

(9) Γ = {(1, 5), (2, 6), (3, 4), (4, 2), (5, 1), (6, 3)}.

Proof. Using Lemma 2.4, the pairs (1, 5), (3, 4), (4, 2), (5, 1) are elements of Γ. The

pair (2, 6) and (6, 3) are elements of Γ by Lemma 2.3. �

Subcase III-7. MP �C = 5P +2Q+ r(MP �C) and MQ �C = 0P +5Q+ r(MQ �C)
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Theorem 2.13. We obtain two Γ’s. If (2, 4) is nonspecial.

(10) Γ = {(1, 6), (2, 5), (3, 4), (4, 2), (5, 1), (6, 3)}.

If (2, 4) is special.

(11) Γ = {(1, 6), (2, 4), (3, 5), (4, 2), (5, 1), (6, 3)}.

Proof. Let (2, 4) be nonspecial. Using Riemann-Roch Theorem and Lemma 2.4, the

pairs (1, 6), (2, 5), (3, 4), (4, 2), (5, 1) are elements of Γ. The pair (6, 3) is an element

of Γ by Lemma 2.3.

Let (2, 4) be special. Using Riemann-Roch Theorem and Lemma 2.4, the pairs

(1, 6), (2, 4), (4, 2), (5, 1) are elements of Γ. The pair (3, 5), (6, 3) is an element of Γ

by Lemma 2.3. �

Subcase III-8. MP � C = 5P +Q+ r(MP � C) and MQ � C = P + 5Q+ r(MQ � C)

Theorem 2.14. We obtain two Γ’s. If (3, 3) is nonspecial,

(12) Γ = {(1, 5), (2, 6), (3, 4), (4, 3), (5, 1), (6, 2)}.

If (3, 3) is special,

(13) Γ = {(1, 5), (2, 6), (3, 3), (4, 4), (5, 1), (6, 2)}.

Proof. Let (3, 3) be nonspecial. Using Riemann-Roch Theorem and Lemma 2.4, the

pairs (1, 5), (3, 4), (4, 3), (5, 1) are elements of Γ. The pairs (2, 6), (6, 2) are elements

of Γ by Lemma 2.3.

Let (3, 3) be special. Using Riemann-Roch Theorem and Lemma 2.4, the pairs

(1, 5), (3, 3), (5, 1) are elements of Γ. The pairs (2, 6), (4, 4), (6, 2) are elements of Γ

by Lemma 2.3. �

Subcase III-9. MP �C = 5P +Q+ r(MP �C) and MQ �C = 0P +5Q+ r(MQ �C)

Theorem 2.15. In this case, Γ is one of the following 4 sets:

(14) Γ = {(1, 6), (2, 4), (3, 3), (4, 5), (5, 1), (6, 2)}.

(15) Γ = {(1, 6), (2, 5), (3, 3), (4, 4), (5, 1), (6, 2)}.

(16) Γ = {(1, 6), (2, 4), (3, 5), (4, 3), (5, 1), (6, 2)}.

(17) Γ = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 1), (6, 2)}.
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Proof. Lemma 2.3 implies (1, 6), (6, 2) ∈ Γ, and Lemma 2.4 implies (5, 1) ∈ Γ.

If (3, 4) is special, then it should be maximal special. Lemma 2.3 implies that

(4, 5) ∈ Γ, Lemma 2.4 implies that (2, 4), (3, 3) ∈ Γ. Thus we get the set (14).

Suppose that (3, 4) is nonspecial. If (3, 3) is special, then (4, 4) ∈ Γ by Lemma

2.3, and (3, 3) ∈ Γ by Lemma 2.4. By Lemma 1.1, we have (2, 5) ∈ Γ, and hence we

get the set (15).

Suppose that (3, 4) is nonspecial and (2, 4) is special, then (3, 5) ∈ Γ by Lemma

2.3, and (2, 4) ∈ Γ by Lemma 2.4. By Lemma 1.1, we have (4, 3) ∈ Γ, and hence the

set (16).

Finally, suppose that (3, 3) and (2, 4) are nonspecial. Since dim(2, 4) = dim(3, 3) =

0 and dim(3, 4) = 1 by Riemann-Roch Theorem. By Lemma 2.4, we have (3, 4) ∈ Γ.

Since (5, 1), (6, 2) ∈ Γ, Lemma 1.1 implies that dim(4, 2) = 0. Thus (4, 3) ∈ Γ by

Lemma 2.4. By Lemma 1.1, we have (2, 5) ∈ Γ, and hence the set (17). �

Subcase III-10. MP �C = 5P +0Q+r(MP �C) and MQ �C = 0P +5Q+r(MQ �C)

For our convenience, we use a terminolgoy “the inverse relation”. For a set Γ, we

let Γ−1 = {(β, α) | (α, β) ∈ Γ} and we call it the inverse relation of the set Γ. Note

that Γ(Q,P ) = Γ−1(P,Q).

Theorem 2.16. In this case, Γ is one of the following 6 sets or inverse relations of

them:

(18) Γ = {(1, 6), (2, 4), (3, 3), (4, 2), (5, 5), (6, 1)}.

(19) Γ = {(1, 6), (2, 4), (3, 3), (4, 5), (5, 2), (6, 1)}.

(20) Γ = {(1, 6), (2, 4), (3, 5), (4, 2), (5, 3), (6, 1)}.

(21) Γ = {(1, 6), (2, 4), (3, 5), (4, 3), (5, 2), (6, 1)}.

(22) Γ = {(1, 6), (2, 5), (3, 3), (4, 4), (5, 2), (6, 1)}.

(23) Γ = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

Proof. Lemma 2.3 implies (1, 6), (6, 1) ∈ Γ. We consider case by case.

(a) Suppose that (4, 4) is special. Lemma 2.3 implies (5, 5) ∈ Γ. By Bezout’s

Theorem, there is a conic cut out the divisor 4P + 4Q which is the unique conic

passing through the divisors aP + bQ, for all a, b with 1 ≤ a, b ≤ 4 and a + b ≥ 5.
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Thus, by Riemann-Roch Theorem and Lemma 2.4, we have (2, 4), (3, 3), (4, 2) ∈ Γ

and we get the set (18).

(b) Suppose that (4, 4) is nonspecial and (3, 4) is special. Lemma 2.3 implies

(4, 5) ∈ Γ. Since (2, 4) and (3, 3) are also special, by Lemma 2.4, we have (2, 4), (3, 3) ∈
Γ. By Lemma 1.1, we have (5, 2) ∈ Γ, and hence the set (19).

(c) Suppose that (4, 4), (3, 4) are nonspecial and (2, 4), (4, 2) are special. Lemma

2.3 implies (3, 5), (5, 3) ∈ Γ. Lemma 2.4 implies that (2, 4), (4, 2) ∈ Γ, hence we get

the set (20).

(d) Suppose that (4, 4), (3, 4), (4, 2) are nonspecial and (2, 4) is special. Lemma

2.3 implies (3, 5) ∈ Γ. Lemma 2.4 implies that (2, 4), (4, 3) ∈ Γ. Lemma 1.1 implies

(5, 2) ∈ Γ, hence we get the set (21).

(e) Suppose that (4, 3), (3, 4) are nonspecial and (3, 3) is special. Then (2, 4) and

(4, 2) are nonspecial. Indeed, if (2, 4) or (4, 2) is special, by Bezout’s Theorem, the

same conic cut out 3P + 3Q and 2P + 4Q (or 4P + 2Q). Then (4, 3) (or (3, 4)) is

special which contradicts the assumption. Lemma 2.3 implies (4, 4) ∈ Γ and Lemma

2.4 implies (3, 3) ∈ Γ. Again, Lemma 2.4 implies (2, 5), (5, 2) ∈ Γ, hence we get the

set (22).

(f) Suppose that (2, 4), (3, 3), (4, 2) are nonspecial. Since (1, 6), (6, 1) ∈ Γ, (1, 5)

and (5, 1) are also nonspecial. Lemma 2.4 implies (2, 5), (3, 4), (4, 3), (5, 2) ∈ Γ,

hence we get the set (23). �

3. Construction of Curves

In this section, each semigroup listed in the previous section is actually appeared

as a Weierstrass semigroup at an pair of points on some smooth plane curve of degree

5. We use the following lemma frequently in examples.

Lemma 3.1. Let C be a smooth plane curve of degree 5, and P,Q points on C.

Suppose that there is a unique conic M such that M � C = αP + βQ+ r(M � C). If

(α′, β′) ̸≤ (α, β) and min{α, α′}+min{β, β′} ≥ 5, then (α′, β′) is nonspecial.

Proof. If (α′, β′) is special, there exists a quadratic curve M ′ such that M ′ � C ≥
α′P + β′Q. Then the sum of intersection multiplicities of M and M ′ is ≥ 5. By

Bezout’s Theorem, we have M = M ′, which contradicts the assumptions. �

Example 3.2 (An example for Case I). Let M1 := yz−x2, M2 = yz−(x−z)2, L1 =

y. Consider the family of curves defined by the equation c1M1M2ℓ + c2L
2
1ℓ11ℓ21ℓ

′
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for general c1, c2 ∈ C, general lines ℓ, ℓ′, a general line ℓ11 through P , a general line

ℓ21 through Q. Using Bertini’s Theorem, we can prove that general members of the

family are smooth. Let C be such a curve. Then C is a smooth plane curve of degree

5. Let P = (0, 0, 1) and Q = (1, 0, 1). Then LP = LQ = L1 = y, MP = yz − x2

and MQ = yz − (x − z)2. We can check that LP � C = 2P + 2Q + r(LP � C),

MP � C = 5P + 0Q+ r(MP � C),MQ � C = 0P + 5Q+ r(MQ � C). Now by Theorem

2.5, we obtain the the set (1).

Example 3.3 (Examples for Case II). (a) Let C be a curve defined by c1(yz −
x2)(xy−z2+xz)(x−3z)+ c2(xy−z2)y2(y+2x) for general c1, c2. Let P = (0, 1, 0),

Q = (0, 0, 1), points on C. Then LP = x, LQ = y, MP = xy − z2, MQ = yz − x2.

We have LP � C = 2P + Q + r(LP � C), LQ � C = 0P + 2Q + r(LQ � C), MP � C =

5P + 0Q+ r(MP � C), MQ � C = P + 5Q+ r(MQ � C). By Theorem 2.6, Γ(P,Q) is

equal to the set (2).

(b) Let C be defined by c1(yz−x2)(xz−z2−y2)(z+x+y)+c2y
2x(x−z)(y−x+z)

for general c1, c2. Let P = (0, 0, 1), Q = (1, 0, 1). Then LP = y, LQ = x − z,

MP : yz−x2, and MQ : xz−(z2+y2). We can check that LP �C = 2P+Q+r(LP �C),

LQ � C = 0P + 2Q + r(LQ � C), MP � C = 5P + 0Q + r(MP � C), MQ � C =

0P + 5Q+ r(MQ � C). By Theorem 2.6, Γ(P,Q) is equal to the set (3).

Example 3.4 (An example for Subcase III-1). Let C be defined by c1(yz−x2)(y−
z)(y + z)(y − 2z) + c2x

5 for general c1, c2. Let P = (0, 0, 1), Q = (0, 1, 0). Then

LP = y, LQ = z, MP = MQ : yz−x2. We can check that LP �C = 2P+0Q+r(LP �C),

LQ � C = 0P + 2Q + r(LQ � C), MP � C = 5P + 5Q + r(MP � C). By Theorem 2.7,

Γ(P,Q) is equal to the set (4).

Example 3.5 (An example for Subcase III-2). Let C be defined by c1(yz−x2)(y−
z)(y + z)(y − 2z) + c2x

4(y + x) for general c1, c2. Let P = (0, 0, 1), Q = (0, 1, 0).

Then LP = y, LQ = z, MP : yz−x2, MQ : yz−x2−2z2. We can check that LP �C =

2P +0Q+ r(LP �C), LQ �C = 0P +2Q+ r(LQ �C), MP �C = 5P +4Q+ r(MP �C),

and MQ � C = 0P + 5Q + r(MQ � C). By Theorem 2.8, Γ(P,Q) is equal to the set

(5).

Example 3.6 (An example for Subcase III-3). Let C be defined by c1(yz−x2)(y−
a1x)(y− a2x)ℓ+ c2(yz− x2 − xy+ y2)(−2x+ y)(y− z− b1(x− z)(y− 1− b2(x− z))

for general a1, a2, b1, b2, c1, c2 and a general line ℓ. Let P = (1, 1, 1), Q = (0, 0, 1).
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Then LP = y, LQ = z, MP : yz−x2, MQ : yz−x2−2z2. We can check that LP �C =

2P +0Q+ r(LP �C), LQ �C = 0P +2Q+ r(LQ �C), MP �C = 5P +3Q+ r(MP �C),

and MQ �C = P +5Q+ r(MQ �C). By Theorem 2.9, Γ(P,Q) is equal to the set (6).

Example 3.7 (An example for Subcase III-4). Let M1 = yz−x2, M2 = yz−x2−xy,

L1 = −2x + y. Let C be defined by c1M2L
2
1ℓ11 + c2M1ℓ21ℓ22ℓ for general c1, c2, a

general line ℓ11 through P , general lines ℓ21, ℓ22 through Q, a general ℓ, where

P = (1, 1, 1), Q = (0, 0, 1). Then MP = M1, MQ = M2, LP = L1 and LQ = y.

We can check that LP � C = 2P + 0Q + r(LP � C), LQ � C = 0P + 2Q + r(LQ � C),

MP � C = 5P + 3Q+ r(MP � C), and MQ � C = 0P + 5Q+ r(MQ � C). By Theorem

2.10, Γ(P,Q) is equal to the set (7).

Example 3.8 (An example for Subcase III-5). Let M1 = (x− z)2 + y2 − z2, M2 =

(x− z)2 + 4y2 − z2. Let C be defined by c1M2(y − x)(y − 2x)(y − 3x) + c2M1(y −
x + 2)(y − 2x + 4)(y − 3x + 6) for general c1, c2. Let P = (0, 0, 1), Q = (2, 0, 1).

Then LP = x, LQ = x − 2z, MP = M1 and MQ = M2. Then we can check that

LP �C = 2P+0Q+r(LP �C), LQ�C = 0P+2Q+r(LQ�C),MP �C = 5P+2Q+r(MP �C)

and MQ �C = 2P +5Q+ r(MQ �C). Then by Theorem 2.11, Γ(P,Q) is equal to the

set (8).

Example 3.9 (An example for Subcase III-6). LetM1 = yz−x2, M2 = yz−2x2+xy,

L1 = −2x + y. Let C be defined by c1M2L1ℓ11ℓ12 + c2M1ℓ21ℓ22ℓ23 for general

c1, c2, general lines ℓ11, ℓ12 through P , general lines ℓ21, ℓ22, ℓ23 through Q, where

P = (1, 1, 1), Q = (0, 0, 1). Then LP = L1, LQ = y, MP = M1, and MQ = M2.

We can check that LP � C = 2P + 0Q + r(LP � C), LQ � C = 0P + 2Q + r(LQ � C),

MP �C = 5P +2Q+r(MP �C) and MQ �C = P +5Q+r(MQ �C). Then by Theorem

2.12, Γ(P,Q) is equal to the set (9).

Example 3.10 (Examples for Subcase III-7). (a) Let M1 = yz−x2, M2 = yz−2x2,

L1 = −2x+ y. Let C be defined by c1M2L
2
1ℓ11 + c2M1ℓ21ℓ22ℓ23 for general c1, c2, a

general line ℓ11 through P , general lines ℓ21, ℓ22, ℓ23 through Q, where P = (1, 1, 1),

Q = (0, 0, 1). Then LP = L1, LQ = y, MP = M1, and MQ = M2. We can check that

LP �C = 2P+0Q+r(LP �C), LQ�C = 0P+2Q+r(LQ�C),MP �C = 5P+2Q+r(MP �C)

and MQ �C = 0P +5Q+ r(MQ �C). Let M3 := yz − 2x2 +2xy− y2. Then we have

M3 � C = 2P + 3Q + r(M3 � C), which implies that (2, 4) is nonspecial by Lemma

3.1. By Theorem 2.13, Γ(P,Q) is equal to the set (10).
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(b) Let M1 = yz − 2x2, M2 = yz − x2 + y2, M = yz − x2 and L1 = z. Let C be

defined by c1M2L
2
1ℓ11 + c2M1ℓ21ℓ22ℓ23 for general c1, c2, a general line ℓ11 through

P , general lines ℓ21, ℓ22, ℓ23 through Q, where P = (0, 1, 0), Q = (0, 0, 1). Then

LP = L1, LQ := y, MP = M1, and MQ = M2. We can check that LP � C =

2P +0Q+ r(LP �C), LQ �C = 0P +2Q+ r(LQ �C), MP �C = 5P +2Q+ r(MP �C)

and MQ � C = 0P + 5Q + r(MQ � C). Also we have M � C = 2P + 4Q + r(M � C),

which implies that (2, 4) is special. By Theorem 2.13, Γ(P,Q) is equal to the set

(11).

Example 3.11 (Examples for Subcase III-8). (a) Let M1 = (x−z)2+y2−z2, M2 =

yz − x2, L1 = y − z, L2 = y. Let C be defined by c1M2L1ℓ11ℓ12 + c2M1L2ℓ21ℓ22 for

general c1, c2, a general line ℓ11, ℓ12 through P , general lines ℓ21, ℓ22 through Q, where

P = (1, 1, 1), Q = (0, 0, 1). Then MP = M1, MQ = M2, LP = L1 and LQ = L2. We

can check that MP �C = 5P +Q+ r(MP �C) and MQ �C = P +5Q+ r(MQ �C). If

we let M3 = yz−x2+2xy− 2y2, then M3 �C = 3P +2Q+ r(M3 �C), which implies

that (3, 3) is nonspecial by Lemma 3.1. Then by Theorem 2.14, Γ(P,Q) is equal to

the set (12).

(b) Let M1 = xz−y2, M2 = yz−x2, L1 = x−2y+z and L2 = y. Let C be defined

by c1M2L1ℓ11ℓ12 + c2M1L2ℓ21ℓ22 for general c1, c2, a general line ℓ11, ℓ12 through P ,

general lines ℓ21, ℓ22 through Q, where P = (1, 1, 1), Q = (0, 0, 1). Then MP = M1,

MQ = M2, LP = L1 and LQ = L2. We can check that MP �C = 5P +Q+ r(MP �C)

and MQ � C = P + 5Q + r(MQ � C). If we let M3 = yz − x2 + 3xy − 3y2, then

M3 �C = 3P +3Q+ r(M3 �C) which implies that (3, 3) is special. Then by Theorem

2.14, Γ(P,Q) is equal to the set (13).

Example 3.12 (Examples for Subcase III-9). (a) Let M1 = yz−x2+xz, M2 = yz−
x2+y2, M = yz−x2, L1 = z, L2 = y. Let C be defined by c1M2L

2
1ℓ11+c2M1L2ℓ21ℓ22

for general c1, c2, a general line ℓ11 through P , general lines ℓ21, ℓ22 through Q, where

P = (0, 1, 0), Q = (0, 0, 1). Then MP = M1, MQ = M2, LP = L1 and LQ = L2.

We can check that LP � C = 2P + 0Q + r(LP � C), LQ � C = 0P + 2Q + r(LQ � C),

MP � C = 5P +Q + r(MP � C) and MQ � C = 0P + 5Q + r(MQ � C). Also we have

M �C = 3P + 4Q+ r(M �C) which implies that (3, 4) is special. By Theorem 2.15,

Γ(P,Q) is equal to the set (14).

(b) Let M1 = yz − x2 + xz, M2 = yz − x2 − xy + y2, M = yz − x2, L1 = z

and L2 = y. Let C be defined by c1M2L
2
1ℓ11 + c2M1L2ℓ21ℓ22 for general c1, c2,

a general line ℓ11 through P , general lines ℓ21, ℓ22 through Q, where P = (0, 1, 0),
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Q = (0, 0, 1). ThenMP = M1, MQ = M2, LP = L1 and LQ = L2. We can check that

LP �C = 2P+0Q+r(LP �C), LQ�C = 0P+2Q+r(LQ�C), MP �C = 5P+Q+r(MP �C)

and MQ � C = 0P + 5Q + r(MQ � C). Also we have M � C = 3P + 3Q + r(M � C)

which implies that (3, 3) is special and (3, 4) is nonspecial by Lemma 3.1. Then by

Theorem 2.15, Γ(P,Q) is equal to the set (15).

(c) Let M1 = yz − 2x2 + xz, M2 = yz − x2 + y2, M = yz − x2, L1 = z

and L2 = y. Let C be defined by c1M2L
2
1ℓ11 + c2M1L2ℓ21ℓ22 for general c1, c2,

a general line ℓ11 through P , general lines ℓ21, ℓ22 through Q, where P = (0, 1, 0),

Q = (0, 0, 1). ThenMP = M1, MQ = M2, LP = L1 and LQ = L2. We can check that

LP �C = 2P+0Q+r(LP �C), LQ�C = 0P+2Q+r(LQ�C), MP �C = 5P+Q+r(MP �C)

and MQ � C = 0P + 5Q + r(MQ � C). Also we have M � C = 2P + 4Q + r(M � C)

which implies that (2, 4) is special and (3, 4) is nonspecial by Lemma 3.1. Then by

Theorem 2.15, Γ(P,Q) is equal to the set (16).

(d) Let M1 = yz − 2x2 + xz, M2 = yz − x2 − xy + y2, M = yz − x2, L1 = z

and L2 = y. Let C be defined by c1M2L
2
1ℓ11 + c2M1L2ℓ21ℓ22 for general c1, c2,

a general line ℓ11 through P , general lines ℓ21, ℓ22 through Q, where P = (0, 1, 0),

Q = (0, 0, 1). ThenMP = M1, MQ = M2, LP = L1 and LQ = L2. We can check that

LP �C = 2P+0Q+r(LP �C), LQ�C = 0P+2Q+r(LQ�C), MP �C = 5P+Q+r(MP �C)

and MQ � C = 0P + 5Q + r(MQ � C). Also we have M � C = 2P + 3Q + r(M � C)

which implies that (3, 3) and (2, 4) are nonspecial by Lemma 3.1. Then by Theorem

2.15, Γ(P,Q) is equal to the set (17).

Example 3.13 (Examples for Subcase III-10). (a) Let M1 = yz − x2 + z2, M2 =

yz− x2 + y2, M = yz− x2. Let C be defined by c1M1M2ℓ+ c2Mℓ11ℓ21ℓ
′ for general

c1, c2, a general line ℓ11 through P , general lines ℓ21 through Q, general lines ℓ, ℓ′

where P = (0, 1, 0), Q = (0, 0, 1). Then MP = M1, MQ = M2, LP = z and LQ = y.

We can check that LP � C = 2P + 0Q + r(LP � C), LQ � C = 0P + 2Q + r(LQ � C),

MP � C = 5P + 0Q+ r(MP � C) and MQ � C = 0P + 5Q+ r(MQ � C). Also we have

M �C = 4P + 4Q+ r(M �C) which implies that (4, 4) is special. Then by Theorem

2.16, Γ(P,Q) is equal to the set (18).

(b) Let M1 = yz − x2 + xz + z2, M2 = yz − x2 + y2, M = yz − x2. Let C be

defined by c1M1M2ℓ+ c2Mℓ11ℓ12ℓ21 for general c1, c2, a general line ℓ11, ℓ12 through

P , general lines ℓ21 through Q, general lines ℓ where P = (0, 1, 0), Q = (0, 0, 1).

Then MP = M1, MQ = M2, LP = z and LQ = y. We can check that LP � C =

2P +0Q+ r(LP �C), LQ �C = 0P +2Q+ r(LQ �C), MP �C = 5P +0Q+ r(MP �C)
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and MQ � C = 0P + 5Q + r(MQ � C). Also we have M � C = 3P + 4Q + r(M � C)

which implies that (3, 4) is special. Then (4, 4) is nonspecial by Lemma 3.1. Then

by Theorem 2.16, Γ(P,Q) is equal to the set (19).

(c) Let M1 = yz − 2x2 + z2, M2 = yz − x2 + y2, M3 = yz − x2, M4 = yz − 2x2,

L1 = z and L2 = y. Let C be defined by c1M1M2ℓ + c2M3L1ℓ11ℓ21 for general

c1, c2, a general line ℓ11 through P , general lines ℓ21 through Q, general lines ℓ

where P = (0, 1, 0), Q = (0, 0, 1). Then MP = M1, MQ = M2, LP = L1 = z and

LQ = L2 = y. We can prove the following: MP �C = 5P +0Q+r(MP �C), MQ �C =

0P+5Q+r(MQ�C), M3�MP = 2P+0Q+r(M3�MP ), M3�MQ = 0P+4Q+r(M3�MQ),

M4 �MP = 4P + 0Q + r(M4 �MP ), and M4 �MQ = 0P + 2Q + r(M4 �MQ). Thus

(2, 4) and (4, 2) are special. By (c) in the proof of Theorem 2.16, Γ(P,Q) is equal

to the set (20).

(d) Let M1 = yz−2x2+xz+z2, M2 = yz−x2+y2, M3 = yz−x2, M4 = yz−2x2,

L1 = z and L2 = y. Let C be defined by c1M1M2ℓ+ c2M3xℓ11ℓ12 for general c1, c2,

a general line ℓ11, ℓ12 through P , general lines ℓ where P = (0, 1, 0), Q = (0, 0, 1).

Then MP = M1, MQ = M2, LP = z and LQ = y. We can check that MP � C =

5P +0Q+ r(MP �C), MQ �C = 0P +5Q+ r(MQ �C), M3 �C = 2P +4Q+ r(M3 �C),

and M4 �C = 3P +2Q+ r(M4 �C). Thus (2, 4) is special and (4, 2) is nonspecial by

Lemma 3.1. Thus Γ(P,Q) is equal to the set (21) by Theorem 2.16.

(e) Let M1 = yz− x2 − xz+ z2, M2 = yz− x2 − xy+ y2, M = yz− x2. Let C be

defined by c1M1M2ℓ+ c2ML2ℓ11ℓ12 for general c1, c2, a general line ℓ11, ℓ12 through

P , general lines ℓ where P = (0, 1, 0), Q = (0, 0, 1). Then MP = M1, MQ = M2,

LP = z and LQ = y. We can check that LP � C = 2P + 0Q + r(LP � C), LQ � C =

0P+2Q+r(LQ �C), MP �C = 5P+0Q+r(MP �C) and MQ �C = 0P+5Q+r(MQ �C).

Also we have M �C = 3P +3Q+ r(M �C) which implies that (3, 3) is special. Then

(4, 3), (3, 4), (4, 2), (2, 4) are nonspecial by Lemma 3.1. Then by Theorem 2.16,

Γ(P,Q) is equal to the set (22).

(f) Let M1 = yz − 2x2 − xz + z2, M2 = yz − x2 − xy + y2, M3 = yz − x2,

M4 = yz − 2x2. Let C be defined by c1M1M2ℓ + c2M3L1L2ℓ11 for general c1, c2,

a general line ℓ11 through P , general lines ℓ where P = (0, 1, 0), Q = (0, 0, 1).

Then MP = M1, MQ = M2, LP = z and LQ = y. We can check that LP � C =

2P +0Q+ r(LP �C), LQ �C = 0P +2Q+ r(LQ �C), MP �C = 5P +0Q+ r(MP �C)

and MQ � C = 0P + 5Q+ r(MQ � C). Also we have M3 � C = 2P + 3Q+ r(M3 � C)

and M3 � C = 3P + 2Q + r(M3 � C) which implies that (3, 3), (4, 2) and (2, 4) are

nonspecial by Lemma 3.1. Then by Theorem 2.16, Γ(P,Q) is equal to the set (23).
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